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and Aharonov-Bohm effects

Nojoon Myoung1,2 and Hee Chul Park2,*

1Department of Physics Education, Chosun University, Gwangju 61452, Republic of Korea
2Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34051, Republic of Korea

(Received 19 September 2017; revised manuscript received 5 December 2017; published 26 December 2017)

The transport properties of Chern insulator junctions generated by bipolar junctions in quantum Hall graphene
are theoretically studied in the coherent regime. Coherent transport across the junction exhibits two mesoscopic
features: valley-isospin dependence of the quantum Hall conductance, and the Aharonov-Bohm (AB) effects
with the interface channels. We demonstrate that the valley-isospin dependence can be measured in a graphene
sample with perfect edge terminations, resulting in conductance oscillation for the smallest Chern number case.
On the other hand, while conductance plateaus are found to be unclear for larger Chern numbers, the conductance
exhibits an oscillatory behavior of which period is relatively longer than the valley-isospin dependent oscillation.
This conductance oscillation is ascribed to the AB effect, which is implicitly created by the split metallic channels
near the junction interface. We point out that a possible origin of the unclear plateaus previously speculated to be
incompleteness in realistic devices is the low-visibility conductance oscillation due to unequal beam splitting.
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I. INTRODUCTION

Graphene is a promising material for studying quantum
Hall effects with gate-tunable filling factors on account of
its capability for controlling charge density via field effects
[1,2]. Studies involving conductance measurements through
graphene under a homogeneous magnetic field report nonin-
teger conductance plateaus for gate-tunable bipolar junctions
[3–9]. The topological nature of the quantum Hall system
has been clearly understood via the presence of gapless edge
states that are topologically protected [10,11]. Bulk-boundary
correspondence offers an intuitive way of understanding the
properties of these edge states: the number of conducting
channels is characterized by the topological invariant of the
quantum Hall insulator [12–14]. It has been well known that
the topological invariant (or so-called Chern number) of a
quantum Hall insulator is given by the filling factor in the
integer quantum Hall effect [15–18].

The observation of noninteger conductance plateaus in
bipolar graphene quantum Hall systems has been interpreted
by the equilibration of interface states at the p−n junction,
with theoretical efforts supporting experimental findings by
considering edge and interface disorders [19–22]. Junction
conductance via interface equilibration has also been reported
for p-n-p junctions in quantum Hall graphene systems [23–
25], with the consideration that there can be reflections at the
bipolar junction. These studies were carried out in macro-
scopic systems where mesoscopic fluctuations were ignored
[4]. However, Low has shown that the observed junction
conductance in ballistic systems is distinct from disordered
ones, via crossover between the coherent and Ohmic regimes
[20]. Mesoscopic conductance fluctuation should therefore be
expected to appear in the coherent regime, e.g., a valley-isospin
dependence of the quantum Hall effects in graphene p−n

junctions [26].
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In this paper we show that mesoscopic consequences in the
conductance across a Chern insulator junction can be observed
even in the presence of edge disorders, when both regions of
the Chern insulator junction are on the second Hall plateaus.
As the length of the junction interface varies, we reveal that the
conductance across the junction exhibits atomic-scale period
fluctuation and long-period oscillation according to the Chern
number configuration. While this fluctuation, associated with
valley-isospin dependence, can be eliminated by the presence
of edge roughness, the long-range conductance oscillation
survives despite a randomly distributed edge roughness. We
demonstrate that the conductance oscillation originates from
an Aharonov-Bohm (AB) interferometry implicitly contained
in the Chern insulator junction, since the metallic channels
around the interface are spatially separated, they effectively
create an area enclosing magnetic flux. The AB conductance
oscillation also exhibits a beating pattern with a very long
period, reflecting the multipath interferometry of the implicit
AB ring. Finally, we discover a gate-tunable visibility of the
AB oscillation and further show that a suppression of the AB
conductance oscillation can be achieved through gate control.

Our paper is organized as follows. In Sec. II we give
an account of our theoretical formalism. We discuss the
conductance spectra through the Chern insulator junction in
Sec. III by considering different Chern number configurations.
In Sec. III A we investigate the effects of edge roughness
on the valley-isospin dependence. Section III B presents our
interesting finding that the conductance oscillation occurs due
to the AB effect intrinsic to the single Chern insulator junction.
We discuss the properties of the intrinsic AB interferometry
in Sec. III C, which are expected to be of interest to practical
device fabrication and measurements, and conclude in Sec. IV.

