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We present a theoretical analysis of spin-coherent electronic transport across a mesoscopic dot-cavity
system. Such spin-coherent transport has been recently demonstrated in an experiment with a dot-cavity hybrid
implemented in a high-mobility two-dimensional electron gas [C. Rössler et al., Phys. Rev. Lett. 115, 166603
(2015)] and its spectroscopic signatures have been interpreted in terms of a competition between Kondo-type
dot-lead and molecular-type dot-cavity singlet formation. Our analysis brings forward all the transport features
observed in the experiments and supports the claim that a spin-coherent molecular singlet forms across the
full extent of the dot-cavity device. Our model analysis includes (i) a single-particle numerical investigation
of the two-dimensional geometry, its quantum-coral–type eigenstates, and associated spectroscopic transport
features, (ii) the derivation of an effective interacting model based on the observations of the numerical and
experimental studies, and (iii) the prediction of transport characteristics through the device using a combination
of a master-equation approach on top of exact eigenstates of the dot-cavity system, and an equation-of-motion
analysis that includes Kondo physics. The latter provides additional temperature scaling predictions for the
many-body phase transition between molecular- and Kondo-singlet formation and its associated transport
signatures.
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I. INTRODUCTION

Mesoscopic physics provides a framework for the study
of coherent transport across engineered controllable systems.
A standard method for obtaining such quantum coherent
devices is by geometrically confining electrons to effectively
low-dimensional structures that are embedded within ultra-
clean materials. Typical devices include quantum dots acting
as effectively zero-dimensional (0D) artificial atoms, one-
dimensional (1D) quantum wires or quantum point contacts
(QPC), and electronic interferometers composed of edges of
two-dimensional (2D) quantum Hall bars [1]. In such devices,
electron-electron interactions play an important role, giving
way to numerous interesting transport phenomena, such as
the Coulomb blockade [2] and the Kondo resonance [3,4] in
quantum dots, the 0.7 conductance plateau in quantum point
contacts [5–8], and noise signatures of fractionally charged
particles in electronic interferometers [9–11].

Of particular interest in the present context are 2D coherent
standing waves (quantum corrals) that have led to the observa-
tion of fascinating signatures of coherence and interaction. For
example, a QPC coupled to a mesoscopic, μm-size quantum
corral displays a modulated tunneling [12,13], while the
observed Kondo mirage [14–17] is the result of nm-scale
coherence and interaction. Such geometry-induced complex
many-body phenomena can be described theoretically. When
doing so, it is important to account for both the spatial
structure of the electronic wave functions imposed by the
device geometry as well as interactions.

In search for new phenomena and applications, the coupling
of various mesoscopic devices has led to new implications on
both fundamental questions in many-body physics as well as
novel quantum engineering prospects. Examples of the former
include the study of many-body quantum phase transitions

in the context of the Kondo effect and competing mech-
anisms, such as Ruderman-Kittel-Kasuya-Yoshida (RKKY)
interactions [18], two-channel Kondo [19], and singlet-triplet
switching on a molecule [20]. On the engineering front, the
combination of several dots into controlled quantum bits
(qubits) has been demonstrated [21,22], thus promoting the
next challenge of introducing coherent coupling between
distant qubits without relying on nearest-neighbor exchange.

Recently, we have reported on the transport signatures of
a coherent electronic dot-cavity system in a high-mobility
two-dimensional electron gas [23]. The role of the (μm-size)
cavity was played by a carefully designed electron reservoir of
suitable geometrical shape, similar to that used in mesoscopic
quantum corrals [12,13]. The high quality of the underlying
material has allowed for the demonstration of a coherent
spin-singlet formation that spans across the dot and extended
cavity states. This strong hybridization between dot and cavity
has quenched the competing Kondo transport in a controlled
way, thus allowing for a systematic tuning of the device.
Such strong hybridization typically occurs in quantum optics
between photons and atoms when the optical cavities have
a high-quality factor [24]; quite interestingly, we have seen
it transpire for an electronic cavity that has a mere quality
factor of ∼5. This highlights the important difference between
the electronic and optical platforms: electrons are strongly
interacting and the dot-cavity physics takes place within
a many-body interacting Fermi sea of electrons, whereas
photons are weakly interacting and optical cavities have
isolated spectral lines.

In this paper, we provide a detailed account of the
theoretical modeling invoked in the analysis of the dot-cavity
experiments [23]. The work involves analytical and numerical
studies of the 2D geometry that has facilitated the design of
an optimized quality factor for the electronic cavity. Feeding
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the spectral properties of the 2D structure into an effective
0D model (coupled to Fermi leads) allows us to introduce
electron-electron interaction into the problem and describe the
dot-cavity hybrid as an original realization of a Kondo-box
setup [25–28]. We then employ several methods for the
prediction of transport signatures associated with the effective
model: we make use of a combination of exact-diagonalization,
master-equation, and equation-of-motion approaches in order
to analyze the complex many-body signatures observed in
the experiment. Moreover, we present a detailed comparison
of our model’s predictions with the reported experimental
results, as well as with previously unpublished experimental
findings. The agreement is remarkable, both when comparing
equilibrium and out-of-equilibrium transport.

The paper is structured as follows: In Sec. II, we analyze the
effects of the 2D geometry of our system on the single-particle
transport across the device. In Sec. III, we discuss how this
geometrical shaping can be accounted for within an effective
model. The many-body transport properties of this model
are studied using exact diagonalization and a master-equation
approach in Sec. IV. Finally, we discuss the interplay between
the dot-lead Kondo physics and the dot-cavity spin-singlet
formation using an equation-of-motion approach in Sec. VI,
followed by the conclusions and an outlook in Sec. VII.

II. CAVITY ENGINEERING

The interesting physics arising in the dot-cavity experiment
[23] is the result of a deliberate structuring of the two-
dimensional electron gas (2DEG). The geometrical confine-
ment generates modes which are related to the standing
electron waves discussed in the context of quantum corrals
[17]. Here, we analyze the single-particle effects of shaping the
potential landscape. We do this numerically by considering the
transport through a quantum point contact in the presence of an
electronic cavity. We shall see that the (numerically calculated)
local density of states (LDOS) of the device is related to the
eigenfunctions of the corresponding closed system, a half-disk
quantum box with hard walls. This relation provides us with
a simple understanding of the observed features and allows us
to set up specific design rules for future devices. Additionally,
this analysis serves as the foundation for the construction of
the effective many-body Hamiltonian in Sec. III where the
QPC will be replaced by a quantum dot.

We consider a QPC connecting two extended leads, one of
which is structured by a mirror gate [see the inset of Fig. 1(a)].
Such a setup is known to modulate the transmission through
the QPC by forming ballistic resonator modes [12,13,23].
We model this device using the numerical transport package
KWANT [29]. This involves a discretization of the system using
a fine square-lattice mesh. To model the QPC, we separate
the 2DEG into two parts along the y axis, denoted as left (L)
and right (R), by a large onsite potential leaving only a small
channel connecting them. In the absence of the mirror gate,
the transport between the two separated 2DEG parts shows
the well-known conductance quantization steps [30,31] as a
function of energy ω [see the red dashed line in Fig. 1(a)
following the first quantization step]. The curved mirror and
QPC gates are positioned symmetrically around the x axis
and define a half-circular cavity for electrons which causes a
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FIG. 1. Transmission modulation of a QPC due to a structured
lead. The inset shows the geometry of the QPC-cavity setup used
in our numerical simulation: two parts of the 2DEG (L and R) are
separated by a potential barrier leaving only a narrow connecting
channel that defines a QPC. At a distance L0, we include a curved
potential with radius R0 and an opening angle π/4 (cavity mirror). (a)
In the absence of the cavity mirror (dashed red line), the transmission
T versus energy ω shows the expected conductance quantization,
with an arbitrary quantization energy εq. In the presence of the π/4
cavity with R0 = L0 (solid line), the transmission is modulated by
pronounced, well-separated resonances. (b) Transmission through the
QPC at ω = 0.54εq and fixed radius R0 as a function of the cavity-
mirror position L0. The results of two mirror opening angles are
presented, a narrow mirror with opening angle π/4 (solid line) and a
wider mirror with opening angle π/2 (dotted blue line). The former
shows a regular pattern of isolated resonances, while the latter shows
main resonances accompanied by additional side resonances. For a
larger distance from the QPC, the resonances become broader and less
transmitting due to additional scattering into the surrounding lead.
I, II, and III denote peaks in transmission for which the scattering
single-particle states are depicted in Figs. 2(b)–2(d), respectively.

pronounced oscillation in the transmission through the QPC
[see the solid line in Fig. 1(a)].

In the experiment, a gate voltage was applied to the mirror
gate that reduced the length of the radial confinement of the
cavity [23]. We model this by studying the transmission at
a fixed energy ω as a function of the distance of the mirror
from the QPC [see Fig. 1(b)]. We observe a regular pattern
of resonances, in accord with the experiment. Increasing the
opening angle from π/4 to π/2 shows additional resonances,
demonstrating that the optimal cavity has to be carefully
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tuned in order to arrive at well-separated but still sharp
transport resonances. To better understand the properties of
these resonances, we study the eigenstates in a closed half-disk
quantum box that has a shape similar to that of the cavity.
Indeed, these states are closely related to the resonances seen
in an open microwave billiard [13].

We start with the eigenstates of a circular box with radius
R0, and work in both Cartesian x, y and circular r , ϕ

coordinates, according to convenience. In circular coordinates,
the Schrödinger equation for free particles is

1

r

∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂ϕ2
+ k2ψ = 0. (1)

Adding a circular confining potential generates eigenstates
of the form ψn,±m(r) ∝ Jm(knr)e±imϕ with the cylindrical
Bessel functions Jm and kn the nth solution of Jm(kR0) = 0.
The integers n and m are the radial and azimuthal quantum
numbers, respectively. The solutions with ±m are energetically
degenerate, such that arbitrary superpositions of them are
solutions as well. The wave functions must vanish at the QPC
gates, which lie on the y axis. For a given |m| > 0, we can
create superpositions which fulfill this criterion

ψ̃n,m(r) ∝ Jm(knr) sin [m(ϕ + π/2)], (2)

where we take ϕ = 0 to lie on the x axis. These specific
superpositions are eigenstates of the half-circular disk defined
on −π/2 < ϕ < π/2. A selection of such states is shown in
Fig. 2(a).

We now consider how a wave incoming from the left of
the QPC will tunnel into cavity states on the right-hand side.
First, we establish a selection rule on m due to the parity of
the initial and final wave functions. The incoming wave eikx is
even under the sign change y → −y and hence scatters into
states (2) with odd m. Second, due to the effective potential
of high angular-momentum modes, the local density of states
(LDOS) of the cavity eigenstates at the QPC is suppressed
for large azimuthal quantum numbers m and, thus, they couple
less strongly to the incoming wave. Hence, promising solutions
that strongly couple across the QPC are modes with small odd
values of m.

Inspiration for optimizing the cavity geometry to produce
a strong and coherent dot-cavity coupling can be drawn from
quantum electrodynamical (QED) setups [24]. We define the
Q factor of our cavity to be the ratio of the peak-to-peak
distance and the full width at half maximum (inverse lifetime)
of the peaks. Reaching the strong coupling limit between a
QED cavity photon and an atom requires a high-Q factor. In
the electronic system, the cavity electron strongly interacts
with the electrons on the quantum dot (artificial atom) and a
moderate Q factor is sufficient. We can maximize the Q factor
by optimizing the cavity geometry and applying the quantum
engineering insights obtained above.

Our tuning parameters for the Q factor are then the lifetime
of the states in the cavity and their distance in energy space.
The lifetime highly depends on how well confined the states are
and hence on the opening angle of the cavity mirror. If a large
fraction of the weight of a state is located in a region which
is not confined by the mirror gate, it will leak out very fast
and thus the lifetime will be short, leading to broad resonances

m = 1 m = 2 m = 3

(a) (b)

(c) (d)

FIG. 2. Resonances of closed and open half-disks. (a) Eigenstates
of a closed half-circular quantum box. Here, the modes with n =
40 and m = 1,2,3 are plotted [see Eq. (2)]. For clarity, we show
the local density of states of the modes multiplied by the radius
r , r|ψ̃40,m(r)|2. (b)–(d) The local density of states of a plane-wave
scattering through the QPC into the structured lead as obtained using
the numerical transport package KWANT [29]. In (b) and (c), we show
the modes that lead to the pronounced resonances I and II in Fig. 1(b)
of the narrow and wide mirrors, respectively. These modes both have
angular quantum number m = 1 and correspond to the same state in a
closed system. Their respective resonances differ in height and width
because the narrow mirror is less effective in confining the mode. In
(d), we depict the LDOS corresponding to the side resonance III in
Fig. 1(b) of the wide mirror with angular quantum number m = 3.

when the opening angle of the cavity is small. On the other
hand, a small cavity opening leads to the disappearance of
high-m modes and thus the peak-to-peak distance increases.
These features are illustrated in Fig. 1(b), where we see that the
side peak with m = 3 broadens and disappears when the cavity
mirror is narrowed. Selected states corresponding to the peaks
in transmission in Fig. 1(b) are pictured in Figs. 2(b)–2(d).

