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Recent quantum-gas microscopy of ultracold atoms and scanning tunneling microscopy of the cuprates reveal
new detailed information about doped Mott antiferromagnets, which can be compared with calculations. Using
cellular dynamical mean-field theory, we map out the antiferromagnetic (AF) phase of the two-dimensional
Hubbard model as a function of interaction strength U , hole doping δ, and temperature T . The Néel phase
boundary is nonmonotonic as a function of U and δ. Frustration induced by second-neighbor hopping reduces
Néel order more effectively at small U . The doped AF is stabilized at large U by kinetic energy and at small U

by potential energy. The transition between the AF insulator and the doped metallic AF is continuous. At large
U , we find in-gap states similar to those observed in scanning tunneling microscopy. We predict that, contrary to
the Hubbard bands, these states are only slightly spin polarized.
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The quantum mechanics of interacting electrons on a lattice
can lead to complex many-body phase diagrams. For example,
doping a layered Mott insulator can give rise to antifer-
romagnetism, pseudogap, unconventional superconductivity,
and multiple exotic phases [1]. The Hubbard model is the
simplest model of interacting electrons on a lattice. It can
be used for both natural (e.g., cuprates) and artificial (e.g.,
ultracold atoms) systems [2–5]. Therefore, understanding the
phases that appear in this model and the transitions between
them is a central program in condensed matter physics.

Here, we study the regimes where antiferromagnetic (AF)
correlations set in within the two-dimensional (2D) Hubbard
model on a square lattice as a function of interaction U ,
doping δ, and temperature T , within cellular dynamical
mean-field theory (CDMFT) [6–8]. The motivation for our
work is threefold. First, recent advances in ultracold-atom
experiments can now reach temperatures low enough to detect
AF correlations for repulsively interacting Fermi gases [9–15].
Hence, a theoretical characterization of the AF phase in the
whole U -δ-T space might guide ultracold-atom experiments
that are exploring this uncharted territory. Second, recent
tunneling spectroscopy studies [16,17] reveal new details on
the evolution of the AF Mott insulator upon doping, thus
calling for theoretical explanations. Third, on the theory side,
we still know little about the detailed boundaries of the
AF phase in the whole U -δ-T space of the 2D Hubbard
model and the mechanism by which AF is stabilized. Most
previous studies with this and other methods focused on
T = 0 [18–23]. At finite doping, or with frustration, methods
based on quantum Monte Carlo generally have a sign problem
[6,24–30]. Our results might serve as a stepping stone for
different approaches directed towards including Mott physics
and long-wavelength fluctuations [31–34].
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Model and method. We consider the 2D Hubbard
model, H = −∑

ijσ tij c
†
iσ cjσ + U

∑
i ni↑ni↓ − μ

∑
iσ niσ ,

where tij = t(t ′) is the (next-) nearest-neighbor hopping, U

is the on-site Coulomb repulsion, and μ is the chemical
potential. Here, c

†
iσ (ciσ ) is the creation (destruction) operator

on lattice site i and spin σ , and niσ is the number operator.
We set t = 1 as our energy unit. Within the cellular extension
[6–8] of dynamical mean-field theory [36], a 2 × 2 plaquette
is embedded in a self-consistent bath. We have successfully
benchmarked this approach [37] at δ = 0, where reliable
results are available.

We solve the cluster impurity problem using continuous
time quantum Monte Carlo based on the expansion of the
hybridization between impurity and bath [38,39]. Symmetry
breaking is allowed only in the bath. It is efficient to use of the
C2v group symmetry with mirrors along plaquette diagonals
[37,40,41].

U -T -δ map of the AF phase. Long-wavelength spin
fluctuations lead, in two dimensions, to a vanishing staggered
magnetization mz at finite temperature [42,43]. Nevertheless,
mz = 2

Nc

∑
i(−1)i(ni↑ − ni↓) is nonzero in cold-atom experi-

ments because of finite-size effects. For cuprates, the mz that
we compute becomes nonvanishing at a dynamical mean-field
Néel temperature T d

N where the antiferromagnetic correlation
length of the infinite system would start to grow exponentially
[37]. Coupling in the third dimension leads to true long-range
order at a lower temperature.