II. THEORETICAL APPROACHES TO THE CHERN
INSULATOR JUNCTION

In terms of topology, quantum Hall states have been re-
vealed to have topological characteristics and can be regarded
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FIG. 1. (a) Schematic diagram of the gated structure considered in
this study. Graphene is encapsulated by h-BN layers. (b) Depiction of
the four-terminal graphene Hall bar where a Chern insulator junction
is created by exploiting the above gated structure.

as a Chern insulator [10,15]. Since Chern numbers of quantum
Hall states in graphene are tunable by an electric-field effect,
a heterojunction of different Chern insulators is expected to
be realized by using the bipolar junction of graphene in the
quantum Hall regime [27]. Such a device structure is feasible to
fabricate with gated structures under a homogeneous magnetic
field [3,28] (see Fig. 1). Let us note that there should be a thin
dielectric layer (e.g., few-layer h-BN) between graphene and
the top gate electrode, although we omit it here for simplicity.
With an analytical approach, the effective Dirac Hamiltonian
for graphene under a homogeneous magnetic field reads

H = h̄vF �σ · �π + V (x), (1)

where vF � 106 m s−1 is the Fermi velocity of graphene,
�σ = (σ1,σ2) are the Pauli matrices, �π = �p + e �A, and the
electrostatic potential is given as either a sign function or
hyperbolic tangent function:

V (x) = V0sgn(x), (2a)

V (x) = V0 tanh

(
x

ξ

)
, (2b)

where V0 = V2 = −V1; V1 and V2 are potential energies in the
left and right sides of the p−n junction [29]. Equation (2a)
represents an abrupt step, and Eq. (2b) indicates a smoothly
varying step for ξ �= 0; the latter case will be considered here
for discussion on the effects of a smooth junction. Note that for
the limit ξ → 0, Eq. (2b) approximates to Eq. (2a). The Dirac
equation with the above effective Hamiltonian H� = E�

with � = (ψA,ψB)T consists of two sublattice-coupled
equations and becomes analytically solvable by decoupling

them, when we consider the abrupt potential step, resulting
in the following Schrödinger-like second-order differential
equation [30–35] (details are provided in Appendix A):[

d2

dx2
+ ς

2
−

(
ky − x

2

)2
+ (E − V )2

]
ψA,B = 0, (3)

where ς = ±1 for different sublattices (A and B), V is a
electric potential in each region of the p−n junction, and
ky is the y-component momentum which acts as a good
quantum number since [H,py] = 0. The above equation is
dimensionless upon E0 =

√
2h̄v2

F eB and lB = √
h̄/(2eB), and

we choose the Landau gauge, i.e., �A = (0,−Bx,0), which
leads to �B = (0,0,−B). Note that we have E0 � 200 meV
and lB � 3.3 nm for B = 30 T. Equation (3) can be regarded
as if Dirac fermions experience the effective potential given by

Veff = −ς

2
+

(
ky − x

2

)2
, (4)

which is valid for the abrupt potential step case. The solutions
for ψA and ψB are obtained as parabolic cylinder functions
defined by Whittaker and Watson [36], in the low-energy limit
[31,37–39]:

�(x) =
(

ψA(x)
ψB(x)

)
= A

(
Dν(sζ )

−is
√

ν
2 Dν−1(sζ )

)
, (5)

where ν ≡ (E − sV0)2 for each region of the Chern insulator
junction, ζ ≡ 2ky − x, and s = sgn(x). Note that the

normalization factor is found to be A = [16π (ν − 1)!2]
1/4

.
Alternatively, the tight-binding approach also accounts for

the present system, leading to the following Hamiltonian:

H =
∑

i

εic
†
i ci +

∑
〈i,j〉

tij (c†i cj + H.c.), (6)

where εi is the on-site energy corresponding to the potential
step [Eq. (2b)], and c

†
i and ci are the creation and annihilation

operators on the ith site. In the presence of a magnetic field,
the hopping term is defined by

tij = te
i 2π

�0

∫ rj
ri

�A·d�r
, (7)

where t = 3.0 eV is the hopping energy, and �0 = e/h is the
flux quantum. Here we choose the same gauge considered in
the analytical approach. Note that the system is centered at �r =
(0,0). Since we introduce a p-n junction to graphene through
the potential Eq. (2b), the system is divided into n- and p-doped
regions where the zeroth Landau levels (LLs) are located at
E = −V0 and V0, respectively. Ballistic conductance of the
four-terminal graphene Hall bar is calculated in the linear re-
sponse regime, exploiting the Landauer-Büttiker approach, as