Thus, decreasing the opening angle of the cavity has two
competing implications for Q: (i) high-m modes are not
confined and therefore side peaks vanish such that Q increases,
and (ii) the main m = 1 mode broadens, decreasing the lifetime
and thus Q. We find a cavity opening angle π/4 to be a good
compromise between isolated and sharp resonances. A further
analysis of the quality of the cavity depends on the exact shape
of the gates, their relative sizes, and its robustness to disorder
and is beyond the scope of this work.

In this section, we investigated the single-particle properties
of the cavity. We found that when tuned correctly, the cavity
acts as an effectively one-dimensional box coupled to a
reservoir. We also showed that we can use analytic tools to
provide design guidelines, and that KWANT [29] can function
as a low-cost test bed for the design of future devices. In
Sec. III, we will combine these results with the interacting
quantum dot to create effective models for the entire device.
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FIG. 3. Effective models describing the interacting dot-cavity
system. (a) Anderson-type model where the effect of the structured
lead is accounted for by an energy-dependent transmission coefficient
tR(ω) [see Eq. (7)]. (b) Dot-cavity model where the effect of the
structured lead is accounted for by discrete cavity states separately
coupled to the dot and to the right lead. Closed paths connecting
the dot via the cavity to the right lead (red dotted lines) and back
to the dot (green dotted) might generate Fano interference, however,
the summation over such trajectories (see Fig. 4) will suppress this
effect.

III. EFFECTIVE MODELS

Next, we set up an effective model for an interacting
dot-cavity system, where we replace the QPC by an interacting
quantum dot including its spin degree degree of freedom
and include cavity states as discussed above. Given the large
extent of the cavity, we assume that cavity charging effects are
screened and thus can be ignored. The cavity modes are then
assumed to solely affect the tunneling amplitude from the dot
into a “structured” lead.

Our first model Hamiltonian describes the quantum dot in
terms of an Anderson model with a standard (unstructured)
coupling to the left lead and includes the cavity in terms of
a structured right lead with an energy-dependent transmission
coefficient [see Fig. 3(a)]

H = Hleads + Hdot + Htun, (3)

where

Hleads =
∑
k,σ

εLkc
†
Lkσ c

Lkσ +
∑
k,σ

εRkc
†
Rkσ c

Rkσ (4)

describes the left and right leads with creation and annihilation
operators of lead states c

†
akσ and cakσ with energy εak and

where σ and k denote spin and momenta of the states in the
left (a = L) and right (a = R) leads. We consider a dot with
a single spin-degenerate level as described by an Anderson
model [32]

Hdot =
∑

σ

εd d†
σ dσ + Un↑n↓, (5)

with creation and annihilation operators d†
σ and dσ of the dot

level with energy εd and spin σ , nσ = d†
σ dσ , and the onsite

Coulomb interaction is denoted by U . The coupling between
the leads and the dot is described by the tunneling Hamiltonian

Htun =
∑
k,σ

tLd
†
σ c

Lkσ +
∑
k,σ

tR(ωk) d†
σ c

Rkσ + H.c., (6)

where we assume a constant tunneling amplitude tL between
the left lead and the dot level and an energy-dependent
tunneling amplitude tR(ω) between the dot level and the
right lead state with energy ω. The energies ωk of the lead
states are related to their momenta h̄k through the density of
states ρ = dk/dωk . The energy dependence of the tunneling
amplitude to the right lead is given by the specific shape of the
resonances in Fig. 1(a). This shape is well approximated by
separated Lorentzian peaks on top of a constant background

tR(ω) = tR +
∑

j

λj

ω − ε
(j )
c + i�j/2

. (7)

Here, the amplitude tR describes the direct transmission from
the dot to the right lead and the sum over Lorentzians accounts
for the transmission into the right lead via the cavity states. The
energy of the cavity resonances is given by ε (j )

c while �j and λj

describe their width and coupling strength, respectively. Note
that the analytic expression in Eq. (7) incorporates the effect of
the cavity modes as resonances in the transmission coefficient.
In doing so, we account for the cavity coherence in the right
lead via a (large) finite lifetime h̄/�j , i.e., narrow resonances.

Second effective model. On the other hand, we can go one
step further and describe these cavity states as discrete levels
that are tunnel coupled to the dot and are broadened by tunnel
coupling to the background states of the right lead. This setting
is described by the Hamiltonian

H̄ = Hleads + Hdot + Hcav + Hcoupl + H̄tun, (8)

where the cavity Hamiltonian

Hcav =
∑
σ,j

ε (j )
c f

†
jσ fjσ (9)

describes the discrete cavity levels ε (j )
c with creation and

annihilation operators f
†
jσ and fjσ , the coupling Hamiltonian

Hcoupl =
∑
j,σ

�jf
†
jσ dσ + H.c. (10)

accounts for the coupling between the dot and cavity states,
and the modified tunneling Hamiltonian

H̄tun = H dL
tun + H̄ dR

tun + H̄ cR
tun

=
∑
k,σ

(tLd
†
σ c

Lkσ + H.c.) +
∑
k,σ

(tRd
†
σ c

Rkσ + H.c.)

+
∑
j,k,σ

(tj f
†
jσ c

Rkσ + H.c.) (11)

describes the tunneling between both unstructured leads and
the dot as well as the coupling of the cavity to the unstructured
right lead. The tunneling amplitudes tj that describe the
coupling of the cavity levels to the right lead are related to
the cavity resonance widths by [33] �j = 2πρR|tj |2, with
ρR the density of states in the right lead. The hybridization
amplitude �j = λj/tj between the dot and the cavity is related
to the strength λj of the resonance and its width [33]. Similarly,
the amplitudes ta that couple the dot to the left (a = L) and
right (a = R) leads give rise to rates

�a = 2πρa|ta|2, (12)

that broaden the dot level.
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FIG. 4. Suppression of Fano interference. (a) Two examples of
interfering paths from the dot to a structured lead. Each set of paths
(dashed and dotted) shows interferences between a trajectory going
directly from the dot into the lead (green lines) and a trajectory
connecting to the lead via the cavity (red lines). All such trajectories
starting and ending in the same points must be averaged over. This
turns into a double averaging, first over the end point (red-green
vertex) including the 2D extent of the lead and second over the
(red-red) cavity vertices within the cavity area. This summation
causes the phase to average out and eliminates any Fano effect in
the dot-cavity device, in agreement with the experiment [23] where
no such interference effects could be observed. (b) Effective 0D model
(coupled to Fermi leads) accounting properly for the elimination of
Fano resonances by independently coupling the dot and cavity to the
right lead. Note the differences to Fig. 3(b) with the red-green loop
connecting the dot, cavity, and reservoir; the latter is now replaced
by two independent reservoirs.

In the following, we will consider a fixed cavity-level
spacing δc, i.e., ε (j )

c = εc + j δc, and additionally assume that
all cavity levels are tunnel coupled to the dot and leads
with the same amplitudes �j = � and tj = tc, respectively.
Correspondingly, the rates coupling the cavity levels to the
right lead are identical, �j = �c with

�c = 2πρR|tc|2. (13)

As a result, the dot-lead Hamiltonian corresponds to a standard
Anderson-model–type description of an interacting dot with
tunneling into unstructured leads [32] and an additional
energy-dependent channel due to tunneling via the cavity [see
Fig. 3(b)]. Note that obtaining the Hamiltonian H from H̄

corresponds to tracing out the effect of the cavity. Here, we
have performed the opposite procedure and “gave birth” to the
coherent electronic cavity physics.

No Fano interference. In general in model (8), both tR and
�j may have an energy-dependent relative phase, which could
give rise to Fano-type interferences [34]. Recalling our 2D
geometry, we argue that the direct transmission into the right
lead and the transmission via the cavity into the right lead are
phase averaged [see Fig. 4(a)]. As a result, we conclude that
these two processes do not interfere and that the Fano effect

μR = F ≡ 0
d

d + U
μL

c

c + δc

c + 2δc

c + 3δc

FIG. 5. Schematic view of the different tuning parameters in the
dot-cavity system. We will investigate the effects of tuning the left
chemical potential μL, the dot level εd, and the lowest cavity level
εc, keeping the chemical potential μR in the right lead fixed. We use
μR = 0 as our zero of energy.

is suppressed. We therefore will make sure in the following
to sum these terms incoherently by creating a second copy
of the right lead [see Fig. 4(b)] and thereby neglect Fano-type
processes, in contrast to previous Kondo-box analyses [27,28].
Following, we will use the model in Fig. 4(b) in Secs. IV and V.
Within our discussion of the Kondo physics in Sec. VI, the
two models are equivalent (as we drop Fano-type interference
effects) and we will use the structured-lead formulation of
Eq. (6) and Fig. 3(a).

Transport configurations and capacitive cross talk. When
analyzing the many-body properties of the Hamiltonian H̄ in
Eq. (8), we will study typical configurations as sketched in
Fig. 5, with a fixed chemical potential μR = εF on the right
lead which we take as our zero of energy, μR = 0. Transport
across the device then is studied by changing the left chemical
potential μL and tuning the dot εd and cavity εc levels. In
addition, we assume a capacitive cross talk in the system
between the dot and cavity such that

εd = ε′
d + αcdε

′
c + αLdμL, (14)

εc = ε′
c + αdcε

′
d, (15)

where primed quantities ε′
d and ε′

c refer to applied gate
voltages on the dot and cavity, respectively, producing the
dot and cavity levels εd and εc in the Hamiltonian. The cross
talks modify the diagrams through a global tilt and stretch;
we seek only qualitatively correct values for the capacitive
couplings and therefore use αcd = 4αdc = 0.2 and αLd = 0.5,
while quantitative values can be easily extracted from a proper
calibration of the experiment.

IV. ARTIFICIAL DOT-CAVITY MOLECULE: AN EXACT
DIAGONALIZATION TREATMENT

We study the many-body spinful interacting dot-cavity
system coupled to leads as derived in Sec. III. Assuming that
the coupling to the leads is weak relative to the dot-cavity
coupling, we first analyze the (isolated) central region using
exact diagonalization (ED) (see Sec. IV), and find the emergent
“artificial molecule” ground-state map describing the isolated
dot-cavity system. We find how this map changes as a function
of various system parameters and compare it with a standard
double-dot picture. We then couple the leads perturbatively
to the dot-cavity artificial molecule and determine the linear
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transport response across the device using a master-equation
approach (see Sec. V). Signatures of Kondo transport are not
captured by this formalism as we restrict the discussion to the
lowest-order sequential transport. We will investigate Kondo
physics in Sec. VI using an equation-of-motion approach.

Exact diagonalization: Ground-state map

The subsystem consisting of the dot and cavity is described
by the Hamiltonian

Hdc = Hdot + Hcav + Hcoupl (16)

[see Eqs. (5), (9), and (10)]. Using exact diagonalization, we
determine the eigenstates and eigenenergies of this isolated
dot-cavity system. Specifically, for a fixed number N↑ of elec-
trons with spin ↑ and N↓ electrons with spin ↓, we obtain the
eigenstates |ψα

N↑,N↓〉 with the corresponding energies εα
N↑,N↓ ,

where α labels all eigenstates of this specific Fock space. These
eigenstates can be written as a normalized superposition of the
many-body occupation basis |n↑

d ,n
↓
d ,m

↑
0 ,m

↓
0 ,m

↑
1 ,m

↓
1 , . . .〉,∣∣ψα

N↑,N↓
〉 =

∑
nσ

d +∑
j mσ

j =Nσ

Cα

n
↑
d ,n

↓
d ,m

↑
0 ,m

↓
0 ,m

↑
1 ,m

↓
1 ,...

