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The existence and topological classification of lower-dimensional Fermi surfaces is often tied to the crystal
symmetries of the underlying lattice systems. Artificially engineered lattices, such as heterostructures and other
superlattices, provide promising avenues to realize desired crystal symmetries that protect lower-dimensional
Fermi surfaces, such as nodal lines. In this work, we investigate a Weyl semimetal subjected to spatially periodic
onsite potential, giving rise to several phases, including a nodal-line semimetal phase. In contrast to proposals that
purely focus on lattice symmetries, the emergence of the nodal line in this setup does not require small spin-orbit
coupling, but rather relies on its presence. We show that the stability of the nodal line is understood from reflection
symmetry and a combination of a fractional lattice translation and charge-conjugation symmetry. Depending on
the choice of parameters, this model exhibits drumhead surface states that are exponentially localized at the
surface, or weakly localized surface states that decay into the bulk at all energies.
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I. INTRODUCTION

Symmetries play a crucial role in the realization of lower-
dimensional Fermi surfaces: while Dirac semimetals with
degenerate Fermi points require time reversal in combination
with crystal symmetries, such as reflection or rotational invari-
ance, Weyl semimetals are stable even in absence of these [1].
However, Weyl nodes may be gapped by coupling two nodes
of opposite chirality [2]. Although isolated Weyl nodes are
generally stable towards small disorder [3], scattering between
different Weyl nodes couples them and may open up a gap in
the spectrum by annihilating the Weyl nodes. Alternatively,
we demonstrate that Weyl nodes can couple such that a new
phase arises: a nodal-line semimetal with a one-dimensional
Fermi surface [4–18].

Nodal-line semimetals exhibit surface bands at a limited
range of momenta [19]. These bands may serve as a basis
for correlated physics in the presence of interactions [20].
In the bulk, the implications of the nodal line include a
sharply peaked magnetic susceptibility at zero energy [21,22],
the three-dimensional integer quantum Hall effect [23], and
intriguing transport and density response properties [4,24–32].
However, nodal-line phases generically do not survive the
inclusion of spin-orbit coupling [6–10,33–35], which lifts the
nodal degeneracy leading to isolated Weyl points. It is thus
desirable to conceive realizations of nodal-line semimetals
that do not rely on a small or vanishing spin-orbit coupling, as
already suggested in previous proposals [36–38] that require
time-reversal and inversion symmetry, or nonsymmorphic
symmetries [39,40].

In this work, we show that a Weyl semimetal subjected
to a spatially periodic modulation of the onsite potential can
undergo a transition to various phases, including a nodal-line
semimetal. Since spin-orbit coupling is usually a requirement
to have a Weyl phase [33,41], the nodal-line semimetal also
relies on it, contrary to other proposals that require small
spin-orbit coupling [6–10,35]. We present the topological

classification of the nodal line, showing that its stability relies
on reflection symmetry [42] and a combination of a fractional
lattice translation and charge-conjugation symmetry.

The nodal-line semimetal phase that we predict exhibits
surface states that are not pinned to zero energy, simi-
lar to previously studied models with drumhead surface
states [11,18,19]. The extra charge accumulation due to states
at the surface is tied to the intercellular Zak phase [43]. This
implies that realizations without surface states exponentially
localized to the boundary are possible. Nodal-line semimetals
without surface states at low energies enable the direct study
of the bulk properties of the nodal line.

Periodic superlattices can be implemented both in solid-
state [44–46] and synthetic systems [47–49]. Multilayer
heterostructures can effectively realize superlattices for Weyl
fermions in crystalline solids. A Weyl phase realized on an
optical lattice [50] can be supplemented with a superlattice [51]
to obtain the nodal-line semimetal phase proposed here. Since
Weyl fermions are realized in photonic crystals [52–54],
and superlattice structures have been engineered to observe
Brillouin zone folding effects [49], these systems may also
serve as a natural platform for the phenomena we study.

The paper is organized as follows: After introducing
the superlattice model in Sec. II, we diagonalize the full
Hamiltonian to obtain its band structure, revealing a nodal-line
semimetal. The emergence of the nodal line is understood
from the derivation of a low-energy effective theory that
we discuss in Sec. III. To predict the stability of the nodal
line we supplement the low-energy theory with a symmetry
classification based on reflection symmetry and a combination
of a fractional lattice translation and charge-conjugation
symmetry in Sec. IV. The circumstances under which the
model exhibits drumhead surface states are understood via
the intercellular Zak phase and explained in Sec. V. The
existence of the nodal line is in all cases protected by at least
one symmetry, and therefore a wave-vector mismatch between

2469-9950/2017/96(24)/245101(10) 245101-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.245101


BEHRENDS, RHIM, LIU, GRUSHIN, AND BARDARSON PHYSICAL REVIEW B 96, 245101 (2017)

the superlattice and the Weyl semimetal does not immediately
open a gap, as shown in Sec. VI. Our results do not hinge on
a specific lattice model of a Weyl semimetal; in Sec. VII we
demonstrate that a nodal line also arises in a superlattice of a
time-reversal invariant Weyl semimetal.