Gαβ(E) = e2

h

∑
a∈α,b∈β

|Sab(E)|2, (8)

where Sab is the scattering matrix from channels b to a, which
belong to lead β and α, respectively. With the tight-binding
Hamiltonian, we can also take local density of states (LDOS)
and the probability density in the scattering region for the
incoming wave through a given lead at a given energy by using
KWANT packages [40]. Lastly, note that every attached lead is
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FIG. 2. (a) and (c) Eigenenergies of the system with Chern
insulator junctions V0 = E0/2 and (

√
2 + 1)E0/2 at B = 30 T,

respectively. The dashed lines represent the given Fermi energy
EF = 0 and the dots mark the intersections of the Fermi energy and
the eigenenergies, indicating the existence of interface states. (b) and
(d) Local densities of states corresponding to (a) and (c), respectively.
The light and dark colors represent low and high densities.

semi-infinitely long in the numerical calculations with transla-
tional symmetry based on the translational vectors of graphene,
even though they are not displayed in the map figures for the
numerical results of LDOS and wave functions in this paper.

In this study, numerical results from the tight-binding
calculations are qualitatively interpreted through the analytic
approach. For the given potential V0 = E0/2, the existence of
a metallic channel at the p-n junction interface is observed by
the LDOS at EF = 0 with the numerical calculations, as shown
in Fig. 2(c). In order to understand the origin of the metallic
channel, one can see eigenenergy bands at the interface through
the use of wave function continuity conditions at x = 0 for
the same potential (details are provided in Appendix B.)
Figure 2(a) clearly shows that a metallic channel must exist
at the interface, connecting the same-index LLs. Similarly,
Fig. 2(b) also supports the existence of the metallic channel
shown in Fig. 2(d) for V0 = (

√
2 + 1)E0/2, where we see a

larger number of channels than in the previous case. Notice
that the eigenenergy bands [Figs. 2(a) and 2(b)] reflect the
presence of electronic states at the interface, and so differ
from the eigenenergies of the whole finite graphene system.

It is worth mentioning that the occurrence of the metallic
channels along the Chern insulator junction is due to the
bulk-boundary correspondence; therefore, the interface states
are topologically protected. The number of interface states
is in keeping with the Chern number configuration of the
quantum Hall graphene system. In fact, the Chern number
of the quantum Hall insulator is derived from the TKNN
formalism [10,15], and the Chern number of each region turns
out to be the filling factor, i.e., C × 2e2/h ≡ ν × 2e2/h where
C and ν represent the Chern number and filling factor. A
similar phenomenon was also reported in a heterotype Chern
insulator junction created by using inhomogeneous magnetic

fields [27]. Note that here we define the odd-number filling
factor of the graphene quantum Hall regime in units of 2e2/h,
distinct from the even-number filling factor in units of e2/h.
Since the interface states are doubly degenerate on account of
valley symmetry, the single channel at the interface in both
Figs. 2(a) and 2(b) actually contains two interface states, and
the number of the interface states equals the Chern number
difference for (C1,C2) = (1,−1). For Figs. 2(c) and 2(d) the
Chern number configuration is defined as (C1,C2) = (3,−3),
where both regions are on the first quantum Hall plateau, i.e.,
an insulating phase between the zeroth and first LLs.

III. FOUR-TERMINAL CONDUCTANCE IN CHERN
INSULATOR JUNCTIONS

As reported in previous studies [3,4], the interface states
in bipolar quantum Hall graphene exist only when the Chern
numbers on each side of the Chern insulator junctions are
opposite, on the basis of the equilibration concept. Since the
system is finite, the junction interface meets two ends at its
boundary: the parallel-propagating states are mixed at the
bottom of the interface, and the mixed states are split into
opposite directions along the system boundaries at the top.
The splitting may result in reflected modes at the interface,
which have been indirectly measured in multiterminal devices
[23,24]. Likewise, using four-terminal geometry, we are able to
individually measure the splitting of the conductance through
the Chern insulator junction with two transverse conductances,
G31 and G41, which are taken between leads 1 and 3 or
4, as displayed in Fig. 1(b). In addition, we also take into
account the longitudinal conductance G21 to detect the edge
state contribution to the conductance for the Chern insulator
junctions with the same sign of Chern numbers.

