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We present the study of the effect of both magnetic and potential scattering (M and U ) of magnetic impurities
on the local electronic structures on a topological insulator. For single impurity, the local density of states (LDOS)
shows distinct patterns of two resonance states with the positions depending on the relative strength of magnetic
and potential scattering M and U . However, in the usual case where U is much larger than M , these two resonance
states have very similar energy and become indistinguishable. Thus only one single peak is present, in analog with
the experimental observations by scanning tunneling spectroscopy and providing a possible explanation for the
recent debate among different experimental results. Interestingly, the effect of M can be significantly magnified
when the magnetic impurities are forming nanosized quantum corrals, the apparent different features in the
LDOSs allow justifying the existence of M despite its relative smaller strength compared with U . Remarkably,
we find a one-to-one correspondence between the strength of U, M , and the energy positions of the quantum
well states, giving a unique scheme to determine both U and M , which are of great importance for future TI
based novel device design.
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I. INTRODUCTION

Topological insulators (TIs) are a new state of quantum
matter, which is insulating in bulk but hosts metallic sur-
face states with a Dirac-like dispersion [1,2]. Due to the
strong spin-orbit coupling, the spins of the surface states are
perpendicularly locked to their momenta. These states are
topologically protected in the sense that they are robust against
small perturbations and cannot be destroyed by the presence of
defects and adsorbates as long as the time-reversal symmetry
(TRS) is preserved. These intriguing properties make TIs a
very attractive material for spintronics [3,4] and topological
quantum computation [5], etc.

Magnetic doping is of great interest in the study of TIs
since it not only stimulates novel phenomena such as quantum
anomalous Hall effect [6], but also holds the potential to open
a band gap which is crucial for the TIs based devices [7–19].
Despite numerous experimental [7–15] and theoretical studies
[16–19], the discussion on whether the magnetic impurities
can induce the band gap, however, still remains controversial.
Recent experiments showed that bulk doping of magnetic
impurities can introduce a gap at the Dirac point [7,8]. In
contrast, the effect of the surface doping is of strong debate.
It was reported that the heavy doping of Fe can induce an
energy gap [9], while other similar studies, however, found no
gap [10–13]. More strikingly, several studies even reported that
there is no apparent difference between the surface doping with
magnetic and nonmagnetic impurities [14,15]. This raised the
question whether the doped impurities are magnetic or not. The
x-ray magnetic circular dichroism (XMCD), however, revealed
the magnetism by the magnetic hysteresis loops [10,20–22].
To clarify this controversy, several mechanisms such as the
spin-flipping inelastic scattering by the in-plane magnetic
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anisotropy of the magnetic impurities have been proposed
[13,23–25]. Interestingly, Black-Schaffer et al. [25] calculated
the band gap by taking into account both the magnetic and
potential scattering M and U , and found the gap opening
strongly depends on the relative strength of M and U . Under
certain conditions, the gap opened by M can be refilled by the
resonance states introduced by U [17].

The magnetic and potential scattering M and U are the two
fundamental parameters used to describe the electron scat-
tering of the magnetic impurities. They govern the influence
of magnetic impurities on their hosts and thus control the
properties of the newly generated state after doping. Despite
their importance and the fact that they are commonly used
in various theoretical approaches, their strengths seem to
be only available via ab initio calculations [10,26,27]. If
they can also be experimentally probed, it would be very
helpful to understand the physical mechanism of the emerging
phenomena and to design the materials for the exact needs
of the novel applications. Therefore, it is highly desired
to develop a method to measure the strength of both U

and M . Moreover, the determination of these two important
parameters may also provide an important check for the gap
opening problem which is currently in hot debate.

In this paper, utilizing a T -matrix method, we systemati-
cally investigate the local electronic structures in the presence
of magnetic impurities with both U and M on the surface of
a TI. In particular, we study the single impurity case and find
that the local density of states (LDOS) near a single impurity
in general exhibits two resonance states in the presence of
both U and M . And the LDOS can exhibit rich features
depending on the relative strength of U and M . When U

is much larger than M , which is the typical case, these two
resonance states are located at an almost the same energy
position and become indistinguishable. Thus only one single
peak is present, in analog with the experimental observations
by scanning tunneling spectroscopy (STS). This reconciles
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the contradiction between the magnetic anisotropies of the
magnetic impurities proved by the XMCD measurements and
the nonmagnetic behavior in the STS [10,20–22]. We further
propose a scheme to magnify the effect of M in the STS and
determine the strength of U and M using quantum corrals.
Quantum corrals can be built by atomic manipulation [27,28]
and have been widely used to reveal the properties of complex
electronic systems [29–32]. When the quantum corral is built
by magnetic impurities, the backward scattering is no longer
hindered due to the breaking of the TRS, thus resulting in
a pronounced interference pattern inside the quantum corral.
Due to the focusing effect at the center of the quantum corral,
the effect of M can be significantly amplified. We calculate the
LDOS and the spin-polarized LDOS (SP-LDOS) at the center
of the corrals with different U and M . Remarkably, we find a
one-to-one correspondence between the strength of U, M , and
the energy positions of the quantum well states (QWS), giving
a unique scheme to determine both U and M . The essential
physics in quantum corrals can also be understood using an
analytical model as discussed. The determination of both U

and M may not only solve the remaining hot debate on the gap
opening problem but also have great importance for future TI
based device design.