II. MODEL: WEYL SEMIMETAL ON A SUPERLATTICE

We start from the time-reversal-breaking two-band lattice
Hamiltonian [55]

H0(k) = v(sin kxσx + sin kyσy) + Mkσz, (1)

where Mk = t(2 − cos kx − cos ky) + v(cos kz − m) and the
lattice constant is set to a = 1. For certain values of m,
e.g., −1 < m < 5 at v = t , the model describes a Weyl
semimetal [56]. The Hamiltonian obeys a charge-conjugation
symmetry, which may be broken in higher-energy bands in
more realistic systems. In the course of this work, we consider
this symmetry to be fulfilled. Here, we focus on 0 < m < 1,
when there is one pair of Weyl nodes at (0,0, ± arccos m).
This Hamiltonian is perturbed by the periodic potential

U (r) = 2
∑

μ={0,x,y,z}
uμ cos(r · K − θμ)σμ, (2)

where σμ = (σ0,σ ), σ0 is the 2 × 2 identity matrix, σ is the
vector of Pauli matrices, and μ = 0,x,y,z. Depending on the
physical realization of this low-energy Hamiltonian, σμ may
act in spin or orbital space or, when realized on an optical
lattice, in sublattice space [50]. The angles θμ denote a shift of
each component of the periodic potential towards the original
lattice.

In the interest of clarity, we make two provisional simplify-
ing assumptions: First, we assume that K is commensurate
with a reciprocal-lattice vector in the z direction, which
sets K = (2π/n)ez for a folding degree n ∈ N and the unit
vector ez. Second, the vector K is chosen to match the wave
vector connecting the two Weyl nodes, K = 2 arccos mez,
thereby restricting our discussion to the specific values of
m = cos π/n. We postpone discussing the consequences of
relaxing these two assumptions to Sec. VI.

Such choice of K enlarges the unit cell by the folding degree
n in the z direction, as shown in Fig. 1(a). The full Hamiltonian
can be written in a form representing the larger unit cell

Hnk =

⎛
⎜⎜⎜⎝

hk + U0 H.c.
v
2 σz hk + U1

. . .
. . .

v
2 e−inkzσz

v
2 σz hk + Un−1

⎞
⎟⎟⎟⎠. (3)

There is a gauge freedom in choosing the phases of the basis
functions for the sites that constitute the superlattice. Our
gauge choice ensures that the Hamiltonian is invariant under a
shift by a reciprocal-lattice vector. The j th diagonal element
of the Hamiltonian is hk + Uj with

hk = H0(k) − v cos kzσz, Uj = U (r = jez). (4)

To gain further intuition of the nature of the perturbation,
one can express Eq. (3) as n copies of a Weyl Hamiltonian
at different momenta, coupled by the superlattice perturba-
tion (2). To this end, we rotate the Hamiltonian by using the

(a) (b)

(e)

(d)(c)

(f)

FIG. 1. (a) Stacking of layers of Weyl semimetals subjected to
different potentials U0 with a folding degree n = 5, realizing the
superlattice discussed in this work. (b) Brillouin zone and surface
Brillouin zone projected on the (001) surface with the position of
the nodal line that may emerge in the kx-ky plane at kz = π/n,
depending on the choice of parameters. The dispersion of the full
Hamiltonian, Eq. (3), along the two dark red lines in the bulk and
surface Brillouin zone is plotted in (c) to (f), with v = t,u0 = 0.2t

and ux,y,z = 0 for different angles θ0. The red lines show the
dispersion at kz = π/n and the gray lines the dispersion for open
boundary conditions in the z-direction with 256 sites, including
surface states. The different plots show (c) folding degree n = 4,
obeying reflection symmetry with θ0 = 3/4π , (d) n = 4, breaking
reflection symmetry with θ0 = 3/4π + 0.15, (e) n = 3, obeying
reflection symmetry with θ0 = 2/3π , (f) n = 3, breaking reflection
symmetry with θ0 = 2/3π + 0.15.

unitary transformation V = V0 ⊗ σ0 with elements

(V0)j l = 1√
n

exp

[
−il

(
kz + 2πj

n

)]
, (5)

to obtain H̃nk = VHnkV†,

H̃nk =

⎛
⎜⎜⎜⎜⎜⎝

H0(k) U+ U−
U− H0

(
k + 2πez

n

)
U+
. . .