Figure 3(a) shows the numerically calculated conductances
for the given Chern insulator junction as functions of Fermi
energy. This case considers the simplest junction where a
metallic channel at the interface is formed between C1 = +1
and C2 = −1 regions as shown in Fig. 3(e). This junction is
created by applying the potential V0 = E0/2. When |EF | <

E0/2, each region of the Chern insulator junction delivers
electron- and holelike edge modes with opposite directions of
circulation, and a metallic channel at the interface results from
the mixing of the electron- and holelike modes. It is seen that
G21 vanishes for |EF | < E0/2 because the incoming mode
wholly propagates along the interface, as shown in Fig. 3(c).
The existence of the interface channel leads to nonzero G31

and G41, which are attributed to beam splitting via the interface
channel [see Fig. 3(c)]. One can clearly see that through flux
conservation, the sum of G31 and G41 always becomes 2e2/h,
i.e., C1G0, which is equal to the quantum Hall conductance
plateau from the zeroth-LL state [1].

On the other hand, for EF < −E0/2, both C1 = −1 and
C1 = −3 regions deliver holelike edge modes with the same
circulating direction, causing the cancellation of the two
counterpropagating modes at the interface. Because of the
absence of the interface mode, it is obvious to see G41 = 0,
and the reversed circulating direction in the C1 = −1 region
allows for G31 = 2e2/h, attributed to a flux flow along the
boundary [Fig. 3(d)].
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FIG. 3. (a) and (f) Four-terminal conductance through the Chern insulator junctions produced in the graphene quantum Hall regime for
given potentials V0 = E0/2 and V0 = (

√
2 + 1)E0/2, respectively. Colored regions represent various Chern insulator junction cases with

different Chern number configurations (C1,C2) depending on the Fermi energy. The dashed lines display quantized conductance values. (b)–(d)
Probability densities of the propagating modes, coming in from lead 1, at Fermi energies EF = E0/

√
2, 0, and −E0/

√
2, respectively. (e)

Eigenenergies of the Chern insulator junction in (a). From the top down, each dashed line indicates the given Fermi energy corresponding to
(b)–(d), respectively, and the dots on the intersections of the eigenenergy bands with the Fermi energies imply the existence of the interface
states. (g)–(i) Probability densities at Fermi energies EF = (

√
3 − 1)E0/2, 0, and −(

√
3 − 1)E0/2, respectively. (j) Eigenenergies of the Chern

insulator in (f). From the top down, each dashed line indicates the given Fermi energy corresponding to (g)–(i), respectively.

Lastly, for EF > E0/2, both C1 = +3 and C1 = +1 regions
give rise to electronlike edge modes with the same circulating
direction. It is straightforward to expect that the edge modes
are canceled out at the interface due to the same direction
of circulation in both regions, leaving one metallic channel
in the C1 = +3 region, as displayed in Fig. 3(b). Similar to
the (−3,−1) case, the canceled interface channel prevents
the incoming wave from propagating through the interface
(G41 = 0); rather, it wholly propagates along the boundary
and results in a G21 plateau at 2e2/h. The absence of the
metallic channel formed at the exact interface allows for
the stepwise increase in G31 as a function of EF , attributed
to the spatially shifted metallic channel from the junction
interface. It is noteworthy here that the position of the interface
channels is changeable, depending on the Fermi energy. As
displayed in Fig. 3(d), the metallic channels at EF = 0 are
found to be for ky = 0, but at EF �= 0, the interface states
are found to be for nonzero ky . The position of the metallic
channels is easily understood by the effective potential Veff

[Eq. (4)], which is regarded as a harmonic potential centered
at 2ky . Therefore, we can discern the position of the metallic

channels at x = 2ky where ky is obtained by finding inter-
sections between the given Fermi energy and the eigenenergy
bands.

Next, we consider the more complicated case, where the
Chern number configuration is given as (3,−3) by applying the
potential V0 = (

√
2 + 1)E0/2. Figure 3(f) shows the numeri-

cally calculated results for the four-terminal conductances as
functions of Fermi energy. In this case, because the potential
difference between two regions is large enough, the Chern
numbers of each region have the opposite sign, i.e., there
exists one metallic channel at the exact interface in the given
range of Fermi energy, as depicted in Fig. 3(f). The transport
phenomena in this case are similar to the simplest cases: (i)
one metallic channel is always formed at the exact interface
for the opposite-sign Chern number configurations, causing
the split conductances G31 and G41 but prohibiting flux flow
between leads 1 and 2 (G21 = 0); and (ii) other channels
are generated with distances from the interface that exhibit
a stepwise increase in G31 like typical quantum Hall effects.
Here it is worthwhile to mention that G31 + G41 = C1G0, due
to the flux conservation.
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FIG. 4. (a) and (c) Zero-energy conductance across the junction as a function of system size for given potentials V0 = E0/2 and
(
√

2 + 1)E0/2, respectively. Dots represent the conductance values and dashed lines indicate the average value of three adjacent data.
The solid line in (a) is the fitted curve from the calculated data, and in (c) connects adjacent dots as an eye guide. (b) and (d) The averaged
four-terminal conductances with the randomly distributed edge roughness as a function of Fermi energy for given potentials V0 = E0/2 and
(
√

2 + 1)E0/2, respectively. Results are obtained by averaging over 100 individual sets with the random roughness at both edges. Colored
regions represent different Chern number configurations (C1,C2).