The remaining part of the paper is organized as follows.
In Sec. II we introduce a model to describe the impurities
on a TI surface using T -matrix method. In Sec. III we show
the results for the single impurity. Section IV is devoted to
quantum corrals with different U and M . And the paper is
summarized in Sec. V.

II. MODEL AND FORMALISM

We model the TI surface states by a low-energy effective
massless Dirac Hamiltonian:

H0 = h̄vf σ · k, (1)

where vf is the Fermi velocity, σ = (σx,σy,σz) is the vector
of Pauli matrices, and k = (kx,ky) is the planar momentum.
With the band cutoff �, the short-range cutoff can be
obtained as a = h̄vf /�. In our calculation we took vf = 4.6×
105 m/s and � = 0.3 eV, which are close to the typical values
found in Bi2Se3, Bi2Te3, and Sb2Te3 [16,33–35]. The effect
of impurities is described as Hint=

∑N
i Vi(r), Vi(r) = (Uσ0 +

JS · σ/2)δ(r − ri), where ri is the position of the ith pointlike
impurity, U is the potential scattering strength, σ0 is the
2×2 identity matrix, and J is the local Heisenberg exchange
between the surface electrons and the impurity spin S. Here we
treat the impurity spin as a classical local magnetic moment
with M = JS/2 under mean-field approximation. Note that
if we integrate Hint over the two-dimensional space, the δ

function will vanish, giving that U and M have the dimension
[energy] × [length]2 (see also Refs. [18,19]). Previously, most
theoretical studies address the effect of the impurity on the
LDOS with either pure potential or pure magnetic scattering
[16–19,36,37]. In this paper we are going to discuss the case
where both U and M exist and how the LDOS depends on
their strengths.

To study the electronic structure in the presence of
impurities on the surface of a TI, we employ a numerical
T -matrix method [17,27,38,39] (we use the same nota-

tion as in Ref. [17]). The total LDOS (spin-unresolved)
ρ(r,ω) and the SP-LDOS (spin up/down in direction μ)
ρ

μ
±(r,ω) can be calculated from the Green’s function of the

system G(r,r′,ω):

ρ(r,ω) = − 1

π
Im{Tr[G(r,r,ω)]}, (2)

ρ
μ
±(r,ω) = − 1

π
Im

{
Tr

[
G(r,r,ω)

1 ± σμ

2

]}
, μ = x,y,z.

(3)

According to the T -matrix method, the Green’s function is
determined by

G(r,r′,ω) = G0(r,r′,ω)

+
N∑

i,j=1

G0(r,ri ,ω)T (ri ,rj ,ω)G0(rj ,r′,ω). (4)

In it, G0(r,r′,ω) is the free Green’s function of TI surface
without any impurity [17,38]:

G0(r,r′,ω) = |ω|
4h̄2v2

f

[f0(ω,ρ)σ0 + f1(ω,ρ)(σ · ρ̂)], (5)

where f0(ω,ρ) = sgn(ω)Y0 − iJ0�(1 − |ω|/�), f1(ω,ρ) =
iY1 + sgn(ω)J1�(1 − |ω|/�), Ji and Yi are the Bessel func-
tion of the first and second kind, |ω|ρ/h̄vf is the argument
of all the Bessel functions, and ρ = r − r′. The on-site free
Green’s function can be derived as [17,40]

G0(r,r,ω) = −[g0(ω) + ig1(ω)]σ0, (6)

where

g0(ω) = ω

4πh̄2v2
f

ln

∣∣∣∣�2

ω2
− 1

∣∣∣∣,
g1(ω) = |ω|

4h̄2v2
f

�

(
1 − |ω|

�

)
. (7)

The T -matrix contains the information about the propaga-
tion between the impurities, and it is determined by Dyson’s
equation:

T (ri ,rj ,ω) = Viδi,j + Vi

N∑
l=1

G0(ri ,rl ,ω)T (rl ,rj ,ω). (8)

In matrix form, the T matrix is cast into

T = V + VG0T, (9)

where

G0 =

⎛
⎜⎜⎝

G0(r1,r1,ω) G0(r1,r2,ω) · · · G0(r1,rN,ω)
G0(r2,r1,ω) G0(r2,r2,ω) · · · G0(r2,rN,ω)

...
...