U+ U− H0

(
k + 2π(n−1)ez

n

)

⎞
⎟⎟⎟⎟⎟⎠

,

(6)
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Sublattice A Sublattice B

A B C

(a)

(b)

FIG. 2. Unit cell in the superlattice. (a) Illustration of the
equivalent definitions of the bulk unit cell for a folding degree of
n = 3. All bulk properties stay invariant when the definition of the
unit cell is changed between the three different options A, B, and C.
(b) For an even folding degree n, each unit cell can be split up into
two sublattices A and B where the superlattice potential has opposite
sign.

with the Weyl Hamiltonian H0(k) and the perturbation U± =∑
μ uμe±iθμσμ. Thus, the periodic perturbation couples Weyl

Hamiltonians evaluated at momenta that differ by 2π/nez.
To begin understanding the physics of the Hamiltonian (6),

we diagonalize it to obtain the band structure shown in Fig. 1.
Anticipating the key differences between even and odd n,
and the central role played by the presence or absence of
reflection symmetry along z, we show the band structure along
the path through momentum space defined in Fig. 1(b) for
representatives of the four possible cases in Figs. 1(c) to 1(f).
We find that in all but the reflection-symmetry-broken case
with odd n, the low-energy band structure has a nodal line. All
realizations have low-energy surface states that are degenerate
in the presence of reflection symmetry. To obtain a deeper
understanding of these observations, in the next two sections
we derive an effective low-energy theory and then provide a
symmetry classification of the emergent nodal line.

For our later symmetry analysis, it is important to note
that there are n equivalent definitions of the bulk unit cell [an
example is shown in Fig. 2(a)]. It will therefore prove useful
to define the translation operator

Tn,m =
(

1m

1n−meinkz

)
⊗ σ0, (7)

where 1m is the an identity matrix of size m. The operator Tn,m

translates the Hamiltonian’s unit cell by m sites and satisfies
Tn,mTn,n−m = einkz . The transformation

Tn,mHnkT
†
n,m → H′

nk (8)

is equivalent to changing all angles of the perturbation (2) as
θμ → θμ + 2πm/n. All bulk properties stay invariant upon
such a transformation.

III. EMERGENT NODAL PHASES

To understand the emergence of a nodal line, we introduce
a low-energy approximation developed by projecting the full
Hamiltonian to bands close to the Weyl nodes. As described
above, the system may be seen as n copies of the Hamiltonian
that realize the Weyl phase, Eq. (1), coupled at different
momenta, Eq. (6). For a folding degree of n = 2, this especially
means that the full Hamiltonian equals two copies of the Weyl

Hamiltonian that are coupled at opposite chirality,

H̃n=2,k =
(
H0(k − πez) U+ + U−

U+ + U− H0(k + πez)

)
. (9)

This relatively simple 4 × 4 Hamiltonian allows a detailed
investigation of the model’s properties in this special case of
n = 2, including an extensive phase diagram. This is discussed
in the appendix.

For n > 2, the full Hamiltonian can be expanded around the
Weyl nodes at (0,0, ± π/n) and projected down to the lowest
bands, giving a form similar to Eq. (9), i.e., two Weyl nodes
of opposite chirality that are coupled by the potential U±. Up
to linear order in momentum and first order [57] in U , the
low-energy Hamiltonian has the form

Hlow
k = v(kxσx + kyσy) + v

√
1 − m2qzσzτz

+U+τ+ + U−τ−, (10)

where qz is the momentum along z measured from the Weyl
point. The matrices τμ act in the space of the different Weyl
nodes that are coupled by U±. We introduce the Euclidean
Dirac matrices

γ1 = σx, γ2 = σy, (11a)

γ3 = σzτz, γ4 = eiθzτz τxσz, (11b)

and γ5 = γ1γ2γ3γ4 = −e−iθzτz τyσz plus the identity and the
commutators γij = − i

2 [γi,γj ] to rewrite Eq. (10) in terms
of perturbed Dirac fermions [58]. It reads, upon rescaling of
momenta,

Hlow
k =

3∑
i=1

kiγi + uzγ4 + v · b′ + w · p, (12)

with the definitions [4]

p = (γ14,γ24,γ34), b′ = (γ15,γ25,γ35),

w =
⎛
⎝−uy cos

(
θy − θz

)
ux cos (θx − θz)
−u0 sin (θ0 − θz)

⎞
⎠, v =

⎛
⎝−uy sin

(
θy − θz

)
ux sin (θx − θz)
u0 cos (θ0 − θz)

⎞
⎠.

(13)

As discussed in Ref. [4], a perturbation uz introduces a mass
to the Dirac Hamiltonian and all other terms can lead to Weyl
or nodal-line semimetal phases. However, as shown before in
Fig. 1(f), the nodal line that forms is not necessarily stable:
it may gap out when taking into account higher orders in
momentum and U . In Sec. IV, the stability of the nodal line is
investigated beyond the low-energy approximation.