× |n↑
d ,n

↓
d ,m

↑
0 ,m

↓
0 ,m

↑
1 ,m

↓
1 , . . .〉, (17)

where nσ
d = 0,1 and mσ

j = 0,1 are the occupation numbers
of the dot and j th cavity states with spin σ =↑ , ↓, respec-
tively. We denote the lowest-energy eigenstate of each Fock
sector with α = 1, i.e., |ψ 1

N↑,N↓〉 is the state with ε1

N↑,N↓ =
minα εα

N↑,N↓ , while the remaining states α > 1 correspond to
excited states.

When the system is coupled to a reservoir, the electron
number is not fixed. Assuming that the system is weakly tunnel
coupled to leads, �L,�R,�c 	 δc,U , the leads populate the
system in the ground state with N↑ and N↓ electrons. We can
then go over to the addition spectrum representation [35] with
energies ε̃ (j )

c = ε (j )
c − εF and ε̃d = εd − εF defined with respect

to the chemical potential of the reservoir; with our choice
εF = 0, we have ε̃ (j )

c = ε (j )
c and ε̃d = εd and we drop the tilde in

the following. The ground state then is given by the state with
the lowest energy ε1

N↑,N↓ as a function of filling N↑ and N↓.
At vanishing bias μL = 0, the open system will conduct when
two neighboring Fock sectors have degenerate ground states
that are also the ground states of the entire system. In such a
configuration, an electron can be added to or removed from
the artificial molecule through an energy-conserving process
and, hence, the total particle number on the artificial molecule
remains undetermined.

We can study the ground-state energies of different Fock
sectors as a function of various system parameters: (i) the dot
level εd, (ii) the onsite interaction on the dot U , (iii) the lowest-
energy level of the cavity εc, (iv) the cavity-level spacing δc,
and (v) the dot-cavity tunnel coupling �. We focus on the
experimental situation [23], where the cavity-level spacing
δc ∼ U 
 �. In this regime, the impact of the cavity is mostly
due to a single one of its levels that is close to the chemical
potential. In Fig. 6, we explore the dot particle-hole symmetric
point εd = −U/2 and find that the degeneracy of the cavity
level is lifted by a 12 �2/U splitting (see Appendix A). In this

N = 2

N = 3

N = 1

−0.4

−0.6

Ω/U = 0
Ω/U = 0.1

0.05−0.05

∼ 12Ω2/U

c/U

1 N
/
U

FIG. 6. Addition spectrum calculated through exact diagonaliza-
tion. The ground-state energy of different Fock sectors (N = 1, red;
N = 2, green; N = 3, blue) is plotted as a function of the cavity
level while the dot is in Coulomb blockade, εd = −U/2. All other
Fock sectors are lifted further up in energy for this configuration. For
vanishing temperature T → 0 and infinitesimal coupling to the leads,
the energetically lowest Fock sector is the one which will be occupied.
Pushing the cavity level εc across the Fermi level εF from left to right
entails its emptying N = 3 → 2 → 1. The dashed lines describe the
situation for a vanishing dot-cavity hopping � and show that the
cavity occupation changes by two particles (between red and blue)
when tuning the cavity below the Fermi level, as illustrated by the
crossing of red, green, and blue dashed lines in a single point. When
the matrix element � is finite (solid lines), the ground state of the
two-particle Fock sector is, to leading order in �, lowered by 8�2/U ,
while the odd sectors are lowered by 2�2/U , leading to a splitting
of 12�2/U of the two cavity levels. As a result, a N = 2 dot-cavity
ground-state singlet is formed at intermediate values |εc| � 0.05 U

(lowest-energy green solid line) (see Appendix A for more details).

parameter range, both the dot and the cavity can be occupied
by a single electron each which will combine to form a singlet.

Figure 7 shows several ground-state maps where both
dot and cavity levels are tuned through the Fermi energy
εF. In Fig. 7(a), we plot the dot-cavity ground-state map
derived from ED as a function of applied voltages ε′

d/U and
ε′

c/U [we include capacitive cross talk to allow for better
comparison with the experimental result in Fig. 7(c), see
Eqs. (14) and (15)]. We label the different ground states by
(Nd,Nc), where Nd = ∑

σ nσ
d (Nc = ∑

j,σ mσ
j ) denote the total

dot (cavity) occupation. The boundaries between different
regions mark those configurations where the particle number
on the dot-cavity system is undefined and the system conducts.
For vanishingly small coupling �/U → 0 (dashed lines), the
occupation of the cavity and the dot are independent and the dot
is empty for εd > 0, singly occupied for εd < 0 < εd + U , and
doubly occupied for εd < −U . Similarly, the cavity occupation
changes by two electrons whenever a cavity level crosses the
Fermi energy because charging effects on the cavity are absent.
At finite dot-cavity coupling � (solid lines), the dot and cavity
states hybridize and form an intermediate singlet ground state
(see also Fig. 6). This results in a pronounced modification
of the ground-state map with additional regions of odd cavity-
occupation states separating regions with odd-dot–even-cavity
regions. The emerging dot-cavity singlet extends over the
entire hybrid system and thus defines an artificial asymmetric
dot-cavity molecule (note that these molecular states are less
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FIG. 7. Ground-state maps for a coupled dot-cavity system showing hybridization (a) from exact diagonalization (see Sec. IV), (b) from a
master-equation transport analysis (see Sec. V), and (c) from transport experiments (see Ref. [23]) [theoretical results in (a) and (b) assume a
capacitive cross talk between the dot and cavity, see Eqs. (14) and (15)]. Note the different scales measuring ε ′

d/U and ε ′
c/U , as the cavity levels

are more dense than the dot’s Coulomb resonances. (a) Ground-state map versus dot and cavity energies as obtained from ED. Lines indicate
parameter settings where different particle occupations become degenerate, thus allowing for transport across the artificial molecule. Regimes
with unique occupation are labeled with their dot, cavity occupation (Ndot,Ncav). Dashed lines refer to the decoupled case with �/U = 0 and
full lines correspond to �/U = 0.12. A finite dot-cavity coupling � leads to a gap opening indicated by black arrows (of minimal width
12 �2/U ) at ε ′

d/U = −0.5; the gap opens up a region of odd cavity occupation with a molecular-singlet formation. (b) Differential conductance
G = dI/dV versus dot and cavity energies for the same parameters as in (a) and rates �L = �R = 5�c ≡ �/2. Gap openings are indicated
by white arrows. The intensities of the conductance peaks depend on the tunneling rates (20) and (21), while the temperature T/U = 0.02
determines their broadening. Kondo physics generates an enhanced conductance when the occupation of the artificial molecule is odd, i.e.,
inside the (1,2n) regions with n integer; such signatures are not captured by our master-equation description but show up in the experiment. In
Sec. VI, we take a cut along the green dashed line and address Kondo physics. Note that in (a) and (b), we truncate the Hilbert space at three
spin-degenerate cavity levels. (c) Measured differential conductance through the experimental dot-cavity device as a function of bias on the dot
plunger gate and cavity gate (see Ref. [23]). The line shapes match the full black lines in (a) and the transport resonances in (b), thus confirming
that the dot and cavity hybridize to form a coherent “molecule.” The difference in intensities between occupancies (1,2n) and (0,2n), (2,2n) is
due to transport through a Kondo resonance.

prominent at even dot fillings). Given the large spatial extent of
the cavity, the existence of such a coherent state defines a lower
bound on the spin coherence length in GaAs heterostructures.
It is this dot-cavity molecular singlet that competes with the
dot-lead Kondo singlet and that is one of the most fascinating
features characteristic of this device.

Next, we turn to the transport physics that renders the
ground-state map visible in an experiment. Indeed, since linear
transport is restricted to the degeneracy points where two
ground states with different particle number cross, we expect
that a conductivity map G = dI/dV will accurately trace the
lines of Fig. 7(a). In the following, we use a master-equation
approach in a first attempt to map out the ground-state diagram
that can be compared to experimental data [see Figs. 7(b)
and 7(c), respectively]. Furthermore, such an approach can be
expanded to analyze nonlinear transport at large bias μL �= 0.
The inclusion of Kondo physics requires a more sophisticated
technique and we will discuss this topic with the help of an
equation-of-motion analysis in Sec. VI.

V. MASTER-EQUATION APPROACH

The master equation successfully describes the trans-
port through interacting systems that are weakly coupled
to leads [36–40], i.e., when �a,�c 	 max {kBT ,eV }, where
eV = μL − μR is the bias voltage between the left and right

leads, T is the temperature, and kB is the Boltzmann constant
which we set to unity kB = 1. The current I across the artificial
molecule is determined by the tunneling rates W between the
leads and the artificial molecule, as well as its occupation
probability P and the Fermi functions nF of the leads. Here, we
describe transport through the dot-cavity system as sequential,
i.e., to lowest order in its couplings �a and �c to the leads,
but treat the dot-cavity coupling � to all orders by using
our ED results for the molecular states. Thus, in a picture
where the coupling between the dot and the cavity is treated
perturbatively, our analysis captures the cotunneling processes
involving the dot and the cavity, which we call cavity-assisted
cotunneling processes.

Given the molecular eigenstates |ψα
N〉 with N = (N↑,N↓)σ ,

we define the associated occupation probabilities P α
N . Here, we

distinguish the spin-tuple (N↑,N↓)σ describing the molecular
spin occupation from the dot-cavity occupation-tuple (Nd,Nc).
The occupation dynamics Ṗ is determined by the master
equation

∂tP
α
N =

∑
N′,α′

(
W

α,α′
N,N′P

α′
N′ − W

α′,α
N′,NP α

N

)
, (18)

where the rates W
α,α′
N,N′ describe the transitions from state

|ψα′
N′ 〉 to state |ψα

N〉. Restricting the analysis to sequential
tunneling processes and considering only transitions between
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states that differ by one electron, the rates W
α,α′
N±eσ ,N take

us between charge sectors N and N ± eσ with e↑ = (1,0)σ
and e↓ = (0,1)σ . We couple the artificial molecule to the
leads via the tunneling Hamiltonian H̄tun [see Eq. (11)], with
the latter contributing three processes that induce changes
in the occupation number of the artificial molecule. These
have corresponding rates W L, W R, W c adding up to the total
transition rate

W
α,α′
N±eσ ,N = W

L α,α′
N,±eσ ,N + W

R α,α′
N±eσ ,N + W

c α,α′
N±eσ ,N. (19)

Note that we sum the rates W R and W c incoherently (see our
discussion of Fano resonances in Sec. III and Fig. 4). The
individual rates are derived in Appendix B and the result is

W
a α,α′
N±eσ ,N = �a

h̄

∣∣〈ψα
N±eσ

∣∣d±
σ

∣∣ψα′
N

〉∣∣2
ga

±
(
εN±eσ

− εN
)
, (20)

W
c α,α′
N±eσ ,N = �c

h̄

∣∣〈ψα
N±eσ

∣∣f ±
σ

∣∣ψα′
N

〉∣∣2
gR

±
(
εN±eσ

− εN
)
, (21)

where we have introduced the operator fσ = ∑
j fjσ . The

rates �a and �c are given in Eqs. (12) and (13), ga
+(ε) =

nF(ε − μa) and ga
−(ε) = 1 − nF(−ε − μa) derive from the

Fermi-Dirac distribution nF(ε) = 1/(1 + eβε), and β = 1/T .
We use the operator notation O+ = O† and O− = O. To
evaluate the rates (20) and (21), we use the eigenstates and
eigenenergies from our ED analysis (Sec. IV).

The master equations (18) can be written in matrix form
[38,39]

∂tP = WP, (22)

with an occupation probability vector P and the rate matrix W
that couples the different states. For the steady state, WP =
0, and we impose the normalization P · e = 1, where e =
(1,1, . . . ). Defining the square matrix E with all its rows given
by e, we rewrite WP + e = e in the form WP + EP = e and
find that P can be written in the form

P = (W + E)−1e. (23)

Once the probability vector P has been determined from
Eq. (23), we obtain the current I through the artificial molecule
from currents flowing between the dot (d) and the left lead (L):

I = e
∑
α,α′
N,σ

(
W

dL α,α′
N+eσ ,N − W

dL α,α′
N−eσ ,N

)
P α′

N , (24)

where the first and second terms correspond to electrons
entering and leaving the dot, respectively. In the following, we
will calculate and analyze the differential conductance G =
dI/dV , with eV = μL the applied voltage, in units of �e2/T .
Note that the factor of T appears when differentiating the
Fermi-Dirac distribution in the rates W with respect to the bias.