. . .
...

G0(rN,r1,ω) G0(rN,r2,ω) · · · G0(rN,rN,ω)

⎞
⎟⎟⎠,

(10)

V =

⎛
⎜⎜⎝

V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · VN

⎞
⎟⎟⎠, (11)
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since each G0(ri ,rj ,ω) and Vi is a 2×2 matrix, G0, V, and T
are all 2N×2N matrices. And the T matrix can be obtained
by

T = V(I − VG0)−1, (12)

where I is an 2N×2N identity matrix. By solving Eq. (12) we
can obtain the T matrix of this system. Again, by substituting
the T matrix into Eq. (4), we can further derive the Green’s
function G(r,r′,ω) and consequently the LDOS and the SP-
LDOS.

III. SINGLE IMPURITY

First, we consider the case of a single magnetic impurity
on top of a TI surface. The problem of a single impurity with
pure U or M was previously studied by Biswas et al. [17].
They found that a nonmagnetic impurity introduces a single
resonance state near the Dirac point, the spectrum is doubly
degenerate due to the Kramers’ theorem. A magnetic impurity
breaks the TRS. The spectrum thus becomes nondegenerate
and two symmetric spin-polarized resonance states appear at
each side of the Dirac point. As the strength of the potential
increases, the peaks become narrower and move towards the
Dirac point.

In the following, we consider the case when both U and M

exist. In such condition, the additional term GT G ≡ δG in the
Green’s function (4) can be derived as (using g = g0 + ig1)

δG = ω2

16h̄4v4
f [1 + (U − M)g][1 + (U + M)g]

× {−2if0f1Mσ · (S × r̂) + (
f 2

0 + f 2
1

)
Mσ · S

− 2f 2
1 M(σ · r̂)(S · r̂) + [U + (U 2 − M2)g]

(
f 2

0 − f 2
1

)}
.

(13)

By setting M = 0 or U = 0, one can easily find that this
formula can be simplified to the pure U or the pure M case
as given in Ref. [17]. With Eq. (13), one can deduce the
positions of the peaks caused by the resonance states and
calculate both the LDOS and the SP-LDOS numerically. For
simplicity, we limit our discussion to a z-polarized magnetic
impurity, the results of x-polarized and y-polarized impurities
can be obtained in a similar manner. In order to illustrate how
the spectrum transforms from the case with pure magnetic
scattering to the potential scattering dominated case, we fix
M and vary U to explore the evolution of the spectrum near
a single impurity. For comparison, we first adopt the same
parameters in Ref. [17], namely M = 100�a2 = 30 eV nm2,
r = 20 nm. We note that we only use these parameters for
the comparison here. For the rest of the paper, we use more
realistic parameters.

Figure 1 illustrates the evolution of both the LDOS and
SP-LDOS near a magnetic impurity with increasing the ratio
of U/M . Depending on the relative strength of U and M ,
the spectrum shows different patterns of resonance states.
The physical origin of the evolution can be understood as
follows. As the imaginary part of the Green’s function gives
the LDOS, the peak positions correspond to the energy
where the denominator [1 + (U − M)g][1 + (U + M)g] is
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FIG. 1. Evolution of LDOS (solid black lines) and SP-LDOS
(spin-up: dotted red line, spin-down: dotted blue line) near a single
magnetic impurity for different ratio of U/M . The inset shows a
sketch of the experimental setup. Here M = 30 eV nm2, r = 20 nm.

minimized. Since U + M is always positive, the minimum
of 1 + (U + M)g corresponds to a resonance peak in the
negative branch. In the limit of very large scattering strengths,
U + M � �a2, the energy position can be approximately
obtained as 	1 ≈ −2πh̄2v2

f /(U + M) ln �(U+M)
2πh̄2v2

f

. The peak

position from the minimization of 1 + (U − M)g depends
on the relative strength of U and M . If U < M , it locates
at 	2 ≈ 2πh̄2v2

f /|U − M| ln �|U−M|
2πh̄2v2

f

. That is, the peak will

appear in the positive energy, as shown in Figs. 1(a) and 1(b).
Increasing U will make both peaks move towards the positive
direction. When U = M , the second peak disappears, there
is only one peak in the negative range as shown in Fig. 1(c).
Note that although only one spin component is scattered in
this case, both two spin components can be affected due to
the spin-momentum locking nature of the TI surface state.
This can also be understood from Eq. (5), as the off-diagonal
components in the free Green’s function contain the σ · ρ̂