Let us focus on a case where the emergence of a nodal line in
the spectrum simply follows from the low-energy perspective.
For a perturbation U± = u0e

±iθ0σ0, we may rotate the low-
energy Hamiltonian, Eq. (10), by a unitary transformation

U = 1√
2

(σx + σz)e
iφ/2σz , (14)

with φ being the polar angle in the kx-ky plane. This
transformation gives

UHlow
k U† = vqσz + v

√
1 − m2qzσxτz + u0e

iθ0τzτx, (15)
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with q = (k2
x + k2

y)1/2. After applying the canonical transfor-
mation

σ± → σ±τz, τ± → τ±σz, (16)

the Hamiltonian takes the simple form

H′
k = �±σz − v

√
1 − m2qzσx, (17)

where we replaced the operator �̂ = vq + u0e
iθ0τzτx by its

eigenvalues �± = vq ± u0. The nodal line therefore emerges
at qz = 0, vq = u0.

IV. SYMMETRY CLASSIFICATION OF NODAL LINE

Generally, there are two different ways to obtain a protected
nodal line in the model (3): by fulfilling reflection symmetry
or a combination of a fractional lattice translation and charge-
conjugation symmetry—we explain this in the current section.
The symmetry classification of the nodal line depends on the
folding degree of the unit cell n. In its most general form, the
full Hamiltonian, Eq. (3), does not possess any commuting
anti-unitary or anticommuting unitary symmetries, i.e., it is in
symmetry class A. The system is reflection symmetric along z

if the operator

R =

⎛
⎜⎝

σ0

. .
.

σ0

⎞
⎟⎠ (18)

commutes with Hnk or with any shifted Hamiltonian
Tn,mHnkT

†
n,m at momenta that are invariant under reflection

along z, i.e., kz = 0 and kz = π/n, where we choose R such
that R2 = +1, using the convention by Ref. [42]. This is the
case when all angles θμ are the same and equal θμ = mπ/n

for all μ with the integer m. At kz = 0 and kz = π/n, the
eigenstates of the Hamiltonian are simultaneously eigenstates
of R, R|ψ〉 = r|ψ〉 with eigenvalues r = ±1 (the bands are
either even or odd under reflection). Bands with different
eigenvalues r cannot mix, which is the mechanism that protects
the nodal line, cf. Fig. 3(a). The invariant characterizing this
protection is the mirror Chern number [42]: the difference in
the number of occupied bands that are even under reflection
within and outside the nodal line.

For odd folding degree n, reflection symmetry is the only
symmetry that protects the nodal line. In the absence of
reflection symmetry, the nodal line gaps out, giving rise to
two Weyl nodes. This can be achieved in two ways. One relies
on setting at least one angle to be θμ �= mπ/n, which opens
up a gap along the nodal line, cf. Fig. 1(f) for n = 3. A second
option is to break mirror symmetry by adding a term γ sin kzσ0

to the Weyl Hamiltonian, Eq. (1). A nonzero γ shifts the Weyl
nodes to different energies, breaking mirror symmetry and
opening up a gap in the nodal line; cf. Fig. 4.

For even n, the system is partitioned into two sublattices A
and B; cf. Fig. 2(b), where the superpotential has opposite
sign. The system can be understood as a one-dimensional
system in the z direction, parametrized by the other momentum
components k‖ = (kx,ky). For a perturbation U± = u0e

±iθ0σ0,
it obeys a one-dimensional charge-conjugation symmetry

CkHk‖,kz
C−1

k = −Hk‖,−kz
, (19)

(a) (b)

FIG. 3. Topological protection of the nodal line. The nodal line
at kz = π/n is protected by two mechanisms: (a) In the presence of
reflection symmetry, the two bands that form the nodal line at the
reflection invariant momentum kz = π/n have different eigenvalues
under reflection, r = ±1. The number of occupied bands that are
even under reflection changes by 1 when crossing the nodal line.
(b) When the Hamiltonian respects the symmetry induced by Ck, the
determinant of the matrix that diagonalizes the Hamiltonian, W (k),
is quantized to det W (k) = 1 in the plane defined by kz = 0 and
quantized to det W (k) = ±1 in the plane defined by kz = π/n, as
shown in the figure. The red area, within the nodal line, denotes
det W (k) = −1, while the gray area denotes det W (k) = +1. This
protection mechanism is only possible for even folding degree n.

where the operator Ck consists of a combination of a fractional
lattice translation and the anti-unitary charge-conjugation
symmetry

Ck =
(

0 e−inkz

1 0

)
⊗ σxK, (20)

with the outer matrix acting in the sublattice space of A, B and
K denoting complex conjugation. The operator Ck squares to
CkC−k = e−inkz . Similar to one-dimensional superconductors,
the one-dimensional Zak phase

γj

(
k‖

) = i

∫ 2π
n

0
dkz〈ujk|∂kz

|ujk〉 (21)

FIG. 4. Dispersion of the system close to the nodal line in
presence of the reflection-symmetry-breaking term γ sin kzσ0, with
v = t , u0 = 0.2t , and ux,y,z = 0, evaluated at ky = 0.05, kz = π .
(a) For odd folding degree n, the reflection-symmetry-breaking term
γ immediately opens a gap in the spectrum. (b) For even folding
degree, the gap is stable due to the combination of a fractional lattice
translation and charge-conjugation symmetry.
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is related to the determinant of the matrix W (k) that diagonal-
izes the Hamiltonian via

exp

⎡
⎣i

∑
j∈occ.