A. Equilibrium linear transport

We first analyze the equilibrium transport at low temper-
atures T and small bias eV = μL such that max {kBT ,eV }
remains small compared to the level spacing within each
molecular Fock sector. Under these conditions, transport
involves only the ground-state configuration α = 1 in each
Fock sector (N↑,N↓)σ . For our spin-symmetric Hamiltonian,

the ground-state configurations are restricted to N = (n,n)σ
and N = (n ± 1,n)σ . We limit ourselves to states with up
to eight particles for computational reasons and thus n �
4. Calculating the linear-response current, we can plot the
conductance G0 = limV →0 dI/dV as a function of the system
parameters [see Fig. 7(b)]. Linear-response transport arises at
the boundaries of the ground-state map where two dot-cavity
molecular ground states are degenerate; in the following,
we refer to these degeneracies as molecular resonances.
While usual dot transport would show Coulomb resonances
at energies εd ≈ 0 and εd + U ≈ 0, the molecular resonances
give rise to additional split resonances within the Coulomb
blockade regime [εd,εd + U ] whenever a cavity level crosses
the Fermi level, i.e., ε (j )

c ≈ 0. The shape of these transport
resonances is dictated by the formation of the molecular states
and generates the conductivity map of Fig. 7(b) that is aligned
with the ground-state map of Fig. 7(a). The intensities of
the resonances encode the overlap between eigenstates that
determine the transition rates W in Eqs. (20) and (21), while
the temperature leads to their broadening. The same signatures
have been observed in the experiment [23] [see Fig. 7(c)],
that we take as evidence for the formation of an extended
dot-cavity molecular state (the experimental data shown here
are an unpublished result from the same device as in Ref. [23]).

B. Nonequilibrium linear transport

The above equilibrium analysis has provided us with some
insights into the ground-state resonance structure of the dot-
cavity hybrid. Going beyond this equilibrium analysis, we
now investigate the system when it is driven strongly out of
equilibrium. We apply a large bias μL = eV to the left lead and
tune the dot ε′

d and cavity ε′
c gates. Below, we describe how

the cavity modifies the out-of-equilibrium transport signatures.
We start with the dot’s Coulomb diamond in the usual dot
bias ε′

d versus source bias μL plot. The presence of the cavity
then manifests itself through additional resonances within the
Coulomb diamond, similar to the inelastic cotunneling features
seen in a dot when including excited states [41–43]. Next,
we take a cut through the diamond at fixed εd and tune the
cavity bias ε′

c; the molecular-singlet formation shows up most
prominently in such a plot.

At finite bias eV , excited states are populated and contribute
to the transport across the device. When calculating the rates
in (20) and (21), all eigenstates and eigenenergies obtained
by the exact diagonalization have to be included. In doing so,
we account for all spin configurations N = (n,m)σ with n and
m bounded by the total number of single-particle levels in the
system. We first investigate the effect of the electronic cavity on
the standard Coulomb diamond by calculating the differential
conductance G = dI/dV and plotting the result versus dot
gate voltage ε′

d and source-drain bias μL = eV , while keeping
the cavity level εc fixed (see Fig. 8).

In the absence of the cavity, transport signatures appear
when the dot levels align with the chemical potential in either
lead εd or εd + U = μL or μR. Including a cavity with levels
at ε (j )

c , we expect signatures to appear when the molecular
(rather than the dot) levels align with either μL or μR. When
aligning the molecular level with the right lead, the only
available tuning parameter is the dot level; correspondingly,
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FIG. 8. Effect of the cavity on the dot Coulomb diamond. (a) Ground-state degeneracy maps for a fixed cavity level εc as a function of dot
gate voltage ε ′

d and chemical potential μL = eV of the left lead; shown are the calculated locations of ground-state degeneracies in the addition
spectra for the dot-cavity system with four cavity levels (εc − εF = −0.6U and δc = 0.4U ) when the artificial dot-cavity molecule is coupled
to the left lead (blue) and the right lead (red). The dashed lines are for vanishing dot-cavity coupling � = 0 while the solid lines refer to a finite
� = 0.08U . These degeneracy lines provide an outline for the out-of-equilibrium transport signatures in (b). The blue lines are susceptible
to both dot and cavity parameters εd − μL and εc − μL that are changed by the variation of ε ′

d and μL. The red lines, instead, depend on the
parameters εd − μR and εc − μR. The latter is independent of ε ′

d and μL and, hence, the red lines do not show any features related to the cavity.
(b) Transport resonances as a function of dot gate voltage ε ′

d and chemical potential μL = eV as derived from a master-equation approach
assuming a capacitive cross talk between the dot gate and the chemical potential of the left lead as explained in Sec. III [Eqs. (14) and (15)].
The same dot-cavity system as in (a) is now simultaneously coupled to both leads at temperature T = 0.02U with rates �L = �R = 5�c = �/2.
The transport resonances trace the degeneracies shown in (a): positively sloped Coulomb resonances (where the chemical potential μL = eV is
aligned with the dot) are strongly modified by the cavity states, while the negatively sloped resonances remain largely unperturbed, as expected
from the schematic view offered by the two spectra in (a). While the small splitting due to the molecular singlet formation shows up in the
spectral map (a), this feature is not visible in the transport map shown in (b) due to the temperature broadening; it will show up in Fig. 9(c) at
large coupling �. The vertical features showing up when the dot is in Coulomb blockade appear in a location where one expects cotunneling
features to manifest. In fact, our molecular description via ED captures processes which correspond to two-particle cotunneling processes in a
perturbative dot-cavity treatment (see Fig. 9 for details). (c) Measured differential conductance through the dot-cavity device as a function of
dot bias (vertical axis) and source-drain bias across the device (horizontal axis) (see Ref. [23]). The cavity levels generate avoided crossings
on the positively slanted Coulomb resonances as predicted by our theoretical analysis, emphasizing the formation of a molecular singlet state.
In the experiment, the cavity levels are more densely spaced as compared to our theoretical modeling, where we have limited ourselves to four
cavity levels due to computational reasons.

we take a near vertical cut at fixed cavity energy εc through the
molecular ground-state map in Fig. 7, leaving its qualitative
behavior unchanged. On the other hand, the left lead can
be aligned with the molecular level via two parameters: the
dot level εd and the chemical potential μL in the left lead
(which in turn changes the cavity levels ε (j )

c ) and we thus
expect to explore the entire ground-state map in Fig. 7. The
expected transport signatures are shown in Fig. 8(a) where we
plot the locations where additional molecular (ground-state)
degeneracies enter/leave the bias window. At these locations,
the degeneracies between molecular states and a lead chemical
potential add or remove a transport channel, producing a signal
in the nonlinear conductivity G.

The degeneracy map of Fig. 8(a) then has to be compared
with the transport map in Fig. 8(b) where we plot the dif-
ferential conductance calculated from Eq. (24). As expected,
the boundaries of the Coulomb diamond are modulated by the
presence of the cavity with anti-crossings appearing whenever
cut by ε (j )

c . These anticrossings appear on the positively sloped
Coulomb resonance when the chemical potential in the left
lead lines up with the molecular degeneracies. The negatively
sloped lines originate from aligning the dot level with the

right chemical potential via the direct dot-lead coupling. No
signatures appear due to the cavity as ε (j )

c remains fixed
with respect to μR; in Figs. 8(a) and 8(b), we set all cavity
levels ε (j )

c far away from the chemical potential in the right
lead μR. As in the equilibrium situation, the intensities of
the high conductance lines are given by the wave-function
overlaps in Eqs. (20) and (21), while their broadening is
due to the temperature kBT = 0.02U . Figure 8(c) shows
the corresponding out-of-equilibrium transport data measured
in the dot-cavity device of Ref. [23]. We observe a good
qualitative agreement with our model predictions, noting that
we have assumed a lower density of cavity levels in our
theoretical analysis due to computational reasons.

The appearance of additional resonances within the
Coulomb diamonds is well known from conventional dots:
accounting for the dot’s excited states, higher-order transport
channels open up (or close) when multiparticle processes
become allowed (or disallowed), thereby changing the total
current through the dot; such changes then generate (weaker)
resonance structures in the differential conductance G and
are known as inelastic cotunneling features. We can cast the
appearance of our molecular resonance structure due to the
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FIG. 9. Differential conductance in the Coulomb blockade region at fixed dot level εd versus source bias μL and cavity level εc for different
dot-cavity couplings �. A logarithmic scale is used in order to highlight the weak cotunneling features. The dot is placed at the particle-hole
symmetric point within the blockaded region εd = −U/2, the temperature is set to T = 0.02 U , and the leads are coupled to the artificial
molecule through the rates �L = �R = 5�c = �/2. The two horizontal lines mark the dot’s Coulomb peaks and the array of weak diagonal lines
is due to the molecular resonances (or cavity-assisted cotunneling processes) appearing as the next cavity level ε(j )

c is shifted across μR. These
resonances are suppressed due to the indirect coupling of the cavity (via the dot) to the left lead and it is the hybridization with the dot that leads
to the transport signature. Increasing the coupling �, the cavity degeneracy is first slightly lifted [see (b)] and then fully lifted with a splitting
∼12 �2/U in (c); (a)–(c) include three spin-degenerate cavity levels. The red dotted line marks the location where Kondo transport would
be present (not captured by the master-equation analysis discussed in this section). (d) Illustration of a cavity-assisted cotunneling process:
the arrows represent hopping events with 1a and 1b describing a two-electron cotunneling event from the left lead into the cavity via the dot.
The arrow labeled by 2 marks a single-electron tunneling from the cavity into the right lead. (e) The same process including the splitting
of the cavity level due to the hybridization with the dot, corresponding to the split cotunneling signatures in (b) and (c). (f), (g) Differential
conductance measurements through the dot-cavity device [23]. (f) Weak coupling � 	 tL and (g) strong coupling � 
 tL. Although the
splitting is accurately captured in the master-equation approach [see (c)], the additional Kondo resonance along the zero source-drain bias line
(source = 0) is not captured by the result of the master-equation approach in (c).

presence of the cavity in this language as well; rather than a
complex dot spectrum, it is the dot-cavity hybridization that
generates these features. Formulating the transport within a
perturbative picture in the dot-cavity coupling �, the additional
resonances then are viewed as cavity-assisted cotunneling pro-
cesses involving two-electron processes, i.e., a coherent hop-
ping of one electron from the left lead to the dot, while the (sec-
ond) dot electron moves out of the way by hopping to the cavity
(see Fig. 9). Note that, in making use of exact molecular states,
our description includes processes to lowest order in the cou-
pling to the leads and all orders in the coupling � between the
dot and the cavity and thus goes beyond the cotunneling result.

Next, we focus on the transport signatures at a fixed dot
level εd when tuning the source (μL) and cavity level εc (see
Fig. 9). We place the dot level into the blockaded position
εd ≈ −U/2 at zero bias μL = 0 with one electron on the dot.

Figure 9 then shows the Coulomb blockaded region between
two subsequent Coulomb peaks. As the dot couples to the right
lead directly via tR, the dotlike molecular resonances appear as
bright horizontal features whenever a dot level is aligned with
the left lead at finite bias μL. The weak (diagonal) features
are associated with the cavitylike molecular levels and appear
whenever a cavity level enters/leaves the bias window between
μL and μR. These molecular resonances involve little, ∝�2,
spectral weight on the dot and hence are largely suppressed
[see the weak transport features in Fig. 9(a)]. Increasing the
coupling �, the singlet gap 12�2/U in the molecular spectrum
and the spectral weight on the dot increase; this manifests
itself in the transport as an increased intensity and splitting of
the molecular features [see Figs. 9(b) and 9(c)]. All transport
signatures, except for the Kondo resonance at zero source
bias, compare well with the experimental findings shown in
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Figs. 9(f) and 9(g). The observed splitting of the cavity level
confirms that the transport across the device involves the spin-
coherent dot-cavity singlet.