term, both spin components are renormalized by the impurity.
In the case of U > M , the second peak will then appear
in the negative range: 	2 ≈ −2πh̄2v2

f /(U − M) ln �(U−M)
2πh̄2v2

f

,

as shown in Figs. 1(d)–1(f). As we continue to increase
U , these two peaks will move to the positive direction and
approach the Dirac point. In the case of U/M � 4 [see
Fig. 1(f)], these two peaks are so close to each other and
become almost indistinguishable, the spectrum is then highly
degenerate similar to the impurity with the pure U case. To
summarize, when both U and M exist, we will in general have
two resonance peaks in the spectrum. From the positions of
these two peaks, we can infer the relative strength of U and
M , or even deduce the value of U + M and U − M so that we
can obtain the value of U and M in a single STS spectrum.
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FIG. 2. Evolution of LDOS (solid black lines) and SP-LDOS
(spin-up: dotted red line, spin-down: dotted blue line) near a
single magnetic impurity for different ratio of U/M . Here M =
0.45 eV nm2, r = 1 nm. [We note that (d) is similar to the spectra
reported experimentally, see, e.g., Fig. 1 in Ref. [10], Fig. 1 in
Ref. [20], and Fig. 2 in Ref. [21], etc.

Recent STM experiments studied various magnetic impu-
rities on different TIs, such as Fe, Co, and Mn on Bi2Se3

and Bi2Te3 [10,13,20–22], where the adatoms occupy either
fcc or hcp sites with respect to the underlying TI surface
lattice. Even though the XMCD measurements proved that
they are magnetic in nature, the obtained STS does not show the
typical two resonance peaks, but rather a single resonance peak
similar to nonmagnetic impurities on TIs, in sharp contrast to
the above discussion. In fact, we found that this discrepancy
is originated from the fact that the parameters in the above
discussion are far from the real material parameters. The
parameters we used above are M = 30 eV nm2, r = 20 nm,
while the value of M/a2 is typically in the range of 0.1–1 eV,
and U/a2 is about 1–10 eV [16,18,25]. Therefore, we take
more realistic values, namely, M = 0.45 eV nm2, r = 1 nm,
and performed the calculation again. The results are shown in
Fig. 2. When M is small, the two resonance peaks lie far away
from the Dirac point and are not visible in the spectrum, as
shown in Fig. 2(a). As U increases, the peaks move towards
the positive direction. When U/M = 8, we obtain a similar
spectrum as described in the experiments [10,13,20–22]. This
suggests that a magnetic impurity has not only magnetic
scattering but also strong potential scattering as described by
Black-Schaffer et al. [25]. When M is small in comparison
with U , it has only a small modification on the spectrum. In
such a case, the main feature of the spectrum is dominated by
U and only one peak is present. This explains the discrepancy
between the results of the STS and XMCD measurements.
The presence of only one peak, however, makes it difficult
to extract the values of U and M simultaneously due to the
rather limited information. In order to provide more evidence
on the proposed mechanism and determine the values of U

and M , we continue to discuss the quantum corral case in the
following sections.
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FIG. 3. LDOS (solid black lines) and SP-LDOS (spin-up: dotted
red line, spin-down: dotted blue line) at the center of a circular quan-
tum corral with (a) pure potential and (b) pure magnetic scattering.
Inset: sketch of the experimental setup. The black arrows indicate the
QWS of the corral. Here U = 1.5 eV nm2, M = 0.45 eV nm2, R =
10 nm, N = 50. The vertical thin dotted lines correspond to eigenen-
ergies obtained via an analytical method with U ′ = 1.5 eV nm,
M ′ = 0.45 eV nm. (c) and (d) The LDOS and SP-LDOS as a
function of the position across the center of the corral with E =
0.144 eV, the thick vertical lines indicate the locations of the adatoms.

IV. QUANTUM CORRALS

As discussed above, the magnetic scattering strength from a
single impurity is small and has little influence on the LDOS,
making it difficult to reveal the magnetic properties of the
impurities in the STS. In order to reveal this influence, we
need to magnify the effect of M . This brings us to the idea
of quantum corrals. Quantum corrals are two-dimensional
structures that can be built by atomic manipulation [27,28].
Due to the breaking of the TRS, the backscattering of the
surface electrons by the magnetic impurities is no longer
hindered, causing the standing wave inside the quantum corral.
Due to the focusing effect at the center of the corral, the effect
of M can be magnified more in comparison with the effect of
U and may result in the distinguishable feature in STS at the
corral center.