γj

⎤
⎦ = det W (k‖,0)

det W
(
k‖, π

n

) . (22)

At planes in momentum space defined by kz = 0, the operator
Ck squares to −1, i.e., the Hamiltonian that respects Eq. (19) is
in symmetry class C. The matrix W (k‖,0) is symplectic [59],
which implies that det W (k,0) = 1. Similarly, at kz = π/n,
the operator Ck squares to +1, i.e., the Hamiltonian is
in symmetry class D. Hamiltonian matrices in class D

can be rewritten in terms of Majorana modes as a skew
symmetric matrix XT = −X, which can be diagonalized by
an orthogonal matrix [60,61], i.e., det W (k‖,π/n) = ±1. The
value of det W (k‖,π/n) = sign(Pf[Xk‖]) is a zero-dimensional
invariant that characterizes the two distinct sectors, which are
separated by the nodal line. This invariant is shown in Fig. 3(b)
at both planes kz = 0 and kz = π/n. Its value is det W = −1
inside the nodal line in the plane defined by kz = π/n and
det W = 1. The gap closing cannot vanish without breaking
the symmetry protecting this invariant. Alternatively, the Zak
phase can be interpreted as a one-dimensional invariant that is
quantized for loops enclosing the nodal line.

Note that the presence of charge-conjugation symmetry
does not change the previous statements about the protection
of the nodal line in presence of reflection symmetry, since the
mirror Chern number is inherited from class A [60].

A particularly simple instance of an even n is the case with
folding degree n = 2. In this case the Hamiltonian is always
invariant upon a reflection along z, i.e.,

Rkz
Hn=2,k‖,−kz

R†
kz

= Hn=2,k‖,kz
, (23)

with Rkz
= cos kz − i sin kzτz. Analogous to the other

reflection-symmetric cases, the bands in the plane defined
by kz = π/2 have different eigenvalues of Rπ/2, r = ±1,
and cannot mix. The nodal line is therefore protected by
a mirror MZ Chern number. Additionally, the presence of
charge-conjugation symmetry protects the nodal line even if
reflection symmetry is broken by a term γ sin kzσ0, a fact that
holds for all systems with even folding degree n.

V. SURFACE STATES

In the model investigated here, surface states play a crucial
role: it is possible to have realizations of a stable nodal-line
phase with drumhead surface states as well as surface states
that are not exponentially localized at the boundary. The
emergence of surface states close to zero energy is discussed
in this section.

In Fig. 5(a), the energy dispersion of a finite system with
folding degree n = 4 that respects reflection symmetry is
plotted, along with the location of the states encoded by a
color scale. The system exhibits drumhead surface states at
small energies that are exponentially localized at the surface.
However, not all realizations of a stable nodal line share this
feature: an example without drumhead surface states is given
in Fig. 5(b), where the dispersion for a finite system with
folding degree n = 2 is shown. It is not possible to find a
surface termination that respects the reflection symmetry of
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(a) n = 4

FIG. 5. Energy dispersion and intercellular Zak phase of a
periodically perturbed Weyl semimetal that is finite in z with L = 512
sites, −L/2 < z < L/2, evaluated at ky = 0.05. The color of the lines
encodes the average real-space position. (a) Folding degree n = 4
and perturbation strength u0 = 0.2t with θ0 = 3/4π . Intercellular
Zak phase and total Zak phase coincide and are both quantized
to 0 (outside the nodal line) and π (within the nodal line). The
intercellular Zak phase predicts the extra-charge accumulation at
the surface, which results in exponentially localized surface states
(the degeneracy of the surface states is lifted by an extra energy
η = 0.005t). (b) Folding degree n = 4 and perturbation strength
u0 = 0.2t with θ0 = 0. Although the total Zak phase is quantized,
the intercellular Zak phase is not; this results in surface states that are
not exponentially localized at the surface. Furthermore, the surface
states are not locked to small energies.

the bulk system. This results in states that are not exponentially
localized at the surfaces of the system. To explain the properties
of the surface states, we introduce and compute the Zak phase.