In the above discussion, we have treated the dot-cavity
system as a single artificial molecule and have analyzed
the transport as sequential tunneling from the left lead via
the artificial molecule to the right lead. Alternatively, we
can formulate the transport via the dot-cavity system as a
cotunneling process involving two electrons and the dot and
cavity as two separate entities. The jump from the left lead to
the cavity (and subsequently to the right lead) then involves
the dot in a virtual process which contributes a factor ∝�2

[see Fig. 9(d)]. This process is turned on/off as the cavity
level enters/leaves the bias window. In Fig. 9(e), we show
the same process at large coupling, where the cavity level
is split by the presence of the dot, resulting in two closeby
cotunneling features separated by the singlet gap 12�2/U .
We call this process a cavity-assisted cotunneling process,
where the virtual hop through the dot is helped by the presence
of the cavity by providing a large final density of states.
Note that (i) in Ref. [41], we have shown that such cavity-
assisted cotunneling processes provide further spectroscopic
information on the dot. (ii) Within the cotunneling picture, we
have to artificially account for the cavity-level splitting. On the
contrary, the discussion based on the molecular picture relies
on the exact solution of the dot-cavity problem; this includes
all orders of tunneling (�) between the dot and the cavity and
thus provides us with the proper level splitting.

The experimental data in Fig. 9(g) exhibit an additional
zero-bias peak due to the Kondo effect. This Kondo resonance
is due to a singlet formation between the dot and the leads and is
broken up by the dot-cavity molecular singlet when the cavity
is tuned across the equilibrium chemical potential. The switch-
ing between a many-body Kondo- and a dot-cavity molecular
singlet is one of the outstanding results of Ref. [23]; its
theoretical understanding will be developed in the next section.

VI. EQUATION OF MOTION

To analyze the competition between Kondo physics and
dot-cavity hybridization, we make use of an equation-of-
motion (EOM) technique [33] and focus on the equilibrium
linear-response properties. The EOM method is ubiquitous
in the discussion of quantum-dot physics described by the
Anderson impurity model [44–49]; it provides us with the dot
Green’s function Gσ (ω), from which we obtain the conduc-
tance G0 of the device through a modified Meir-Wingreen
formula [50] as discussed in Appendix C for the limit of finite
but small temperatures T 	 �. In this limit, we recover the
standard expression [49,50]

G0 = −e2

h
�̃(εF)

∑
σ

2 Im Gσ (εF), (25)

with the rate �̃ derived in Appendix C:

�̃(εF) = �

2

1 + β

2 + β
, β = 2

�c

�

�2

ε2
c + �2

c /4
. (26)

Here, we have considered a minimal situation with a single-
cavity level and �R = �L = �/2; the rate (26) is then bounded
by �/4 < �̃ < �/2. Aligning the cavity with the Fermi level,

we have εc = 0 and tuning � from weak to strong coupling,
the parameter β changes from a small value to one above
unity. The strong coupling is exemplified in Fig. 9(g), where
the competition between Kondo and molecular singlets is
prominent.

The following discussion makes use of Hamiltonian (3) in
the compact notation:

H =
∑

σ

εdd
†
σ dσ + Un↑n↓

+
∑
k,σ

εkc
†
kσ ckσ +

∑
k,σ

(tkd
†
σ ckσ + H.c.), (27)

where tk encodes all tunnelings to and from the dot; Fano-type
interference effects have to be excluded as discussed in Sec. III.
In Appendix E, we show that within our EOM analysis, the
Hamiltonian (27) is equivalent to H̄ [see Eq. (8) and Fig. 3(b)].
When using the Hamiltonian (27), the couplings tL, �, and tR

are accounted for in the same order.

A. Formalism and lowest-order approximation

For completeness, we provide a brief overview of the
equation-of-motion method leading to the dot Green’s function
Gσ and highlight the physical implications of the different
truncation schemes (see Refs. [46–49] and Appendix D for
more details). We start with the retarded thermal Green’s
functions of the dot

Gσ = −i lim
η→0+

∫ ∞

−∞
dt �(t)〈{dσ (t),d†

σ (0)}〉ei(ω+iη)t , (28)

where 〈. . . 〉 denotes the finite-temperature quantum-statistical
average and � is the Heaviside function. The equation of
motion for the (retarded) Green’s function Gσ generates an
infinite hierarchy of additional equations for higher-order
Green’s functions including lead electrons. It is convenient
to introduce the Zubarev notation [51] (with A and B two
fermionic operators)

〈〈A; B〉〉z = ∓i lim
η→0+

∫ ∞

−∞
dt �(±t)〈{A(t),B(0)}〉ei(ω±iη)t ,

(29)

with the shorthand z = ω ± iη for the complex frequency; we
will suppress this subscript from now on. The EOMs for such
Green’s functions are found by taking time derivatives and
transforming to frequency space,

z〈〈A; B〉〉 = 〈{A,B}〉 + 〈〈[A,H ]; B〉〉
= 〈{A,B}〉 − 〈〈A; [B,H ]〉〉, (30)

where ({·,·}) [·,·] denote usual (anti)commutators. Applying
these equations to the dot Green’s function and the dot-lead
correlator 〈〈ckσ ; d†

σ 〉〉, and eliminating the latter, we obtain [33]
(σ̄ and σ denote complementary spins)

Gσ (z) ≡ 〈〈dσ ; d†
σ 〉〉 = 1 + U 〈〈nσ̄ dσ ; d†

σ 〉〉
z − εd − �(z)

, (31)
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where the dot-lead correlator gives rise to the network self-
energy (see Appendix E)

�(ω ± iη) = ∓i
�L + �R

2
+ |�|2

ω − εc ± i�c/2
. (32)

The noninteracting limit U = 0 of Eq. (31) provides us with
a Lorentzian spectrum centered around the (spin-degenerate)
dot level εd. At finite U , we first truncate at the level of the four-
point Green’s function in (31); using a cumulant expansion,
we obtain

〈〈nσ̄ dσ ; d†
σ 〉〉 ≈ 〈nσ̄ 〉〈〈dσ ; d†

σ 〉〉 (33)

(see Refs. [47–49,52] and Appendix D for details). This
truncation is O(t0) and provides a shift U 〈nσ̄ 〉 in the dot
level depending on its filling. We must therefore replace
εd → εd + U 〈nσ̄ 〉 in the U = 0 Green’s function. To calculate
the occupation on the dot, we can use the spectral theorem

〈nσ̄ 〉 = i

2π

∮
dz nF(z)Gσ (z), (34)

where the integration contour runs clockwise around the real
axis with the advanced Green’s function (Ga

σ = G∗
σ ) in the

lower half of the complex plane. As we work at equilibrium
with V = 0, the same Fermi-Dirac distribution nF(ω) applies
to all the leads. Combining the results for Gσ and 〈nσ̄ 〉 self-
consistently, the conductance G0(εd) then exhibits Lorentzian
peaks [33] around εd = 0 and −U .

B. Lacroix and further truncation schemes

Proceeding with the next order, the equation of motion for
the four-point Green’s function in (31) takes the form

(z − εd − U )〈〈nσ̄ dσ ; d†
σ 〉〉

= 〈nσ̄ 〉 +
∑

k

[tk〈〈nσ̄ ckσ ; d†
σ 〉〉

+ tk〈〈d†
σ̄ ckσ̄ dσ ; d†

σ 〉〉 − t∗k 〈〈c†kσ̄ dσ̄ dσ ; d†
σ 〉〉] (35)

and introduces three new correlators involving a lead state kσ

or kσ̄ . The second term tk〈〈d†
σ̄ ckσ̄ dσ ; d†

σ 〉〉 in the sum describes
a spin exchange between the dot and a lead electron involving
a tunneling process and is the basic process responsible for the
Kondo resonance. Truncating the EOM at this O(t) level is
not sufficient to capture the Kondo effect, as the last two terms
cancel (see Appendix D). Nonetheless, it is instructive to note
that the corresponding dot Green’s function

Gσ (z) = 1 − 〈nσ̄ 〉
z − εd − �(z)

(
1 + U〈nσ̄ 〉

z−(εd+U )

) (36)

+ 〈nσ̄ 〉
z − (εd + U ) − �(z)

(
1 − U (1−〈nσ̄ 〉)

z−εd

) (37)

now shows two split Lorentzians as a function of z, one
centered around εd and the other around εd + U , respectively.
Proceeding with the equations of motion for the three
four-point Green’s functions including a lead electron and
truncating at order O(t2), i.e., using the Lacroix truncation
[44,45,47], one arrives at the relations

∑
k

tk〈〈nσ̄ ckσ ; d†
σ 〉〉 = 〈〈nσ̄ dσ ; d†

σ 〉〉�(z), (38)

∑
k

tk〈〈d†
σ̄ ckσ̄ dσ ; d†

σ 〉〉 = 〈〈nσ̄ dσ ; d†
σ 〉〉�(z) + [1 + �(z)Gσ (z)]Pσ̄ (z) − Gσ (z)Qσ̄ (z), (39)

−
∑

k

t∗k 〈〈c†kσ̄ dσ̄ dσ ; d†
σ 〉〉 = −〈〈nσ̄ dσ ; d†

σ 〉〉�(z2) + [1 + �(z)Gσ (z)]Pσ̄ (z2) + Gσ (z)Qσ̄ (z2), (40)

with the shifted variable

z2 = 2εd + U − z. (41)

Equations (38)–(40) express the various dot-lead correlators in terms of the four-point dot correlator 〈〈nσ̄ dσ ; d†
σ 〉〉, the dot Green’s

function Gσ , and self-energy �, as well as the two new functions [47]

Pσ (z) ≡
∑

k

tk〈d†
σ ckσ 〉

z − εk

= Fσz[G], (42)

Qσ (z) ≡
∑
kk′

tk′ t∗k 〈c†kσ ck′σ 〉
z − ε′

k

= Fσz[1 + �G]. (43)

The last equalities describe the functions Pσ (z) and Qσ (z) in terms of an integral over the dot Green’s function Gσ (see Ref. [47]
and Appendix D), e.g.,

Fσz[G] ≡ i

2π

∮
C

dz′nF(z
′)Gσ (z′)

�(z′) − �(z)

z − z′ , (44)

and similar forFσz[1 + �G]. Note that 〈d†
σ ckσ 〉 and 〈c†kσ ck′σ 〉 relate to 〈〈dσ ; d†

σ 〉〉 = Gσ via the spectral theorem and the equations
of motion. Combining the equations (31), (35), and (38)–(40), the final expression for the dot Green’s function is [47]

Gσ (z) = g−1
2 (z) + 〈nσ 〉U + [Pσ̄ (z) + Pσ̄ (z2)] U

g−1
2 (z) g−1(z) − [Pσ̄ (z) + Pσ̄ (z2)] U �(z) + [Qσ̄ (z) − Qσ̄ (z2)] U

, (45)
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where we have introduced the characteristic functions

g−1(z) = [z − εd − �(z)], (46)

g−1
2 (z) = [z − (εd + U ) − 2�(z) + �(z2)], (47)

that define the poles associated with the two dot levels
separated by U . The set of equations (42), (43), and (45) can
be solved numerically for a self-consistent solution providing
the dot’s Green’s function Gσ , from which the conductance
at the Fermi energy follows through the Meir-Wingreen [50]
formula (25).

Before discussing the result, we analyze the various features
in the Green’s function (45) at the positions z = εd,0,2εd +
U,εd + U (see the dashed green line in Fig. 10). The functions
g−1(z) and g−1

2 (z) account for the Lorentzian-shaped dot levels
at εd and εd + U . The functions P (z) and Q(z) contribute
additional divergences (at T = 0) at the Fermi level z = εF = 0
and thus give rise to the Kondo unit conductance. On the
other hand, at z = 2εd + U (z2 = 0) it is P (z2) and Q(z2) that
diverge and we obtain an unphysical negative conductance, a
well-known artifact of the Lacroix truncation scheme [47].
Away from the particle-hole symmetric point, these two
divergences appear in separate points (z2 �= −z) as illustrated
in Fig. 10. Tuning towards the particle-hole symmetric point,
the two divergences interfere and the Kondo peak vanishes.