A. Quantum corrals with pure U or M

Before discussing the general situation where both U

and M exist, we briefly summarize the case of quantum
corrals with either pure U or M , which was performed by
Fu et al. [39]. In the pure M case, according to previous
studies [16–19], the mediated helical Dirac electrons lead
to ferromagnetic Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction among the magnetic adatoms on the surface of TIs,
thus a ferromagnetic easy axis along the z axis is preferred.
In Fig. 3 we present the spectra at the center of a circular
corral with the radius of 10 nm and comprising of 50 adatoms
on the surface of a TI for the case of pure U (=1.5 eV nm2)
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and pure M(=0.45 eV nm2), respectively. The differences
between these two are dramatic. They not only have different
symmetries but also have different energy spacing between
the neighboring energy levels. In the pure U case, the TRS
is preserved, so the spin-up and spin-down components are
degenerate based on the Kramers’ theorem. While in the pure
M case, the TRS is broken, thus the spin-up and spin-down
components become nondegenerate. Although TRS is broken
in this case, there is an additional symmetry when the magnetic
moments of the impurities are along the z axis, namely the
particle-hole symmetry. As it can be noticed that if ψ is
an eigenstate of H with energy E, under the transformation
ψ ′ = σxψ

∗ the H will transform to −H . Thus the spectrum
will be symmetric with respect to E = 0 [41].

The basic role of the quantum corral is to confine the surface
state electrons and introduce discrete QWS in the spectrum.
Since the potential scattering cannot backscatter the massless
Dirac fermions, the quantum confinement effect of the surface
state electrons of TI in the pure U case is strongly suppressed
[see also Fig. 3(c), the line profile of the LDOS across the
corral center]. Thus, the widths of the QWS are broad in this
case, expressing short lifetimes of the quasibound states. On
the other hand, the surface state electrons can be backscattered
by the magnetic impurities due to the breaking of the TRS.
Thus, they can be confined in the pure M case and pronounced
quantum confinement effect is present [see also Fig. 3(d), the
line profile of the LDOS/SP-LDOS across the corral center].
The QWS become very sharp, expressing very long lifetimes
of the resonant states. If M is sufficiently large, there will be
an energy gap near the Dirac point, while in the pure U case
there is a typical resonance peak located at the Dirac point.
Similar to quantum corrals on an ordinary metallic surface,
the energy positions of QWS are determined by the size of the
corral [28]. Due to the different dispersion relationships (linear
for the surface state on top of TI and parabolic for the surface
state on an ordinary metal), the explicit energy positions of
the QWS are different for quantum corrals on top of a TI or
an ordinary metal which possess a surface state. This can also
be understood by an analytical model which will be presented
below.

B. Analytical model of quantum corrals on TI surface

In order to gain a better understanding of the physics of
the numerical results by the T -matrix method, we develop an
analytical model of quantum corrals on a TI surface. In it, we
model the circular corral as a continuous barrier with the form

V (r) = (U ′σ0 + M ′σz)δ(r − R), (14)

where r is the distance to the center of the circle and R is the
radius. Note that U ′ and M ′ introduced here are not the same
as the U and M we introduced in the previous sections, they
have different dimensions. If we integrate V (r) over the radial
direction, the δ function will vanish, giving that U ′ and M ′
have the dimension [energy] × [length] (see also Ref. [42]).
We solve the Dirac equation H0ψ + V (r)ψ = Eψ to obtain
the eigenenergies, where H0 refers to the unperturbed massless
Dirac Hamiltonian in Eq. (1). Due to the rotational symmetry,
it is natural to write the equation in polar coordinates (r,θ ),

namely

−ih̄vf

(
0 e−iθ

(
∂
∂r

− i 1
r

∂
∂θ

)
eiθ

(
∂
∂r

+ i 1
r

∂
∂θ

)
0

)(
ψ1

ψ2

)
+ V

(
ψ1

ψ2

)

= E

(
ψ1

ψ2

)
. (15)

For the cylindrically symmetric potential, the two-component
wave function has the following form:

ψl = eilθ

(
u(r)

ieiθ v(r)

)
. (16)

Inside and outside of the corral, V = 0, it has the regular
solution [41]

ψl = eilθ

(
Jl(εr/R)

ieiθJl+1(εr/R)

)
, if r < R,

ψl = eilθAl

(
H (1)

l(εr/R)

ieiθH (1)
l+1(εr/R)

)

+ eilθBl

(
H (2)

l(εr/R)

ieiθH (2)
l+1(εr/R)

)
, if r > R, (17)

where l is the orbital angular momentum, Jl is the Bessel func-
tion of the first kind, H (1)

l (H (2)
l) is the Hankel function of the

first (second) kind, and we also introduced the dimensionless
energy ε = RE/h̄vf . The solutions are eigenfunctions of the
z component of the total angular momentum:

L̂ψl = (−i∂θ + 1
2σz

)
ψl = (

l + 1
2

)
ψl. (18)

As we are mainly interested in the spectrum at the center of
the corral, we treat l = 0,−1.