In the modern theory of polarization [62], the Zak phase
is associated with the surface charge. Here, we employ the
intercellular Zak phase that reflects the choice of a bulk unit
cell to relate the extra charge accumulation at the surface with
bulk properties of the system [43]. The intercellular Zak phase
and extra charge accumulation are proportional when the finite
system is commensurate with the unit cell used to compute the
intercellular Zak phase. While the Zak phase is generally given
by

γj (kx,ky) = i

∫ 2π/n

0
dkz〈ujk|∂kz

|ujk〉, (24)
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with the lattice-periodic part of the wave function ujk(r) =
e−ik·rψjk(r), we rather focus on

γ inter
j (kx,ky) = i

∫ 2π/n

0
dkz〈ψjk|∂kz

|ψjk〉, (25)

neglecting the “classical” contribution to the surface charge,
coming from the polarization within a unit cell. The functions
|ψjk〉 are chosen such that all sites in one unit cell carry
the same Bloch phase [43]. This quantity can be numerically
evaluated efficiently by calculating the corresponding Wilson
loop [63].

The intercellular Zak phase is only quantized to 0,π for
a reflection-symmetric unit cell, when it equals the total Zak
phase, otherwise it can take an arbitrary value. Extra charge
accumulation QL(R)

acc. and intercellular Zak phase are related
via [43]

QL(R)
acc. = +(−)

e

2 π

∑
j∈occ.

γ inter
j (mod e), (26)

where L(R) stands for the left (right) surface region com-
mensurate with the bulk unit cell used for the calculation
of the intercellular Zak phase. Furthermore, Eq. (26) does
not allow us to make a statement about the energy of the
extra-charge accumulation. It has been shown that the above
relation leads to the Z2 bulk-boundary correspondence for
the reflection-symmetric insulators: we have γ inter/π (mod
2) in-gap surface modes, with γ inter = ∑

j∈occ. γ
inter
j , if the

finite system (i) respects the reflection symmetry and (ii) is
commensurate with the bulk unit cell [43].

As shown in Fig. 5(a), the intercellular Zak phase for
a reflection-symmetric system with folding degree n = 4 is
quantized to 0,π , correctly predicting the number of in-gap
surface modes. However, the n = 2 case violates the condition
(i) for the bulk-boundary correspondence, and surface modes
are not guaranteed to exist although the total Zak phase is
quantized. Instead, the intercellular Zak phase explains the
extra-charge accumulations for both surfaces correctly as
plotted in Fig. 5(b).

VI. STABILITY AGAINST WAVE-VECTOR MISMATCH

In the previous discussion, the focus was on a perfect match
of the superlattice’s wave vector and the node separation
of the underlying Weyl semimetal. In any realistic system,
such a perfect agreement may be hard to realize. There
are two possibilities for a vector mismatch: we can change
the superlattice’s wave vector K = (2π/n + δk)ez or we can
change the node separation by changing m → η/v + cos π/n.

When the wave vector K is changed, it generally fits neither
the node separation nor the lattice. In such a case, translational
invariance is lost, as investigated in Ref. [51]. Here, we are
interested in the fate of the nodal line in presence of a wave
vector that does not match the node separation, i.e., we choose
a vector K that is commensurate with periodic boundary
conditions. In Fig. 6, the radius of the nodal line is shown
for several lattices with periodic boundary conditions that
allow certain K. The diameter of the nodal line shrinks with
increasing δk until it vanishes at a critical value that depends
on u0 and the folding degree n.

(a) (b)

FIG. 6. Stability of nodal line. Position of nodal line (q0,0,π/n)
for a periodically perturbed Weyl semimetal with a superlattice of
folding degree n = 7 for different potential strengths u0, with v = t

and ux,y,z = 0. (a) The superlattice is varied K → (2π/n + δk)ez so
that is does not match the node separation. (b) The mass parameter
is varied m → cos π/n + η/v so that the node separation does not
match the superlattice. Solid lines and crosses show the results using
the full Hamiltonian, and the dashed line shows the lowest-order
prediction.

By changing m → η/v + cos π/n, the position of the Weyl
nodes in the original unperturbed system are modified. The
position of the nodal line can be obtained from modifying
Eq. (17). This gives the condition for the position in the x-y
plane with q = (k2

x + k2
y)1/2:

vq =
√

u2
0 − η2, (27)

i.e., we expect that the nodal line stays stable up to |η| �
|u0|. In Fig. 6, the lowest-order prediction is compared with
numerical results for the full Hamiltonian. As in the previous
case, the diameter of the nodal line shrinks for nonzero η, but it
generally persists up to a critical value, in agreement with the
symmetry classification that generally predicts the stability of
the nodal line and does not rely on specific values of the mass
term.