As a first step, mz is used to map out the AF phase in the
U -T -δ space for t ′ = −0.1. We consider hole doping only
(δ = 1 − n > 0) and perform various cuts, i.e., (i) at δ = 0
[T -U plane in Fig. 1(b)], (ii) at fixed values of U [T -δ planes
in Figs. 1(c) and 1(d)], and (iii) at fixed temperature T [δ-U
plane at T = 1/10 in Fig. 1(e)]. These cuts are reported in
the U -T -δ space in Fig. 1(a), where one sees that T d

N (U,δ)
has a global maximum at U ≈ 7 for δ = 0. The sign problem
prevents convergence below T ≈ 1/20. The value of mz �= 0 is
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FIG. 1. (a) AF phase of the 2D Hubbard model in the U -T -δ space, for t ′ = −0.1. (b) T -U cut at δ = 0. (c) T -δ cut for U = 5 and
(d) U = 12. (e) δ-U cut for T = 1/10. The magnitude of mz is color coded [see SM [35] for mz(U ) and mz(δ) curves at different temperatures].
The paramagnetic to AF phase boundary is drawn where mz < 0.045. The red cross in (b) and (e) indicates the position of the Mott critical
endpoint (UMIT,TMIT) in the underlying normal phase.

color coded in Figs. 1(b)–1(e) and shown in the Supplemental
Material (SM) [35].

The staggered magnetization mz(U,δ,T ) is largest in the
δ = 0 plane and saturates for large U and low T , as in mean
field [44]. Our analysis of the AF region in the U -T -δ space
highlights two points. First, the overall behavior of mz differs
from that of T d

N : For example, mz(U,T = 0)|δ=0 does not scale
with either T d

N (U )|
δ=0 [phase boundary in Fig. 1(b)], or with

δd
N (U )|

T
[phase boundary in Fig. 1(e)]. Physically, even if large

U creates local moments, T d
N decreases with U since it is the

superexchange J = 4t2/U that aligns these moments at finite
temperature. Second, the maxima [45,46] of both T d

N (U )|
δ=0

and δd
N (U )|T are correlated with the Mott transition that exists

at δ = 0 in the unstable normal state below T d
N , suggesting that

the hidden Mott transition [see the Mott endpoint in Figs. 1(b)
and 1(e)] drives the qualitative changes in the AF state.

It is well known that the increase of T d
N (U ) at small U is

explained by the Slater physics of nesting and that the decrease
of T d

N (U ) at large U is explained by the Heisenberg physics
of superexchange. Hence, the fact that the position of the
maximum of T d

N (U ) at δ = 0 is controlled by the underlying
Mott transition [37] reflects the underlying physics. As we saw
above [cf. green line in Fig. 1(e)], this difference between small
and large U persists upon doping since the range of δ where
AF exists first increases with U and then decreases, with the
crossover again controlled by the Mott transition at δ = 0. In
contrast, regardless of the strength of U , T d

N (δ) monotonically
decreases with increasing δ [phase boundaries in Figs. 1(c)
and 1(d)].

Effect of frustration on T d
N (U,δ). We can gain further

insights by varying the next-nearest-neighbor hopping t ′,
which frustrates AF order in varying degrees depending on
the value of U , as we shall see. Having in mind the physics of
hole-doped cuprates, here we consider only negative values of
t ′, in the range t ′ ∈ [0,−0.5].

Figure 2(a) shows T d
N (U ) at δ = 0 for different values

of t ′. AF now appears at a critical Uc that shifts to higher
values of U upon increasing |t ′|, in agreement with expectation
from the physics of nesting and also from the T = 0, DMFT
d = ∞ [48,49], and Hartree-Fock (HF) results [47]. The
T → 0 transition at Uc is consistent with first order [47–49]
for finite t ′ (see Fig. 2 in SM [35]). Uc is larger than the
HF result [47] because the vertex is renormalized downward

compared to the bare U by fluctuations in other channels
[50–53]. We find once again that the position of max T d

N (U )
is correlated with the Mott transition in the underlying normal
state.