In order to figure out the eigenenergies of the system, we
impose the so-called outgoing boundary condition [43,44],
that is, Bl = 0. The most important information of the system
locates at the boundary of the corral, where U ′ and M ′ play
their roles and make all the differences. Here we are dealing
with the Dirac equation (first order in the space derivative) with
δ-like potential, the wave function itself will be discontinuous
at r = R. Substituting Eq. (16) into Eq. (15) we can obtain an
equation for the spinor φ(r) = (

u(r)
v(r)

)
:

dφ(r)

dr
= K̂(r)φ(r), (19)

where

K̂ =
(

l
r

− ε
R

+ (U ′ − M′)δ(r − R)
ε
R

− (U ′ + M′)δ(r − R) − l+1
r

)
.

(20)

In it, we introduced the dimensionless potential U ′ = U ′/h̄vf

andM′ = M ′/h̄vf . Integrating both sides of the equation near
r = R, we find the following boundary condition:(

u(R+)
v(R+)

)
= Mmn

(
u(R−)
v(R−)

)
, (21)
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where Mmn is the transfer matrix:

Mmn = 1

4 + U ′2 − M′2

×
(

4 − (U ′2 − M′2) 4(U ′ − M′)
−4(U ′ + M′) 4 − (U ′2 − M′2)

)
. (22)

In the derivation we use the property of the δ function
that limη→0

∫ η

−η
f (x)δ(x)dx = 1

2 [f (−η) + f (+η)]. From this
condition we can find the energy eigenvalue equation, which
takes the form

H (1)
l(ε)

H (1)
l+1(ε)

= M11Jl(ε) + M12Jl+1(ε)

M21Jl(ε) + M22Jl+1(ε)
. (23)

The solution of the eigenvalue equation determines the
complex energy spectrum of the corral, the real part of
the complex energy gives the energy position of the QWS; the
imaginary part gives the inverse of the lifetime. Note that
the above equation may also be useful in the analysis of the
quantum dot problem on TIs [45,46] and graphene [47–49].
From Eq. (23) we can clearly see that the eigenenergies are
determined by the radius R and U ′, M ′ imposed on the
boundary. For a given angular momentum l, we can solve
it numerically. For U ′ = 1.5 eV nm, M ′ = 0 and U ′ = 0,
M ′ = 0.45 eV nm, the results are shown in Fig. 3 as the
vertical thin dotted lines, they are in good agreement with
the results obtained with the T -matrix method. It turns out that
the analytical solutions to Eq. (23) can be obtained in the limit
of ε � 1. In the pure M case, Eq. (23) becomes

Jl(ε)H (1)
l(ε) − Jl+1(ε)H (1)

l+1(ε) = − 1

iπε

4 + M′2

2M′ . (24)

By using the asymptotic forms of the Bessel functions:

Jl(ε) =
√

1

2πε

[
ei(ε− lπ

2 − π
4 ) + e−i(ε− lπ

2 − π
4 )

]
,

H (1)
l(ε) =

√
2

πε
ei(ε− lπ

2 − π
4 ), (25)

we obtain

ei(ε−lπ− π
2 )(2) − ei[2ε−(l+1)π− π

2 ] = i
4 + M′2

2M′ . (26)

Substituting ε = εa − iεb into Eq. (26) allows us to write a
couple of real equations:{

cos

(
2εa − lπ − π

2

)
− cos

[
2εa − (l + 1)π − π

2

]}
e2εb

= 0,{
sin

(
2εa − lπ − π

2

)
− sin

[
2εa − (l + 1)π − π

2

]}
e2εb

= 4 + M′2

2M′ . (27)

The first equation gives us the energy position of the QWS:

εa = nπ

2
, (28)
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FIG. 4. LDOS (solid black lines) and SP-LDOS (spin-up: dotted
red line, spin-down: dotted blue line) at the center of two different
corrals whose effective M ′ and U ′ (NM and NU ) are equal,
their LDOSs also show almost the same pattern. Here N = 50,
M = 0.9 eV nm2, U = 1.8 eV nm2, R = 10 nm in (a); N = 100,
M = 0.45 eV nm2, U = 0.9 eV nm2, R = 10 nm in (b).

and the second equation gives us its decay width:

εb = 1

2
ln

(
4 + M′2

4M′

)
. (29)

The decay width has a minimum at M′ = 2, which is
consistent with the results of the T -matrix method.