VII. TIME-REVERSAL-SYMMETRIC WEYL SEMIMETAL

The previous findings can be extended to a model that
is closer to currently available materials that respect time-
reversal symmetry. Two copies of the Weyl Hamiltonian

H(±)
0 (k) = v(± sin kxσx + sin kyσy) + Mkσz, (28)

with Mk from Eq. (1), give rise to several phases, including
Dirac semimetals, Weyl semimetals with four Weyl nodes, and
strong topological insulators, all described by [64]

Hk =
(

H(+)
0 (k − k1) B1e

iφ sin (kz)σx

B1e
−iφ sin (kz)σx H(−)

0 (k + k1)

)
. (29)

The vector k1 lies in the kx-ky plane and breaks inversion
symmetry. The outer matrix structure is described by the
Pauli matrices sμ acting in spin space. This Hamiltonian is
time-reversal symmetric with  = isyK and has reflection
symmetry along z with R = sz. When k1 = 0 and B1 = 0, the
system has a C4 rotational symmetry in the kx-ky plane. Then,
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(a) (b)

FIG. 7. Density of states at zero energy for the time-reversal-
invariant system subjected to a periodic perturbation U (r) =
2u00 cos(2r · K − θ00)s0σ0 with folding degree n = 4 and v = t ,
u00 = 0.3t , θ00 = 3/4π . The level broadening η is chosen η = 0.01t .
(a) Starting from the Dirac phase with B1 = k1 = 0, a fourfold-
degenerate nodal line emergence. Splitting up the original Dirac node
into two Weyl nodes with B1 = 0.1t and k1 = (0,0.15,0) lifts one
degeneracy and splits the fourfold-degenerate nodal line into two
twofold-degenerate nodal lines.

there are two degenerate Dirac nodes at (0,0, ± arccos m). In
absence of inversion and rotational symmetry, the Dirac nodes
either split up into four Weyl nodes for |k1| > B1 or gap out
when |k1| < B1.

A periodic perturbation with a wave vector K =
2 arccos mez can lead to protected line nodes. The most general
perturbation

U (r) =
∑
μ,ν

uμν cos(r · K − θμν)σμsν (30)

may give rise to a plethora of different phases. For simplicity,
we just discuss the simplest case of a onsite potential, i.e.,
just u00 is nonzero (see Fig. 7). In the Dirac phase, such
a perturbation can give rise to a fourfold-degenerate nodal
line. In presence of reflection symmetry, the symmetry class is
AII with R−, i.e., R and  anticommute [42]. Although this
symmetry class only allows a Z2 classification that does not
protect the nodal line, the MZ classification inherited from A
remains [60].

Breaking inversion and C4 symmetry by k1 and B1 splits up
the fourfold-degenerate nodal line into two twofold-degenerate
nodal lines. The protection mechanism of these nodal lines is
analogous to the previously considered time-reversal-breaking
case, since the additional time-reversal symmetry does not
change the classification. The operator

C̄k =
(

e−inkz

1

)
⊗ (sin φs0 − i cos φsz)σyK (31)

anticommutes with the Hamiltonian and squares to CkC−k =
−e−inkz , giving a Z2 invariant defined in the kz = π/n plane,
analogous to the classification for the time-reversal-breaking
case in Sec. IV.

VIII. SUMMARY AND CONCLUSION

We showed that a Weyl semimetal subjected to a periodic
modulation of the onsite potential can give rise to a nodal-
line semimetal that is not gapped out by spin-orbit coupling.
Since the nodal line is protected by mirror symmetry and/or
the combination of a fractional lattice translation and charge-
conjugation symmetry, its presence does not rely on details
of the Hamiltonian. Although this work focused, because of
its simplicity, on a Weyl semimetal with two Weyl nodes as
a starting point, we further show that nodal lines also arise
in periodically perturbed Weyl semimetals that respect time-
reversal symmetry, by using a model that has four Weyl nodes
without the perturbation.

An unusual feature of this proposal are the surface states that
are not necessarily exponentially localized at the surface close
to zero energy; this may open possibilities for experimental
investigations of bulk properties that are not disturbed by
any low-energy surface states. Similarly, quasiparticle inter-
ference [65] is a promising tool for probing the nodal line at
the Fermi level.
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APPENDIX: EXACT HAMILTONIAN AND PHASES
FOR A COMMENSURATE PERTURBATION

WITH FOLDING DEGREE n = 2

When the unit cell contains two sites (n = 2), we can solve
the Hamiltonian

Hn=2,k =
(

hk + U0 ve−ikz cos kzσz

veikz cos kzσz hk − U0

)
(A1)

fully analytically and obtain a complete phase diagram as
shown in Fig. 8(a). From Fig. 8(b) to 8(j), we exhibit various
evolutions of nodal lines and show how one can achieve the
phase transitions between different nodal-line phases through
the singular nodes.