Although frustration reduces T d
N (U ) as expected, the re-

duction of T d
N (U ) upon increasing |t ′| at δ = 0 is stronger

at small U than at large U , as shown in Fig. 2(b). Indeed,
although at small U deviations from perfect nesting are first
order in |t ′/t |, at large U the AF arises from localized spins
and the correct quantities to compare are J ′ = 4t ′2/U and
J = 4t2/U whose ratio scales as |t ′/t |2. Figure 2(c) shows
the doping-dependent T d

N (δ) at U = 16 for different values of
t ′: At our lowest temperature, a fivefold increase of |t ′| only
approximately halves the critical doping δd

N at which the AF
phase ends. When T d

N is large at half filling, the AF phase
extends farther in doping. The transition at the critical δ is
consistent with second order (see Fig. 1(d) in SM [35]).

AF insulator to AF metal transition. Having mapped out
the Néel state, we next explore its nature by analyzing the
local density of states (DOS) N (ω) and the occupation n(μ) =
1 − δ(μ).

First, consider the δ = 0 case. For t ′ = 0 we know that
CDMFT recovers the AF insulating behavior [37]. In principle,
at small U and large t ′, the AF state can have both hole pockets
and electron pockets at the Fermi surface. Then the AF state
would be metallic even at δ = 0 [47,53]. Here, we find that the
δ = 0 solution is insulating for all t ′ and U we considered. This
can be checked from the local DOS and from the occupation
shown at t ′ = −0.1 for U = 5 and U = 12 in Fig. 3. More
specifically, the plateau in the occupation at n(μ) = 1 in
Figs. 3(c) and 3(g) signals an incompressible insulator, i.e.,
the charge compressibility κ = n−2dn/dμ vanishes.

Second, consider the AF state at finite doping δ �= 0. In this
case, n(μ) has a finite slope, signaling a compressible metal,
i.e., κ > 0. In addition, Figs. 3(a) and 3(e) show that the local
DOS has a small but finite spectral weight at the Fermi level,
indicating a metallic state.

Therefore, at δ = 0 there is an AF insulator (AF-I), whereas
at δ > 0 there is an AF metal (AF-M). This also holds
in the d → ∞ limit [54]. What is the nature of the AF-I
to AF-M transition driven by doping? Close to n(μ) = 1
(δ = 1 − n = 0), the occupation n(μ) is continuous for all
T we have explored. As T decreases, the curvature at the
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FIG. 2. (a) T d
N for t ′ = 0,−0.1,−0.3,−0.5. As a reference, we show with solid symbols the T = 0 Hartree-Fock results of Ref. [47] for the

critical U of the AF onset. Crosses indicate the Mott endpoints in the underlying normal phase: Data are for t ′ = 0 (black), t ′ = −0.1 (red),
and t ′ = −0.5 (green). (b) T d

N vs t ′ at δ = 0 for U = 5,12. (c) T d
N vs δ at U = 16 for t ′ = −0.1,−0.5.

transition becomes sharper, suggesting a discontinuous change
in slope in the T = 0 limit, as expected for a second-order AF-I
to AF-M transition. The transition is a crossover at finite T .

Density of states and “in-gap” states. There are striking
differences between the DOS N (ω) of a doped Slater AF (U =
5) versus a doped Mott AF (U = 12).

For U = 5, the N (ω) spectra for δ = 0 in Fig. 3(a) shows
two Bogoliubov peaks along with high-frequency precursors
of the Hubbard bands [56]. When μ reaches the edge of the
lower Bogoliubov peak, metallic behavior is recovered since
doped holes appear at ω = 0. The rearrangement of the spectral
weight is not expected from the HF Slater solution. Upon
doping, spectral weight transfers from high to low frequencies:
The lower Bogoliubov peak decreases in intensity and moves
close to the Fermi energy ω = 0 and, correspondingly, the
upper Bogoliubov peak broadens. Figure 3(b) shows that

the upper and lower Bogoliubov peaks have a sizable spin
polarization, as in the t ′ = 0 case [37].