Figures 3(g)–3(i) display the transport phenomena and the
formation of the metallic channels either at the exact interface
or nearby the interface, supported by the eigenenergy spectra
shown in Fig. 3(j). However, one can definitely notice that the
conductance spectra do not exhibit clear plateaus, contrary to
the simplest Chern insulator junction. Although such unclear
conductance plateaus have been observed and understood by
disorder-induced mode mixing at rough edges [3,4,20,22], as
we consider the coherent regime for the calculations here there
are no incoherent consequences related to disorders normally
expected to exist in macroscopic systems. Therefore, we
deduce that there must be mesoscopic consequences affecting
the vagueness of the conductance plateaus and causing their
obscurity, even in the coherent regime.

A. Valley-isospin-dependent conductance fluctuation

The results of the four-terminal conductances for both cases
in Fig. 3 have been produced for given system size W = 200a0.
It has been theoretically revealed that the conductance values
across a p-n junction in graphene largely depend on system
size according to the edge terminations [26]. In particular,
when the edges perpendicular to the junction interface are
terminated in an armchair shape, the conductance plateau
varies depending on the angle between the valley isospins on
each edge. As displayed in Fig. 1(b), the top and bottom edges
of our system are terminated in an armchair shape. In Fig. 3(a),
the conductance values are found to be ∼0.35 × 2e2/h,
perhaps corresponding to 0.25 × 2e2/h as one of the threefold
conductance plateaus for valley-isospin dependence. Indeed,
Fig. 4(a) shows that the conductance values at EF = 0 fluctuate
from ∼0.2 × 2e2/h to ∼2e2/h as W varies.

The conductance fluctuation shown in Fig. 4(a) is a
mesoscopic consequence of valley-isospin dependence at
atomic-scale precision. However, to our knowledge, such an
atomic-scale dependence of electronic properties on the size of
graphene has not been confirmed by electrical measurements,
because perfect edge terminations are necessary to expect the
valley-isospin dependence in graphene nanoribbons. Thus,
fabrication of ultraclean edge terminations in graphene is
required to experimentally demonstrate the valley-isospin
dependence—very recently, an experimental work indeed
reported conductance oscillation due to valley isospin in
quantum Hall graphene systems [9].

Now, we theoretically demonstrate that the valley-isospin
dependence becomes detectable only if graphene is terminated
by perfect edges. G41 values are compared between perfect
and rough edge termination, with the latter introduced by a
randomly distributed roughness on the edges of the system
(details are provided in Appendix C). Since the edge modes of
a Chern insulator are topologically protected, coherence still
remains even in the presence of edge roughness. Figure 4(b)
shows the resulting conductances, obtained by averaging over
100 individual sets of random roughness on the edges. The
edge roughness does not affect the conductance spectra for
|EF | < E0/2, but the split conductances G31 and G41 now
exhibit clear plateaus at e2/h, for |EF | < E0/2. The e2/h

conductance plateau is equal to the averaged values of the
threefold conductance plateaus provided by valley-isospin
dependence [26] [dashed line in Fig. 4(a)]. By getting rid
of edge roughness, G41 becomes consistent with the threefold
values for valley-isospin dependence as W varies. Thus, we can
conclude that the atomic-scaled valley-isospin dependence can
only be experimentally measured by reducing edge roughness
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in a graphene sample, which is why experimental works have
not as of yet successfully measured the conductance fluctuation
mediated by the valley isospins.

By increasing the potential difference V0 between two
regions of the Chern insulator junction, the conductance across
the junction at EF = 0 exhibits more complicated oscillation
behavior, as shown in Fig. 4(c). The averaged conductance
over three adjacent values now oscillates with a period of
∼49a0, contrary to the constant values in Fig. 4(a). The
conductance fluctuation with a short period 3a0 still remains,
but does not seem to be regular because the atomic-scale
fluctuation is added to the background oscillation. Due to
the relatively longer period of the conductance oscillation,
the oscillation observed in Fig. 4(c) is not eliminated by the
given edge roughness magnitude of 0.53a0. Figure 4(d), even
in the presence of the random roughness, indeed shows that
the results of the averaged conductance spectra are almost
unchanged from the results of the smooth edges in Fig. 3(f). In
the following subsection, we concentrate on the characteristics
and origin of the long-period conductance oscillation beyond
the valley-isospin-associated conductance fluctuation.