There are several approaches that allow to cure the anomaly
appearing at z2 = 0, among them higher truncation schemes
[48,53,54] or numerical methods [55–58]. One possibility is
to replace the self-consistent determination of Qσ in Eq. (43)
by a predetermined function of � [53] within a generalized
Lacroix scheme. A step beyond the Lacroix scheme that avoids
the anomaly at z2 = 0 while keeping the Kondo peak at z = 0
is adopting a so-called O(t4) decoupling method [48,54];
this provides expressions for the self-energies associated
with the four-point functions 〈〈d†

σ̄ ckσ̄ dσ ; d†
σ 〉〉 (Kondo) and

〈〈c†kσ̄ dσ̄ dσ ; d†
σ 〉〉 (anomaly). One then finds [48,49] that the

self-energy for the spin-flip excitations responsible for the
Kondo effect vanishes in the Coulomb blockade region;
the resulting excitations are long lived and contribute to the
transport. On the contrary, the excitations at z2 = 0 have finite
self-energies; they are short lived and do not contribute to
transport. A precise numerical approach makes use of the
renormalization group and has been used in various embedded
impurity systems [55,56], in the Kondo-box problem [25], and
most recently for the present experiment [59] using a model
Hamiltonian different from ours, i.e., without removing the
Fano interference term (see Fig. 4), and a sharp Kondo peak
surviving at all values of cavity energies, at variance with
the experimental findings and our results presented below.
Here, we choose to keep the Lacroix truncation scheme
and stay away from the dangerous particle-hole symmetric
point. Furthermore, we invoke Fermi-liquid arguments [60] to
confirm the validity of our findings.

C. Results

The above EOM method describes Kondo physics and can
be applied directly to our dot-cavity-leads system as the cavity
appears only within the definition of the network self-energy

0.4−0.4

0.05−0.05

ω/U

−
Γ
Im

G
σ

−
Γ
Im

G
σ

0

0

ω/U

0

0.5

1.0

1.5

0

0.5

1.0

1.5

(a)

(b)

FIG. 10. Dot density of states ImGσ obtained through the EOM
method versus energy ω/U . The dashed green line shows the density
of states in the dot without a cavity as a function of energy for
2�L = 2�R = 5�c = � = U/10 and in the Coulomb blockade regime
with εd = −2U/5 as calculated self-consistently using (45) at a
temperature T 	 TK. We find the expected Coulomb resonances at
ω/U = − 2

5 , 3
5 in (a) and a sharp Kondo resonance at the Fermi

energy ω = 0 The negative peak at ω = 2εd + U = U/5 is an artifact
of the Lacroix truncation. The solid blue line shows the same
dot configuration with the dot coupled to a cavity with a strength
� = � = 0.1U and the single-cavity level εc = 0 tuned to the Fermi
energy. Outside the region marked by the thin vertical dashed lines
(a) the features remain essentially unchanged. The lower plot (b)
shows an enlargement of the area around the Fermi energy. A finite
coupling to the cavity suppresses the Kondo peak and establishes a
pair of molecular resonances separated by 12α�2/U [see Eq. (53)].

� (see Appendix E). To obtain the transport features, we must
solve Eqs. (42), (43), and (45) self-consistently. This can be
done numerically or, in principle, in the zero-temperature limit
analytically. Here, we shortly comment on the T = 0 analytic
approach that provides us with a useful upper bound on the
conductance that turns exact in the limits εc → 0,∞ for εd =
−U/2. However, this method is unsuitable in describing a
situation with a nontrivial self-energy �(ω) as is the case for
our dot-cavity setup. We therefore resort to a self-consistent
numerical analysis and find that the results properly explain the
changeover from Kondo to molecular singlet, thus providing
insights beyond the master-equation method in Sec. V.

In the zero-temperature limit, following Ref. [47], we can
isolate the divergent terms in the numerator and denominator
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of Gσ close to the Fermi energy z = εF and obtain

Gσ (0) = lim
z→0

1

Qσ̄ (z)/Pσ̄ (z) − �(z)
. (48)

Expanding the functional (44) around ω = 0 at T = 0 and
canceling diverging contributions, we find that

Gσ (0) = 1

1/G∗
σ (0) − � + �∗ , (49)

from which follows the relation ImG−1
σ (0) = −Im�(0), i.e.,

ImG−1
σ (0) is given by the network self-energy. This is the first

of a set of Fermi-liquid relations [60] and is respected by
the EOM in the Lacroix truncation scheme. However, using
this scheme, we have no direct handle on ReG−1

σ (0) at zero
temperature. Commonly, one constrains the real part of the
inverse Green’s function using Friedel’s sum rule [60]

ReG−1
σ (0) = [Im�(0)] cot(πñσ ), (50)

ñσ − 〈nσ 〉 ≡ γ = 1

π
Im

∫
dω nF(ω)

∂�(ω)

∂ω
Gσ (ω). (51)

Equation (50) is the second of two Fermi-liquid relations and
is violated in the Lacroix truncation of the EOM method.

For unstructured leads with a constant self-energy, one
finds that γ = 0; furthermore, 〈nσ 〉 = 1

2 for a half-filled dot
in Coulomb blockade and hence the real part ReG−1

σ (0) = 0
vanishes. As a result, the conductance of the system at zero
temperature assumes its maximal value [47] G0 = 2e2/h̄. For
the structured lead, the parameter γ must be evaluated using
the (self-consistent) solution for the Green’s function Gσ (ω).
Furthermore, the occupation of the dot 〈nσ 〉 may deviate from
1
2 when the network self-energy � is not symmetric around
the Fermi energy and must be calculated as well. However,
the conductance obtained by setting ñ = 1

2 defines an upper
bound on the conductance that can be shown [61] to become
a very good approximation to the exact result around εc = 0.
In the following, we make use of a numerical self-consistent
solution of Eqs. (42)–(45) and use the Fermi-liquid relations
at εc = 0 to substantiate our numerical EOM results.

The functions Pσ (z) and Qσ (z) in (45) depend themselves
on the dot’s Green’s function Gσ (z), such that we have
to solve (45) via an iterative approach. In our numerical
solution, we take account of one cavity mode and make use
of the self-energy �(z) as given by (32). We initiate the
iteration with a Green’s function that is peaked around the
two Coulomb resonances εd < 0 and εd + U > 0 and proceed
until convergence is achieved. The discretization of energies
around z = 0 and z2 = 0 must be sufficiently fine on the level
of the Kondo temperature [62] TK, which sets the width of the
Kondo peak at z = 0. The green dashed line in Fig. 10 shows
the standard dot-lead result (i.e., � = 0) for the dot spectral
function −ImGσ (z) away from the dot particle-hole symmetric
point, i.e., εd �= −U/2. In this regime, the Lacroix truncation
works well, and the Kondo peak at ω = 0 is framed by the
Coulomb resonances at ω = εd and εd + U with εd = −2U/5
in Fig. 10. The width of the Coulomb resonances is set by
�/2 = U/20 (we choose �/2 = �L = �R), while in the present
approximation the width of the Kondo peak is given by the

Kondo temperature [47–49]

TK = (2εd + U ) exp

[
2πεd(εd + U )

�U

]
, (52)

which underestimates the true width1 (note that εd <0<εd+
U ).

The blue solid line (Fig. 10) shows the same result in the
presence of a cavity (i.e., � �= 0) at εc = 0: the Kondo peak
has vanished, giving way to two molecular states separated by
12α�2/U , where the enhancement

α = 1

1 − (1 + 2εd/U )2
(53)

accounts for deviation from the dot’s particle-hole symmetric
point (εd �= −U/2) (see Appendix A for details).

Such a changeover from a dot-lead (Kondo) to a dot-cavity
(molecular) singlet has been observed in the experiment [see
Fig. 9(g)] [but fails to show up in Figs. 9(a)–9(c) derived
within a master-equation analysis]. In Fig. 11, we study this
competition systematically using the results of our EOM
analysis. In Fig. 11(a), we show the conductance at vanishing
temperature T 	 TK as a function of the cavity level εc,
corresponding to the green dashed line in Fig. 7(b). As the
cavity level εc approaches εF, the formation of the molecular
state suppresses the Kondo resonance peak; the latter reappears
when the split cavity levels have crossed εF, resulting in a
depression of the Kondo peak over a distance ∼�2/U . As the
coupling � is decreased, the region where the Kondo peak is
suppressed shrinks and vanishes in the limit � → 0.

As discussed above, Fermi-liquid theory provides us with
an upper bound on the conductance that approximates well
the true result at εc = 0, i.e., at maximal depression. The
crosses in Fig. 11 marking these Fermi-liquid bounds nearly
coincide with the numerical results away from small couplings
�/U > 0.01, indicating that corrections by the leads become
perturbative when the cavity becomes resonant and the dot-
cavity singlet is formed. At small coupling �/U or at large
cavity detuning εc, the violation of the Friedel sum rule by the
EOM method becomes apparent as the conductance does not
reach the unitary value 2e2/h̄.

In Fig. 11(b), we keep the large dot-cavity coupling � from
Fig. 11(a) and increase the temperature T instead. Again,
the Kondo resonance is suppressed, while the singlet gap
stays constant. As a result, the split cavity levels manifest
themselves as pronounced cotunneling resonances. Choosing
a configuration away from the particle-hole symmetric point
results in an asymmetry between the two conductance peaks.
The result of our equation-of-motion analysis is then in good
agreement with the experimental data measured along the
red dashed line in Fig. 9(g). Note the different widths of
the conductance peaks along the source bias direction, the
narrow Kondo peak of width TK versus molecular singlet peaks
extending over a region �c.

1The expression for the exact Kondo temperature T ex
K = (U�/4)1/2

exp[πεd(εd+U )/(�U )] can be found in Ref. [62] along with its
derivation.
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FIG. 11. Equilibrium conductance G0 as a function of cavity-
level position εc/U , corresponding to the green dashed line in
Fig. 7(b) but for different couplings �/U and temperatures T/TK,
with 2�L = 2�R = 5�c = � = U/10 and εd/U = − 2

5 . In (a), we
show the conductance for very low temperatures T 	 TK and
different coupling strengths �. The cavity suppresses the Kondo
dot-lead singlet as the dot-cavity coupling is increased. The crosses
correspond to the upper bounds given by the Fermi-liquid theory
[60] and become exact in the limit where εd = −U/2 [61]. In (b),
we plot the strong-coupling � = 0.1 U , low-temperature transport
[dark blue line in (a) and (b)] and the transport for the same coupling
but at a temperature much larger than TK (green line). We observe
the disappearance of the Kondo conductance for a detuned cavity
level εc �= 0. This unveils the cavity-assisted cotunneling features as
the split cavity levels pass the Fermi level at εc ± 6α�2/U = 0 [see
Eq. (53)] (only one level shown here).

The combination of exact-diagonalization, master-
equation, equation-of-motion, and Fermi-liquid-theory anal-
yses therefore provides us with a complete and consistent
understanding of transport across the dot-cavity system that
is in agreement with the experimental findings. As a result,
we conclude that the electrons in the dot-cavity hybrid indeed
form an extended molecular singlet state that competes with
the many-body Kondo singlet.

VII. SUMMARY AND OUTLOOK

Novel types of mesoscopic setups motivated, among
other, by the prospects of quantum computing, combine
various geometrical structures, including quantum channels,
(multiple) dots, corrals, and cavities. Such structures define
elementary building blocks of quantum engineering that can be
combined into complex devices with specific functionalities.
The coherent operation and coupling of these elements is a
mandatory requirement for the operation of such devices. With
the experiment in Ref. [23], an important step has been made in
demonstrating spin-coherent operation of an electronic device
involving a quantum dot coupled to an extended cavity of
micrometer scale for the first time. This paper contributes a
careful theoretical analysis of this experiment.

In our study, we first translated the experimental setup
into a theoretical model. We have analyzed the single-particle
transport properties of a cavity with electronic injection
through a quantum point contact using the numerical package
KWANT [29] (see Fig. 1). Combining our numerical findings
with analytic results for the eigenstates of semicircular disks
(Fig. 2) has led us to specific design principles for a cavity with
separated sharp levels that are strongly coupled to the quantum
point contact (see Fig. 3). The same methodology can serve
as a test bed for a rapid and inexpensive optimization of new
cavity designs, e.g., cavities connecting several quantum dots,
thereby serving as a bus for the information transfer between
qubits. In a subsequent step, we have constructed a model
Hamiltonian that combines the single-particle properties of
the cavity with the interacting physics of a quantum dot,
thus defining an asymmetric artificial molecule, that is further
coupled to leads in order to reproduce the transport geometry
of the experimental setup [see Fig. 3(b)]. In constructing
this model Hamiltonian, care has to be taken to avoid the
appearance of Fano interference terms [34] that are not
present in the experiment; within our formulation, the absence
of such resonances is due to a phase averaging over the
two-dimensional extent of the cavity (see Fig. 4).