By contrast, for U = 12, the spectra for δ = 0 in Figs. 3(c)
and 3(d) have a clear four-peak structure: two Bogoliubov
peaks surrounded by Hubbard bands [37,52,56,57]. In the
doped case, there is a dramatic redistribution of spectral
weight over a large frequency range across the AF gap,
reminiscent of the Eskes-Meinders-Sawatzky picture [58]: The
lower Bogoliubov peak sharpens and a new spectral feature,
an “in-gap state,” appears between the upper Hubbard band
and the Fermi level located at ω = 0. In that picture, the lower
Hubbard band comes mostly from removing electrons in singly
occupied sites, while the upper Hubbard band comes mostly
from adding electrons to singly occupied sites. Given the large
local moment at this value of U in the AF, this is consistent
with the fact that these Hubbard bands are strongly spin

FIG. 3. Local DOS (a), (e) along with spin projections (b), (f) for different doping levels as obtained from analytically continued [55]
data. Vertical bars indicate the position of the Bogoliubov peaks. Occupation vs chemical potential n(μ) = 1 − δ(μ) for different temperatures
(c), (g). Horizontal ticks mark the values of dopings that correspond to the values shown in (a), (e). Doping dependence of the difference in
potential, kinetic, and total energies between the AF and the underlying normal phase (d), (h). Data are for t ′ = −0.1 and U = 5 (top panels)
and U = 12 (bottom panels). For more data on N (ω), see Figs. 4 and 5 in SM [35].
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polarized, as seen in Fig. 3(f). On the other hand, the in-gap
states come, in that same picture [58], from adding electrons
in empty sites, which explains the near absence of spin
polarization observed in Fig. 3(f). Finally, with further doping,
the lower Bogoliubov peak and the Hubbard bands decrease
in intensity at the expense of the in-gap state above ω = 0.
These results are compatible with the variational approach
in Ref. [59].

Stability of the Néel phase. To assess the origin of the
stability of the AF phase, we compare the kinetic, potential,
and total energy differences between the AF phase and
the underlying normal phase [22,37,60] as a function of
doping δ at low T . Figures 3(d) and 3(h) show that the
crossover in the source of stability of the AF phase that we
identified earlier [37] at δ = 0 persists for all doping levels.
Therefore, the hidden Mott transition at δ = 0 reorganizes the
energetics both of the AF-I at δ = 0 and of the AF-M away
from δ = 0.

Discussion. Our results are relevant for experiments with
ultracold atoms in a spatially homogenous region and with
cuprates. The first observation of the AF phase in a 2D
square optical lattice appeared recently [14]. Persistence of AF
correlations was found up to δ ≈ 0.15 for U = 7.2 and t ′ = 0.
The consistency of this finding with our results is promising.
Our U -δ-T map of the AF phase can be explored further
with ultracold-atom systems since U , δ, and T can be tuned.
Specifically, the nonmonotonic behavior of δd

N (U ), along with
a stronger reduction of T d

N (U ) with increasing |t ′| at small U ,
are testable predictions.

When comparing our U -T -δ map with experiments on hole-
doped cuprates, one should focus on the multilayer case where
interlayer magnetic exchange favors mean-field-like behavior.
In the n = 5 CuO2 layer cuprates, AF persists up to δ ≈ 0.10
and it decreases with decreasing n [61,62]. Our predictions
for mz could be compared with neutron scattering and muon
spin rotation experiments in this regime. Other effects that
we did not take into account and that can decrease δd

N (U ) are

the development of incommensurate spin-density waves and
competition with other phases.

The n(μ) curve and the resulting charge compressibility
κ that describes the continuous transition between an AF
insulator and an AF metal as a function of doping is another
prediction that can be tested with ultracold atoms. In principle,
such measurements are also possible in cuprates [63–66].

The in-gap state feature that we found in the DOS has a
position and a width that is compatible with recent scanning
tunneling microscopy experiments on lightly doped AF Mott
insulators [16,17]. In addition, the observed transfer of spectral
weight from high energy to low energy as a function of doping
is consistent with our results. We predict that a spin-polarized
scanning tunneling microscopy (STM) probe will find that
these states are essentially unpolarized, by contrast with the
lower and upper Hubbard bands [67].

Our prediction that the doped AF state is stabilized by a gain
in kinetic energy for large U and by a gain in potential energy
for small U can in principle be tested by optical spectroscopy
in cuprates [68–70]. If the correlation strength U is lower
in electron-doped than in hole-doped cuprates, as has been
proposed [71,72], our data suggest a potential energy-driven
AF in electron-doped cuprates and a kinetic energy-driven AF
in hole-doped cuprates, similar to earlier findings on the Emery
model [73].

Moving forwards, it will be important to study the interplay
between antiferromagnetism, pseudogap, and superconductiv-
ity [74–79].
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