B. Aharonov-Bohm conductance oscillation

In order to understand the oscillating nature of the con-
ductance for the (3,−3) case, we consider a closed loop
composed of spatially separated metallic channels enclosing a
magnetic flux through the loop like with AB interferometry. As
aforementioned, in the (3,−3) case there are metallic channels
formed near the interface with spatial separations; here let
us define the distance between those channels as �x. The
conductance oscillation for AB interferometry is described by
[41]

G41 ∝ 1 − cos

(
2π

�

�0
+ ϕ0

)
, (9)

where � = B�xW is a magnetic flux enclosing the AB loop,
�0 = h/e is flux quantum, and ϕ0 = π is Berry’s phase in
graphene. From the estimated period in Fig. 4(c), we can
approximately obtain �x = 2

√
2lB = 2r rms

c , where rc = 2lB

is the cyclotron radius in graphene and r rms
c = rc/

√
2 is the

root-mean-square value of the skipping orbit at the interface
[see Fig. 5(d)]. Interestingly, the conductance does not exhibit
the long-period oscillation in the (1,−1) case, because a finite
area enclosing magnetic flux cannot be created by one metallic
channel formed at the exact interface. In other words, such
implicit AB interferometry is expected only for larger Chern
number configurations.

From Fig. 4(c) we can see that the AB conductance
oscillates between ≈0.7 × 2e2/h and ≈1.6 × 2e2/h, but not
between 0 and 3 × 2e2/h. This implies that at one node
of the AB interferometry, the electron beam is not equally
split, resulting in worse visibility. Indeed, in this study, beam
splitting at the bottom end of the junction interface leads
to unequal probability densities at each metallic channel, as
displayed in Fig. 3(h). One can also notice that not only is the
period of the oscillation slightly changed, but the oscillation
amplitude is gently attenuated. Attenuation should not happen
here though as we consider the fully coherent regime without
any inelastic scatterings. In order to verify the behavior of the

C  = +3 C  = -3

(d)

Φ

Δ

(a)

Δ

(c)

C  = +3 C  = -3

(b)

FIG. 5. (a) Beat of the conductance across the junction for given
potential V0 = (

√
2 + 1)E0/2 as a function of W . The beat period

Wbeat is found to be ∼552a0. The dark blue fluctuating line indicates
the conductance values calculated from the numerical approach, and
the pink oscillating line corresponds to the averaged values over
three-adjacent data points showing the beat oscillation. (b) Probability
density map at EF = 0 for an incoming mode from the left of the
bottom edge, with illustrations of the pathway of the metallic channels
and the corresponding semiclassical skipping motions. The skipping
motions are characterized by the cyclotron radius rc, depicted as
solid (electronlike mode) and dashed (holelike mode) lines. Each
region has helical edge modes with oppositely circulating directions,
denoted as arrows. (c) Local density of states map corresponding to
(b). The absolute-squared wave function derived from the analytic
solutions is overlaid on the map as a solid green line showing the
in-level splitting of the interface states. (d) Schematics of the implicit
AB interferometry. Left panel: A skipping motion along the W -long
interface encloses an area through which magnetic fluxes penetrate.
Right panel: An effective interferometry encloses the same area as
that enclosed by the skipping motion, through which magnetic flux �

penetrates in total. Both pathways are regarded as finite-width arms of
the AB interferometry, characterized by the outer and inner distances
�x1,2.

AB oscillation, we further increase W and find an interesting
beat with a very long period ∼552a0 [see Fig. 5(a)]. Such
a pattern can occur when there are more than two metallic
channels within the arms of an AB interferometry [42].
Similarly, we assume that there are two different loops which
perhaps become inner and outer loops for the finite-width
metallic channels as exhibited in Fig. 5(c):

G41 ∝ A1

{
1 − cos

(
2π

�1

�0
+ ϕ0

)}

+ A2

{
1 − cos

(
2π

�2

�0
+ ϕ0

)}
, (10)

where �1,2 = B�x1,2W are magnetic fluxes enclosed by the
different loops with different �x1,2 as denoted in Fig. 5(d).
Here A1,2 (A1 � A2) are undetermined coefficients indicating
the beam splitting ratio into different paths of the AB interfer-
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ξ = 0 ξ = 20 a0

(a)

)c()b(

FIG. 6. (a) Suppression of the implicit AB oscillations as the
potential profile changes. (b) and (c) Probability density maps for
different potential profiles with ξ → 0 and 20a0, respectively. The
closed AB interferometry loops are overlaid on the corresponding
maps. The different thicknesses imply the ratio of beam splitting into
each pathway, and the dashed line with an × indicates no splitting
into the metallic channel in the C2 = 3 region.

ometry. The beat period composed of two waves is given by
�Wbeat = (2πeB�x1/h + 2πeB�x2/h)−1, where we define
�x1 = �x + δx/2 and �x2 = �x − δx/2. From the acquired
period in Fig. 5(a), we can find δx ≈ 0.6a0. This very small
value suggests that the implicit AB interferometry created in
the Chern insulator junction can offer an ultrasensitive detector
to discriminate electron path length at atomic-scale precision.