Next, we have analyzed this model in three stages of
increasing complexity: exact-diagonalization (ED), master-
equation (ME), and equation-of-motion (EOM) approaches.
Isolating the artificial molecule from the lead, the size of the
involved Hilbert space became tractable and we could perform
an ED study of the isolated dot-cavity system. We thus obtained
ground-state and degeneracy maps which already match well
the shape of the spectroscopic data provided by the experiment,
confirming the validity of our dot-cavity molecular setup
(see Figs. 7 and 8). In a second step, we have made use
of the ED results in a master-equation approach [36–40].
We then obtained transport signatures that reproduce all the
main features of the experiment, including the equilibrium and
nonequilibrium transport data, ground-state maps, modulated
Coulomb diamonds, and cavity-assisted cotunneling features
in the blockaded region (see Figs. 7–9), with the exception of
the zero-bias Kondo resonance. While the ME combined with
the results from ED could capture the many-body physics
of the dot-cavity system, it could not simultaneously deal
with the many-body dot-lead physics responsible for the
Kondo effect. We addressed this deficiency by applying an
equation-of-motion analysis, using the method developed in
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Refs. [47–49] enhanced by the presence of the cavity which
enters the formalism through its contribution to the network
self-energy (see Fig. 10). Once the dot Green’s function
has been found, the transport features could be calculated
with the help of the Meir-Wingreen formula [50], finally
allowing us to analyze the changeover from the Kondo dot-lead
to the molecular dot-cavity singlet (see Fig. 11), and thus
theoretically substantiating the main experimental claim of
Ref. [23], the observation of spin-coherent transport across an
extended quantum engineered system.

The setup discussed in this paper and further extensions
thereof provide great opportunities for future research. Exam-
ples within the present dot-cavity system are the dependence
of the molecular- to Kondo-singlet transition on disorder,
magnetic field, or the level spacing in the cavity. On the
theory side, it would be interesting to apply further, systematic
methods to this problem such as the renormalization group
(NRG and DMRG) [55–58] and the Bethe ansatz [63–65].
Most importantly, the ability to combine different functional
elements opens the door for new designs and experiments.
For example, it seems possible to use an electronic cavity
as a “quantum bus” which connects distant qubits, allowing
them to exchange quantum information through fully coherent
operation. Another proposal is the study of two distant dots
fused into an artificial molecule via a cavity. Such a device
would give access to interesting Kondo physics involving a
competition between several dots and leads, in particular, a
superposition of two (macroscopic) Kondo clouds that may
define a Kondo cat state.
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APPENDIX A: EXACT DIAGONALIZATION

To perform exact diagonalization for our dot-cavity system,
we choose for each Fock space with particle numbers N =
(N↑,N↓)σ a basis{

|n↑
d ,n

↓
d ,m

↑
0 ,m

↓
0 ,m

↑
1 ,m

↓
1 , . . .〉

∣∣∣∣nσ
d +

∑
j

mσ
j = Nσ

}
. (A1)

Expressing the Hamiltonian Hdc (16) in this basis, we obtain
a matrix H N

dc. The diagonalization of this matrix provides us
with the eigenenergies εα

N↑,N↓ and the eigenstates

∣∣ψα
N↑,N↓

〉 =
∑

nσ
d +∑

j mσ
j =Nσ

Cα

n
↑
d ,n

↓
d ,m

↑
0 ,m

↓
0 ,m

↑
1 ,m

↓
1 ,...

× |n↑
d ,n

↓
d ,m

↑
0 ,m

↓
0 ,m

↑
1 ,m

↓
1 , . . .〉. (A2)

As an example, we consider the case of a dot with a single level
at εd and onsite interaction U , coupled via � to a single-cavity
mode at εc. This case includes up to four particles and the basis

vectors for the different Fock sectors are

{|0,0,0,0〉}, (A3)

{|1,0,0,0〉,|0,0,1,0〉,|0,1,0,0〉,|0,0,0,1〉}, (A4){
|1,1,0,0〉, 1√

2
(|1,0,0,1〉 + |0,1,1,0〉),|0,0,1,1〉,

1√
2

(|1,0,0,1〉 − |0,1,1,0〉),|1,0,1,0〉,|0,1,0,1〉
}
, (A5)

{|1,1,1,0〉,|1,0,1,1〉,|1,1,0,1〉,|0,1,1,1〉}, (A6)

{|1,1,1,1〉}, (A7)

where we introduced a rotation in the two-particle Fock sector
which simplifies the corresponding Hamiltonian. In this basis,
the Hamiltonians become

H 0 = (0), (A8)

H 1 =
(

εd �

�∗ εc

)
⊗

(
1 0
0 1

)
, (A9)

H 2 =

⎛
⎜⎜⎜⎝

2εd + U
√

2� 0 0√
2�∗ εd + εc

√
2� 0

0
√

2�∗ 2εc 0

0 0 0 (εc + εd)13

⎞
⎟⎟⎟⎠, (A10)

H 3 =
(

2εd + U + εc �

�∗ εd + 2εc

)
⊗

(
1 0
0 1

)
, (A11)

H 4 = (2εd + 2εc + U ), (A12)

where we have maintained the ordering from the basis states
above and 13 is the identity matrix in three dimensions such
that H 2 spans the six-dimensional basis of the two-particle
Fock sector. The gap opens in the Coulomb blockade region
where the two-particle Fock sector ground state has a lower
energy than the ground state of the one- and three-particle
Fock sectors (see Fig. 6). In the region of interest |εc| 	 U ,
εd ≈ −U/2, we can expand the ground-state energies of the
one-, two-, and three-particle Fock sectors in � and εc to obtain

ε1
1 ≈ εd − 2

|�|2
U

1

1 − δph

, (A13)

ε1
2 ≈ εd − 8

|�|2
U

1

1 − δ2
ph

+ εc, (A14)

ε1
3 ≈ εd − 2

|�|2
U

1

1 + δph

+ 2εc, (A15)

where δph = 1 + 2εd/U is the parameter which quantifies how
far away from the particle-hole symmetric point δph = 0 the
dot is set. We then solve for the cavity-level position where the
different Fock sectors are degenerate and obtain the conditions

ε±
c = ±6|�|2

U

(
1 ± δph/3

1 − δ2
ph

)
(A16)

for the one- and two-particle, and the two- and three-particle
Fock sectors being degenerate, respectively. This leads to
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the minimal hybridization gap 12|�|2/U in the ground-
state map. This gap diverges around the points εd = 0,U

where the coupling � is no longer small compared to the
energy difference between the basis states and the above
nondegenerate perturbative approach is no longer valid. In this
configuration, one obtains a gap of order �, the usual result of
degenerate perturbation theory. We use the procedure outlined
above to create the Hamiltonian matrices for larger systems
and then diagonalize them numerically. We thus produce the
eigenstates that we use to produce ground-state maps (Sec. IV)
and that enter in the master equation (Sec. V).

APPENDIX B: MASTER-EQUATION APPROACH

The crucial ingredient of the master-equation approach are
the rates (20) and (21) which we will derive in the following.
The sequential tunneling transition rates W

α,α′
N,N′ from a state

|ψα′
N′ 〉 to state |ψα

N〉 are given by Fermi’s golden rule [33]

W
α,α′
N,N′ = 2π

h̄

∑
f,i

∣∣〈ψα
N,ϕf |H̄tun|ψα′

N′ ,ϕi

〉∣∣2
Wiδ(Ef − Ei),

(B1)

with the notation |ψ,ϕ〉 = |ψ〉 ⊗ |ϕ〉, where |ϕi〉 and |ϕf 〉
represent the initial and final lead states, Wi is the probability
for the lead to be in state |ϕi〉, and Ei and Ef correspond to the
initial and final energies of the lead and molecular states. The
tunneling Hamiltonian (11) consists of three parts: tunneling
between the dot and the left lead, between the dot and the
right lead, and between the cavity to the right lead. All of
these processes have to be treated incoherently as discussed in
Sec. III, thus giving rise to the rates

W
α,α′
N,N′ = W

dLα,α′
N,N′ + W

dRα,α′
N,N′ + W

cRα,α′
N,N′ , (B2)

where each term is given by an expression of the form
of Eq. (B1) with the corresponding part of the tunneling
Hamiltonian [see Eq. (11)]. The sequential tunneling rates
only change the molecular occupation by one electron, i.e.,
W

α,α′
N±eσ ,N �= 0. For the rates, where the molecular occupation

is increased from the left lead, the initial and final lead states
differ by one electron in the left lead, i.e., |ϕf 〉 = ∑

l clσ |ϕi〉.
Summing over all initial lead states, we obtain

W
dLα,α′
N+eσ ,N = 2π

h̄

∑
l

∣∣〈ψα
N+eσ

|tLd
†
σ |ψα′

N

〉∣∣2

× nF(εl − μL)δ
(
εα

N+eσ
− εl − εα′

N

)
= �L

h̄

∣∣〈ψα
N+eσ

|d†
σ |ψα′

N

〉∣∣2
nF

(
εα

N+eσ
− εα′

N − μL

)
, (B3)

where we used
∑

i〈ϕi |c†lσ clσ |ϕi〉Wi = nF(εl − μL), replaced∑
l → ∫

dεlρL, and made use of the definition of the rate �L =
2πρL|tL|2. The rate W

dRα,α′
N+eσ ,N follows analogously by replacing

L → R in the expression above. The derivation of the rate

W
cRα,α′
N+eσ ,N follows the same arguments and the result is given by

W
cRα,α′
N+eσ ,N = �c

h̄

∣∣∣∣∣∣
〈
ψα

N+eσ

∣∣∑
j

f
†
jσ

∣∣ψα′
N

〉∣∣∣∣∣∣
2

nF(ε
α
N+eσ

− εα′
N − μR)

≈ �c

h̄

∑
j

∣∣〈ψα
N+eσ

∣∣f †
jσ

∣∣ψα′
N

〉∣∣2
nF

(
εα

N+eσ
− εα′

N − μR

)
.

(B4)

In the last step, we used the fact that the cavity-level spacing
is large on the scale of temperature T ; in this situation, inter-
ference terms involving different cavity levels are suppressed
and we sum these processes incoherently. To calculate the
rates which decrease the number of electrons on the artificial
molecule, we make use of the relation

∑
i〈ϕi |clσ c

†
lσ |ϕi〉Wi =

1 − nF(εl − μL) and obtain

W da
N−eσ ,N = �a

h̄

∣∣〈ψα
N−eσ

∣∣dσ

∣∣ψα′
N

〉∣∣2[
1 − nF

(
εα′

N − εα
N−eσ

− μa

)]
,

(B5)

W cR
N−eσ ,N = �c

h̄

∑
j

∣∣〈ψα
N−eσ

∣∣fjσ

∣∣ψα′
N

〉∣∣2

× [
1 − nF

(
εα′

N − εα
N−eσ

− μR

)]
. (B6)

The rates (B3)–(B6) constitute the main building blocks of
our master-equation calculation. In determining these rates,
we can apply the exact-diagonalization results by using the
dot-cavity molecular spectrum εα

N as well as the associated
eigenstates in the calculation of matrix elements of the type
〈ψα

N+eσ
|d†

σ |ψα′
N 〉 between different Fock states. We can thus

produce the conductance maps in Figs. 7–9.

APPENDIX C: MEIR-WINGREEN FORMULA

The equation-of-motion method will provide us with the
retarded Green’s functions Gσ of the dot. We will show
here that in equilibrium and at low temperatures T 	 � this
quantity is sufficient to calculate the conductance of the device.
For a spin-independent tunneling, the Meir-Wingreen formula
for the current from the dot to a lead a = L,R is given by [50]

Ia = ie

h

∑
σ

∫
dω �a(ω)[i nF(ω − μa)ImGσ (ω)+G<

σ (ω)],

with the lesser Green’s function G<
σ to be determined with the

help of the Keldysh formalism [66]. We consider only a single-
cavity level at εc and drop the (artificial) Fano contribution to
obtain the energy-dependent rates

�L(ω) = �L, (C1)

�R(ω) = �R + �c
|�|2

(εc − ω)2 + �2
c /4

. (C2)

Employing the symmetrization procedure of Ref. [50], we can
rewrite the current through the dot in the form (we use that
IL = −IR)

I = IR�L − IL�R(εF)

�L + �R(εF)
. (C3)
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The contribution to the current I is limited to an energy
window of extension T around the Fermi energy εF. Limiting
ourselves to temperatures smaller than the tunneling rates
divided be the derivative of the tunneling rates with respect
to the energy T ∂ω�R 	 �R, the tunneling rate to the right
lead is effectively constant, �R(ω) ≈ �R(εF = 0), and the
symmetrization procedure of Ref. [50] can be carried through.
As a result, we obtain an expression for the current that no
longer depends on G<,

I ≈ 2e

h
�̃

∑
σ

∫
dω[nF(ω−μL) − nF(ω−μR)]ImGσ (ω),

(C4)

with the rate

�̃ = �L�R(εF)

�L + �R(εF)
. (C5)

Differentiating with respect to the bias voltage V = −μL/e

and taking the equilibrium limit, we arrive at a formula which
relates the conductance to the retarded Green’s function of the
dot

G0 = lim
V →0

dI

dV
≈ −2e2

h
�̃

∑
σ

∫
dω

β ImGσ (ω)

4 cosh2 βω

2

. (C6)

Combining this result with the equation-of-motion method
described in Sec. VI, we can determine the conductance of the
device including the Kondo effect.