In the pure U case, Eq. (23) becomes

Jl(ε)H (1)
l(ε) + Jl+1(ε)H (1)

l+1(ε) = − 1

iπε

4 − U ′2

2U ′ . (30)

This equation cannot be solved by Eq. (25), which only
includes the leading term of the Bessel functions. However,
both the numerical results of Eq. (30) and the T -matrix method
can be approximately described by εa = nπ . In brief, the
spacing between each eigenenergy is ∼h̄vf π/R for the pure
U case and ∼h̄vf π/2R for the pure M case, respectively
(see Fig. 3). We therefore can control the positions of the
eigenenergies by changing the radius of the corral. Due to the
different definitions between U, M and U ′, M ′, the results
obtained by the analytical model and the numerical T -matrix
method are not exactly the same. Furthermore, in the realistic
circumstance, the corral is made of discrete adatoms instead
of a continuous barrier. Increasing the number of the adatoms
of the corral is equivalent to increasing the effective M ′ and U ′
of the boundary, so the spectrum in the corral is a function of
NM and NU . As an example, Fig. 4 demonstrates the LDOSs
and SP-LDOSs at the center of two different corrals whose
effective M ′ and U ′ are equal, the spectra also show almost
the same pattern.

In the case that both U ′ and M ′ exist, it is difficult to
obtain the exact analytical solution for the eigenenergies. But
we can still solve Eq. (23) numerically to obtain the energy
positions of the QWS. As discussed above, the quantum corrals
exhibit dramatically different properties for corrals formed
by impurities with the pure U and pure M scattering. This
suggests that the spectrum could be strongly dependent with
both U and M in the general case, suggesting the possibility
to determine the strength of both.

C. Quantum corrals with both U and M

In the following we proceed with the discussion for the case
when both U and M exist. Similar to the single impurity case,
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FIG. 5. Evolution of LDOS (solid black lines) and SP-LDOS
(spin-up: dotted red line, spin-down: dotted blue line) at the center
of the quantum corrals for different ratio of U/M . E1, E2 are the
first two eigenmodes in the positive range. Here M = 0.45 eV nm2,
R = 10 nm, N = 50.

we fix M and vary U to explore the evolution of the spectrum
at the center of the quantum corral. Figure 5 illustrates the
results of different ratios U/M given by the T -matrix method
when M = 0.45 eV nm2. As mentioned above, the quantum
corrals with pure U preserve the TRS while the pure M ones
preserve the particle-hole symmetry. When both U and M

exist, both symmetries will be broken. Thus the spectrum is
neither degenerate nor symmetric with respect to E = 0, but
has a mixed character depending on the relative strength of U

and M . Similar to the single impurity case, the existence of U

has two major effects on the spectrum: it makes the spectrum
more degenerate and shifts the QWS. When U/M is small
[see Figs. 5(a)–5(c)], the spectrum becomes asymmetric and
moves towards the positive direction with increasing U/M

due to the hole doping effect of U [25]. The ratio U/M = 2
is a critical one during the process [see Fig. 5(d)] (we note
that this critical ratio is M dependent which will be further
discussed in the next section). At this condition, the asymmetry
becomes so drastic that the first negative eigenmode moves to
the center of the spectrum. Due to the relative weakening
of the magnetic scattering, the gap near the Dirac point also
gradually closes. When U/M < 3, the process is dominated
by the shift of the peak positions in the spectrum. If we increase
the ratio further, the changes of the spectrum are dominated

by the decreasing of the peak intensity and broadening of the
peak width [see Figs. 5(f)–5(h)]. The spectrum becomes more
and more degenerate as the difference between the spin-up
and spin-down LDOS (the spin polarization) becomes smaller
and smaller. In the case of U/M = 8, the spin-up and spin-
down components are almost degenerate, similar to the pure U

case.

D. Determination of the strength of U and M by the spectrum

Above, we show that the LDOS at the center of the quantum
corral strongly depends on the strength of both U and M for a
fixed M . In the following we will continue the discussion for
the change of the spectrum with the variation of M . As shown
in Fig. 5, the spectra show distinct features on the positions
of the QWS and the spin polarization of the spectrum. In this
paper we focus our discussion on the positions of the QWS
since they are easier to be identified experimentally. For a
corral with specific geometry (fixed diameter and number of
impurities), the positions of the QWS only depend on U and
M . Namely, they are the only functions of U and M . If we
have the explicit form of these functions, we may be able to
obtain U and M from the positions of the QWS. Since we
have two unknown variables U and M , we need at least two
equations to derive their values. Here we choose the first two
eigenmodes in the positive range (as indicated by E1 and E2
in Fig. 5), other choices of eigenmodes are also feasible.