C. Suppression of the AB conductance oscillation

As discussed, the implicit AB interferometry in the Chern
insulator junction has low values of visibility (≈0.5 at
maximum around the peak of the beat conductance oscillation)
because the splitting of the incoming mode at the bottom of
the junction interface is not half-and-half. In fact, the degree of
beam splitting is primarily influenced by the distance between
the metallic modes. It has been widely accepted that the
coupling between the metallic channels near a Chern insulator
junction interface can be reduced as distance increases [22].

Now we manipulate the beam splitting by controlling the
slope of the potential step. By changing the parameter ξ

in Eq. (2b) from 0 to finite, the potential profile becomes
smoothly varying, where its slope is tunable via gate control.
Figure 6(a) shows that a suppression of AB conductance
oscillation occurs when the gradualness of the potential slope
increases. Compared to AB oscillation for an abrupt potential
step, for the ξ = 10a0 case the splitting imbalance increases
due to weaker coupling between the metallic channels,

resulting in the reduced visibility. With further ξ increases, the
AB conductance oscillation almost disappears due to the very
weak coupling between the metallic channels. By comparing
Figs. 6(b) and 6(c), for ξ = 20a0, the incoming mode totally
propagates through one arm of the AB interferometry, so
that no enclosed area is created within the single path.
Therefore, the AB conductance oscillation and related beating
characteristics can be expected to be measurable only when
the potential step is sharply fabricated.

IV. CONCLUSION

In conclusion, our results provide possible guides to exper-
imental confirmation of the mesoscpic transport phenomena
in quantum Hall graphene with a p-n junction. Especially, the
valley-isospin dependence of the conductance through the p-n
junction in quantum Hall graphene can be observed if the edges
of graphene sample are perfectly clean. On the other hand,
the conductance oscillation due to intrinsic AB interferometry
can be measured when the p-n junction is sufficiently sharp.
By examining the suppression of the AB oscillations, required
sharpness of the junction is about �4.2 nm for a given magnetic
field strength of 30 T, which seems to be feasible at present or
in the near future. Moreover, lower junction sharpness may be
required for lower magnetic fields, since the enclosed area by
the interface channels effectively increases as magnetic field
decreases.
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APPENDIX A: DECOUPLING SUBLATTICES
OF GRAPHENE WAVE FUNCTIONS

Dirac Hamiltonian of the system reads

vF

(
0 h̄

i
d
dx

− i(h̄ky − eBx)
h̄
i

d
dx

+ i(h̄ky − eBx) 0

)(
ψA

ψB

)

= (E − V )

(
ψA

ψB

)
, (A1)

where the Landau gauge �A = (0,−Bx,0) is chosen, V = V (x)
as given by Eqs. (2a) and (2b). For simplicity, let us treat V as a
constant V0 and −V0 in n- and p-doped regions, respectively.
The above Dirac equation actually indicates two first-order
differential equations as below:

h̄vF

[
−i

d

dx
− i

(
ky − eBx

h̄

)]
ψB = (E − V )ψA, (A2)

h̄vF

[
−i

d

dx
+ i

(
ky − eBx

h̄

)]
ψA = (E − V )ψB, (A3)

where ψA and ψB are coupled to each other via the Dirac
equation. The wave function can be analytically solved by
decoupling them. Here a convenient way of decoupling is
follows.
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Since the Dirac equation leads to the relationship between
sublattices, we have

ψA = h̄vF

E − V

[
−i

d

dx
− i

(
ky − eBx

h̄

)]
ψB, (A4)

ψB = h̄vF

E − V

[
−i

d

dx
+ i

(
ky − eBx

h̄

)]
ψA. (A5)

Substituting Eq. (A5) into Eq. (A2) we obtain(
E − V

h̄vF

)2

ψA =
[
−i

d

dx
− i

(
ky − eBx

h̄

)]

×
[
−i

d

dx
+ i

(
ky − eBx

h̄

)]
ψA

=
[
− d2

dx2
+

(
ky − eBx

h̄

)2

− eB

h̄

]
ψA.