When U (r) = 2u0 cos(πz)σ0, the four eigenvalues of
Eq. (A1) are given by

E
η1,η2
k = η1

[
(Mk − ak)2 + 4u2

0 + a2
k + v2

k

+ 2η2
{
(Mk − ak)2

(
4u2

0 + a2
k

) + 4u2
0v

2
k

} 1
2

] 1
2
, (A2)

where ak = v cos kz, vk = v(sin2 kx + sin2 ky)1/2, and ηi = ±.
We assume, without loss of generality, that v is positive.

Because (Mk − ak)2 + 4u2
0 + a2

k + v2
k is positive, nodal

points can be found from the zeros of E
±,−
k , which are given

by

a2
k = (Mk − ak)2 − v2

k − 4u2
0 ± 2vk

√
4u2

0 − (Mk − ak)2.

(A3)
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(1,0.5) (1,1) (4,0.5) (4,1) (1,1.5) (1,2) (3,1.75) (3,2)

(3,1.25) (3,1.59) (4,1.5) (4,2) (4.5,2.15) (4.5,2.31) (3.5,2.15) (3.5,2.35) (3,2.25) (3,2.405)

FIG. 8. (a) Phase diagram for various nodal semimetal phases as a function of v/t and u0/t . There are six nodal-line phases which are
distinguished by different colors. We classify them based on how many nodal rings are in the Brillouin zone, and where the centers of nodal
rings are located. Those properties of each nodal-line phase are reflected in its name where the capital letters denote the positions of the centers
of nodal rings, and their subscripts represent the number of nodal rings centered on them. As an example, in the phase �1M2X1, we have one
nodal ring around the � point, two around two M points, and one around an X point as shown in panel (h) by black solid curves. On the other
hand, in the phase �X4, there are four nodal rings around four points on four high-symmetry lines �X, as plotted in panel (j) by black solid
curves. At boundaries between those six nodal-line phases, we have intermediate phases which contain singular nodes in addition to nodal
lines. In panels (b) to (j), we plot nodal Fermi surface structures corresponding to the phases marked by black and red dots in panel (a). On top
of each panel, we specify the tight-binding parameters (v/t,u0/t) for the black solid and red dashed curves. For example, the band structure
for the black dot at (v/t,u0/t) = (4,0.5) in panel (a) is drawn by the black solid curve in panel (c) whereas the band structure for the red dot at
(4,1) in panel (a) is plotted by the red dashed curve and red dots in panel (c).

For the right-hand side of Eq. (A3) to be real, we must have
4u2

0 > (Mk − ak)2 and take the plus sign. From Eq. (A3), we
observe that the nodal line can only exist at kz = π/2. In this
case, the nodal line is given by

4u2
0 = t2(2 − cos kx − cos ky)2 + v2(sin2 kx + sin2 ky).

(A4)

In the limit of the small external potential (u0 � 1), this
equation reduces to 8u2

0/(t2 + 2v2) = k2
x + k2

y which is a nodal
ring enclosing the origin (� point). This is consistent with the
phase diagram Fig. 8(a).

Figure 8(a) shows the full phase diagram of 15 nodal
semimetal phases as a function of the parameters v/t and u0/t ,
obtained from Eq. (A4). There are six nodal-line semimetal
phases denoted by �1, X1, �1M2, �1M2X1, X2, and �X4.
They consist of closed curves as Fermi surfaces, where each
of them encloses a certain high-symmetry point, or a point
on the straight line connecting two high-symmetry points.

The name of each nodal-line phase in the above is composed
of those high-symmetry points, and its subscripts represent
the number of nodal rings enclosing them in the Brillouin
zone. For a sufficiently large value of u0, the system becomes
insulating. At the boundaries between those six nodal-line
phases and the insulating phase, one finds nine singular
nodal phases where nodal contours are not differentiable
at several points due to the existence of the nodal point
or the crossing between nodal lines. Those singular points
are inevitable to have a phase transition between different
nodal-line phases. The phase boundaries are represented by
the curves u0/t = 1, u0/t = 2, and u0/t = Ci(v/t) (i =
1,2,3). Here, C1(x) = x2/2(x2 − 1)1/2, C2(x) = x2/(2x2 −
4)1/2, and C3(x) = x(x2 + 8)1/2/(4x2 − 4)1/2. Those phase
transitions are exhibited in Fig. 8(a) by vertical dashed lines.
The Fermi surfaces corresponding to their lower ends (black
dot) and upper ends (red dot) are plotted from Fig. 8(b) to 8(j)
by black and red colors. One can see that the Fermi surfaces
of the intermediate singular nodal phases drawn by red dashed
curves and red dots always have singular points.
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H. Buljan, Weyl Points in Three-Dimensional Optical Lattices:
Synthetic Magnetic Monopoles in Momentum Space, Phys. Rev.
Lett. 114, 225301 (2015).

[51] Y. Wang and S. Chen, Fate of Weyl semimetals in the presence
of incommensurate potentials, Phys. Rev. A 95, 053634 (2017).

[52] L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić, Weyl
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