APPENDIX D: EQUATION-OF-MOTION METHOD

In this appendix, we discuss some more technical aspects
of the equation-of-motion method as found in the literature
[47–49]. We start with the equations of motion for the required
correlators and their truncation and then add some explanations
on the derivation of the integral representations of the P and
Q functions [Eqs. (42) and (43)].

Taking time derivatives on successive Green’s functions,
we obtain the following sets of equations of motion (after
transformation to frequency space): the dot Green’s function
〈〈dσ ; d†

σ 〉〉,
(z − ed)〈〈dσ ; d†

σ 〉〉 = 1 +
∑

k

tk〈〈ckσ ; d†
d〉〉 + U 〈〈nσ̄ dσ ; d†

σ 〉〉,

(D1)

couples to the two-point correlator involving a lead electron

(z − εk)〈〈ckσ ; d†
d〉〉 = t∗k 〈〈dσ ; d†

σ 〉〉, (D2)

and to the four-point correlator with an additional particle on
the dot

(z − εd − U )〈〈nσ̄ dσ ; d†
σ 〉〉 = 〈nσ̄ 〉 +

∑
k

[tk〈〈nσ̄ ckσ ; d†
σ 〉〉 + tk〈〈d†

σ̄ ckσ̄ dσ ; d†
σ 〉〉 − t∗k 〈〈c†kσ̄ dσ̄ dσ ; d†

σ 〉〉]. (D3)

The latter couples to further four-point correlators involving lead electrons,

(z − εk)〈〈nσ̄ ckσ ; d†
σ 〉〉 = t∗k 〈〈nσ̄ dσ ; d†

σ 〉〉 +
∑
k′

[tk′ 〈〈d†
σ̄ ck′σ̄ ckσ ; d†

σ 〉〉 − t∗k′ 〈〈c†k′σ̄ dσ̄ ckσ ; d†
σ 〉〉], (D4)

(z − εk)〈〈d†
σ̄ ckσ̄ dσ ; d†

σ 〉〉 = 〈d†
σ̄ ckσ̄ 〉 + t∗k 〈〈nσ̄ dσ ; d†

σ 〉〉 +
∑
k′

[tk′ 〈〈d†
σ̄ ckσ̄ ck′σ ; d†

σ 〉〉 − t∗k′ 〈〈c†k′σ̄ ckσ̄ dσ ; d†
σ 〉〉], (D5)

(z − 2εd − U + εk)〈〈c†kσ̄ dσ̄ dσ ; d†
σ 〉〉 = 〈c†kσ̄ dσ̄ 〉 − tk〈〈nσ̄ dσ ; d†

σ 〉〉 +
∑
k′

[tk′ 〈〈c†kσ̄ dσ̄ ck′σ ; d†
σ 〉〉 + tk′ 〈〈c†kσ̄ ck′σ̄ dσ ; d†

σ 〉〉]. (D6)

We truncate the sequence at the lowest level that includes
the Kondo physics we are interested in. In decoupling the
four-point correlators, we consistently decouple expressions
with the same number of lead operators. This provides us with
three truncation schemes: the mean-field zeroth-order O(t0)
truncation

〈〈nσ̄ dσ ; d†
σ 〉〉 → 〈nσ̄ 〉〈〈dσ ; d†

σ 〉〉, (D7)

the O(t) truncation

〈〈nσ̄ ckσ ; d†
σ 〉〉 → 〈nσ̄ 〉〈〈ckσ ; d†

σ 〉〉, (D8)

〈〈d†
σ̄ ckσ̄ dσ ; d†

σ 〉〉 → 〈d†
σ̄ ckσ̄ 〉〈〈dσ ; d†

σ 〉〉, (D9)

〈〈c†kσ̄ dσ̄ dσ ; d†
σ 〉〉 → 〈c†kσ̄ dσ̄ 〉〈〈dσ ; d†

σ 〉〉, (D10)

and finally the Lacroix O(t2) truncation

〈〈d†
σ̄ ckσ̄ ck′σ ; d†

σ 〉〉 → 〈d†
σ̄ ckσ̄ 〉〈〈ck′σ ; d†

σ 〉〉, (D11)

〈〈c†kσ̄ dσ̄ ck′σ ; d†
σ 〉〉 → 〈c†kσ̄ dσ̄ 〉〈〈ck′σ ; d†

σ 〉〉, (D12)

〈〈c†kσ̄ ck′σ̄ dσ ; d†
σ 〉〉 → 〈c†kσ̄ ck′σ̄ 〉〈〈dσ ; d†

σ 〉〉. (D13)

Note that all other decoupling terms vanish because the system
Hamiltonian (8) is particle and spin conserving. We use the
spectral theorem [see (34)] for general fermionic operators A

and B to find the expectation values

〈BA〉 = i

2π

∮
dz nF(z)〈〈A; B〉〉. (D14)

235431-18



LONG-RANGE SPIN COHERENCE IN A STRONGLY . . . PHYSICAL REVIEW B 96, 235431 (2017)

Combining the spectral theorem with the equations of motion
(30), we immediately find that

tk〈d†
σ̄ ckσ̄ 〉 = t∗k 〈c†kσ̄ dσ̄ 〉, (D15)

which greatly simplifies the O(t) truncation.
The functions P and Q [Eqs. (42) and (43)] can be brought

into an integral form by using the spectral theorem (D14), the
equation of motion (30), and some algebra:

Pσ (z) ≡
∑

k

tk〈d†
σ ckσ 〉

z − εk

= i

2π

∮
dz′nF(z

′)
∑

k

tk〈〈ckσ ; d†
σ 〉〉z′

z − εk

= i

2π

∮
dz′nF(z

′)Gσ (z′)
∑

k

|tk|2
(z − εk)(z′ − εk)

= i

2π

∮
dz′nF(z

′)Gσ (z′)
�(z′) − �(z)

z − z′ . (D16)

We find the analogous expression for Qσ (z),

Qσ (z) ≡
∑
kk′

tk′ t∗k 〈c†kσ ck′σ 〉
z − εk′

= i

2π

∮
dz′nF(z

′)[1 + �(z′)Gσ (z′)]
�(z′) − �(z)

z − z′ ,

(D17)

by successively applying the two versions of the EOM (30) to
the lead-lead correlator

〈〈ck′σ ; c†kσ 〉〉 = δkk′

z − εk′
+ tkt

∗
k′

(z − εk)(z − εk′)
Gσ . (D18)

When attempting to remove the spurious peak in the density
of states in Lacroix truncation scheme one has to include a
self-energy to the equation of motion (D4). This can be done
rigorously as a further expansion in t2, the so-called O(t4)
truncation, yielding the self-energies to equations (D4)–(D6);
details can be found in Refs. [48,49]. In Sec. VI we stay away
from the dot particle-hole symmetric point (εd �= −U/2) and
thus avoid the anomaly.

APPENDIX E: NETWORK SELF-ENERGY

In any equation-of-motion method accounting for the lead
states, the latter will appear explicitly only in the expression
for the network self-energy, defined as the self-energy of the
full Hamiltonian in the absence of the dot. Here, we show
that the Hamiltonian with an energy-dependent tunneling to
the right lead (3) and the Hamiltonian with discrete cavity
levels (8) give rise to the same self-energy expression and
are therefore equivalent in any truncation scheme that treats
lead states on the same footing. The derivation of the self-
energy is given in Ref. [47]. We focus first on our cavity
model given by the Hamiltonian (8) with discrete cavity levels.
We consider three independent contributions �(z) = �L(z) +
�R(z) + �cav(z), originating from the coupling to the source
and drain lead �L(z) and �R(z), and to the cavity �cav(z).
The left and right leads are automatically independent, while

the right lead and cavity contributions are treated such as not
to include artificial Fano resonances (see Sec. III). With all
microscopic quantities taken to be spin independent, so are
the self-energies. The lead self-energies are given by �α(z) =∑

k |tαk|2/(z − εk), resulting in

�α(ω ± iη) =
∫

dω′ ρα|tα|2
ω − ω′ ± iη

= ∓iπρα|tα|2

≡ ∓i�α/2, (E1)

and giving rise to an effective width (�L + �R)/2 to the level.
The cavity contribution is given by

�cav(z) =
∑
j,l

�∗
j [M−1(z)]j l�l, (E2)

with Mj l(z) = (z − ε
(j )
c )δjl − �̃jl(z) the matrix which diago-

nalizes the right lead (excluding its coupling to the dot) (see the
Appendix of Ref. [46]). Here, �̃(z) is the self-energy resulting
from the coupling of the cavity to the drain, in particular, the
diagonal elements �̃jj (ω ± iη) = ∓i�j/2 = ∓i�c/2, where
�c is the rate defined in (13), give rise to a finite width
of the cavity levels, while the off-diagonal elements �̃jl couple
the different levels. Neglecting the coupling between the levels,
�̃jl = 0, a good approximation for δc 
 �j , the inversion of
M in (E2) becomes trivial and we obtain

�cav(ω ± iη) ≈
∑

j

|�j |2
ω − ε

(j )
c ± i�j/2

. (E3)

Summing up all contributions, we obtain the network self-
energy

�(ω ± iη) ≈ ∓i(�L + �R)/2 +
∑

j

|�j |2
ω − ε

(j )
c ± i�j/2

.

(E4)

Let us shortly consider the self-energy originating from
the original model (3), where it consists of two contributions
�(z) = �L(z) + �R(z) with �α(z) = ∑

k |tαk|2/(z − εk). The
contribution from the source lead is unchanged, i.e., �L(ω ±
iη) = ∓i�L/2. For the right lead, using the energy dependent
tR(ω) given in Eq. (7), the self-energy is given by the expression

�R(z) =
∫

dω′ ρR

z − ω′

∣∣∣∣tR +
∑

j

λj

ω′ − ε
(j )
c + i�j/2

∣∣∣∣
2

. (E5)

Note that the interference of the first and second terms leads to
Fano resonances, an artifact of the effective model (0D coupled
to Fermi leads). We can easily avoid such terms by considering
instead

�R(z) =
∫

dω′ ρR

z − ω′ |tR|2

+
∫

dω′ ρR

z − ω′

∣∣∣∣∣∣
∑

j

λj

ω′ − ε
(j )
c + i�j/2

∣∣∣∣∣∣
2

, (E6)

where the first integral describes the unstructured lead, while
the second one originates from the cavity. We consider the
situation where the cavity-level separation is much larger
than their width, i.e., δc 
 �j , leading to the approximate
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expression

�R(ω ± iη) ≈
∫

dω′ ρR

ω − ω′ ± iη
|tR|2

+
∑

j

∫
dω′ ρR

ω − ω′ ± iη

∣∣∣∣ λj

ω′ − ε
(j )
c + i�j/2

∣∣∣∣
2

= ∓i�R/2 +
∑

j

2πρR|λj |2/�j

ω − ε
(j )
c ± i�j/2

. (E7)

Comparing to the result in Eq. (E4), we see that the two
expressions coincide if we relate the two models via λj =
�j tj . Hence, any EOM approach treating the cavity on the
same level as the lead states will produce the same results
for both our models. We use the self-energy derived in this
appendix along with the EOM method from Sec. VI to solve for
the Green’s function of the dot self-consistently [see Eq. (45)].
The imaginary part ImG of these Green’s functions is shown
in Fig. 10 and appears indirectly through the Meir-Wingreen
formula (see Appendix C) in Fig. 11.
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