(A6)

Therefore, the resulting equation is now a second-order
differential equation for ψA:[

d2

dx2
−

(
ky − eBx

h̄

)2

+ eB

h̄
+

(
E − V

h̄vF

)2
]
ψA = 0.

(A7)

Note that the third term eB/h̄ occurs as a result of [px,eAy] =
ih̄eB. Similarly, by substituting Eq. (A4) into Eq. (A3), we
get[

d2

dx2
−

(
ky − eBx

h̄

)2

− eB

h̄
+

(
E − V

h̄vF

)2
]
ψB = 0.

(A8)

It is noteworthy that there is a sign change of the third term
depending on sublattices. In results, two sublattice-coupled
first-order differential equations from the Dirac equation have
been expressed as one second-order differential equation via
the decoupling process, which are equivalent to each other.
In fact, we have two individual second-order differential
equations for each sublattice, so we first obtain ψA from
Eq. (A7), and then find ψB from the relationship between
them using Eq. (A3), or vice versa.

Equations (A7) and (A8) are reduced in the following
equation:[

d2

dx2
−

(
ky − eBx

h̄

)2

+ ςeB

h̄
+

(
E − V

h̄vF

)2
]
ψA,B = 0.

(A9)

By making it dimensionless, we finally have Eq. (3):[
d2

dx2
−

(
ky − x

2

)2
+ ς

2
+ (E − V )2

]
ψA,B = 0, (A10)

where E/E0 → E, V/E0 → V , l2
B(d2/dx2) → d2/dx2,

kylB → ky , and x/lB → x.

APPENDIX B: OBTAINING EIGENVALUES
FROM ANALYTIC SOLUTIONS

Solving Dirac equations, we found analytic solutions of
the system as presented in Eq. (5). Unlike conventional

quantum mechanics governed by the Schrödinger equation,
in relativisticlike quantum mechanics for graphene, the Dirac
equation gives rise to the distinct boundary of condition for
wave function continuity since it is basically a first-order
differential equation. Thus, it is satisfactory to only have wave
functions that are continuous at the interface of the Chern
insulator junction, although their first derivation is no longer
needed to be continuous, i.e.,

lim
ε→0

[�(0 + ε) − �(0 − ε)] = 0. (B1)

Now, this boundary condition leads to the following equation:

A

(
Dν(−2ky) −Dν(2ky)

i
√

ν
2 Dν−1(−2ky) i

√
ν
2 Dν−1(2ky)

)
= 0. (B2)

In order to have nonzero A, the determinant of the given 2 × 2
matrix must vanish, so we can numerically find eigenenergies
to satisfy the following:

det

(
Dν(−2ky) −Dν(2ky)

i
√

ν
2 Dν−1(−2ky) i

√
ν
2 Dν−1(2ky)

)
= 0. (B3)

Finally, we reach the transcendental equation consisting of
parabolic cylinder functions:

Dν(−2ky)Dν−1(2ky) + Dν(2ky)Dν−1(−2ky) = 0. (B4)

The resulting equation gives rise to eigenvalues as a function
of ky as presented in Figs. 2(a) and 2(c).

APPENDIX C: RANDOM EDGE ROUGHNESS

If our system is considered as rectangular, the system is
characterized by its width W and length L, as depicted in
Fig. 1(a). With straight-cut edges, we have constant W over
the length L. On the other hand, if we are interested in putting
irregular changes in the width, random roughness is necessary
to be introduced. In other words, we want to make the edge
fluctuate over the length L. The randomly fluctuating width can
be created by setting W as a linear combination of sinusoidal
functions, i.e.,

W = W0 + δW [sin (γ1x) + sin (γ2x)], (C1)

where γ1 and γ2 are randomly given values in a range
[0.1L : 0.15L] by a random number generator (built-in func-
tion of Python 3.5), and W0 and δW are the constant values.
The width now fluctuates between W − δW and W + δW .

Since we put two individual random number generators
for γ1 and γ2, the periods of the two sine functions are
believed to be independent and different from each other. Thus,
we expect that these functions are incommensurate resulting
in an irregular shape of the edges in L/2 < x < L/2. We
accurately set the value of δW to make the root-mean-square
of the fluctuation about 0.53a0. Such a fluctuation amplitude
value means that the fluctuation of the rough edge can cover
1-atom-thick changes in the width W . Plus, every time we run
a simulation, γ1 and γ2 are randomly distributed. Therefore,
we run the simulation 100 times and take the ensemble average
over the 100 simulation sets.
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