In Fig. 6 we plot E1 and E2 as the function of U/M

for different M given by the T -matrix method. We note that
similar results (not shown for avoiding redundancy) can also
be obtained by numerically solving Eq. (23) in the analytical
model. The symbols are the calculated values while the lines
are the fittings that will be discussed below. Note that the
choices of U and M cover almost all the realistic values
[16,18,25]. We find that all the curves behave similarly, they
all increase with increasing U/M . And the slopes of the curves
decrease with increasing U/M . In addition, for a given U/M ,

(a) (b)
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FIG. 6. (a) and (b) Calculated E1 and E2 as a function of U/M

for different M , whose unit is eV nm2. (c) and (d) The fitted parameter
α as a function of M for E1 and E2 (see text). Here R = 10 nm,
N = 50.
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the slope is higher if M is larger. Importantly, each value of
E1 or E2 corresponds to a single set of U and M except
that the curves merge at U/M = 0. Namely, when U and M

are different, E1 or E2 are also different. This suggests that
the determination of E1 and E2 may enable the estimation
of U and M . The merging of the curves at U/M = 0 can be
understood since the above discussed analytical model yields
that the eigenenergy only depends on the radius of the corral
when U = 0. The increasing of E1 and E2 with U/M can also
be understood as the hole doping effect of U . When U/M is
very large, the spectrum will behave like the pure U case and
become degenerate. And E1 and E2 will eventually merge
to a single value. Since E1 has to move a longer distance to
coincide with E2, E1 will move at a faster speed than E2. This
difference provides us the unique opportunity to derive the two
unknown variables U and M simultaneously. Remarkably, we
find that almost all the curves can be fitted by an exponential
growth asymptotic function:

E = E0 − Ae−αU/M. (31)

And the fittings (lines) essentially reproduce the calculated
results (symbols) very well (see Fig. 6). The physical meanings
of these parameters can be understood as follows: E0 − A cor-
responds to the energy when U/M = 0, and it approximately
equals h̄vf π/2R for E1 and h̄vf π/R for E2, respectively.
This also explains why all the curves merge to a single value
at U/M = 0. With increasing U/M , the eigenenergy will
exponentially approach E0. While the parameter α captures
the different increasing speed of the eigenenergies for different
M . The fittings yields E0 = 121.59 meV and A = 76.89 meV
for E1. While α exhibits some dependence on M as is shown in
Fig. 6(c). The dependence is almost linear and can be described
more accurately with α = 0.066 + 0.612M − 0.279M2. The
fitting of E2 gives E0 = 167.37 meV, A = 73.68 meV,
and α = −0.015 + 0.592M − 0.210M2. Thus we obtain two
explicit formulas for E1 and E2. When both of them are
measured experimentally, we can deduce the value of U and
M from these two formulas accordingly.

We can also examine our results by building corrals with
different geometries. With U and M in hand, we can calculate
the spectra in corrals with different sizes and compare the
results with the experiments. As discussed above, for a corral
with radius R, the spacing between each eigenenergy scales
with 1/R. Namely, a smaller R results in a larger spacing. The
parameter E0 and A in Eq. (31) will also scale with 1/R. We
confirm this by further studying quantum corrals with different
radii. The obtained LDOS shows similar features and E1, E2
can still be well described by Eq. (31). The corresponding E0

and A for different radii are shown in Fig. 7. They are almost
proportional to 1/R. In addition, the number of the adatoms of
the corral will affect the effective M ′ of the corral as mentioned
in the analytical model, if M is very small, we can increase
the number to magnify the effect of M . To be more specific,
when the number of the adatoms changes to N ′ (N ′ should not
be too small to form a corral), the only adjustment we need is
to change M to (N ′/N ) M in α.

)b()a(
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FIG. 7. The parameter E0 and A for different radius R: (a) and
(b) for E1 and (c) and (d) for E2. Symbols are the calculated values
and lines are the linear fits. Here N = 50, R = 7.5, 10, 15, and
20 nm.

V. SUMMARY

In this work we have studied the effect of magnetic
impurities on the local electronic structure on the surface of
a TI by taking into account both the magnetic and potential
scattering. For single impurity on TI, LDOS near the impurity
shows distinct patterns of two resonance states with the
positions depending on the ratio of U/M . However, when
U/M is large, these two resonance states have very similar
energy and become indistinguishable and only one single
peak is observable. This could explain the current discrepancy
between the STS and XMCD results. The presence of only one
single peak makes it difficult to detect the effect of M . When
the magnetic impurities form nanosized quantum corrals, we
found that the effect of M can be significantly magnified and
the spectra in the centers of the corrals strongly depend on both
M and U . The relation between the strength of U, M , and the
energy positions of the quantum well states are explored and
a one-to-one correspondence is found. It provides a unique
scheme to determine both U and M . The determination of
both U and M may have great importance for future TI based
device design.
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