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Edge states and spin-valley edge photocurrent in transition metal dichalcogenide monolayers
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We develop an analytical theory for edge states in monolayers of transition metal dichalcogenides based on a
general boundary condition for a two-band kp Hamiltonian in the case of uncoupled valleys. Taking into account
edge spin-orbit interaction, we reveal that edge states, in general, have linear dispersion that is determined
by three real phenomenological parameters in the boundary condition. In the absence of the edge spin-orbit
interaction, edge states are described by a single real parameter whose sign determines whether their spectra
intersect the bulk gap or not. In the former case we show that illumination by circularly polarized light results
in spin- and valley-polarized photocurrent along the edge. Flow direction and spin and valley polarization of the
edge photocurrent are determined by the direction of circular polarization of the illuminated light.
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I. INTRODUCTION

The optical properties of monolayer crystals of transition
metal dichalcogenides (TMDs; such as MoS2, MoSe2, MoTe2,
WS2, and WSe2) have recently attracted considerable interest
due to possible optoelectronic applications [1,2]. This is due to
the direct band gap of the TMD monolayers whose value cor-
responds to the visible and infrared light frequencies [3]. The
optical response of the bulk materials at the absorption edge
is dominated by excitons [4]. However, recent experiments on
second-harmonic generation at subband gap frequencies [5],
scanning tunneling microscopy and spectroscopy [6,7], and
microwave impedance microscopy [8] in MoS2 monolayers
have also exhibited edge state (ES) signs.

From a theoretical point of view properties of ESs in
atomically thin MoS2 have been extensively studied in the
frameworks of density-functional theory [7,9–13] and tight-
binding approximation [14,15]. However, a description of the
ESs in the TMD monolayers within the kp approach allows
one to describe the ESs without going into the details of the
edge microscopic structure and to take into account effects of
external fields. This enables one to construct an analytic theory
for the ESs in the whole class of materials in a unified way.
Such a general theory relies on a boundary condition (BC) that
describes the edge structure by means of several phenomeno-
logical parameters. The values of these parameters can be
obtained by fitting with experimental data or other calculations
based on density-functional or tight-binding approximations.
The authors of Ref. [16] derived a general boundary condition
taking into account valley coupling at the edge and neglecting
spin-orbit interaction at the edge, which may, in general, exist
(see Ref. [17] and references therein). Recently, ES spectra in
the TMD monolayer nanoribbon [18] and optical absorption
in TMD nanoflakes involving transitions between the bulk and
edge states [19] have been studied using the kp approximation.
However, these studies were restricted by some specific values
of the phenomenological boundary parameters.

The aim of this paper is twofold. First, we develop an
analytical theory for the ESs in the TMD monolayers in the
kp approach taking into account edge spin-orbit interaction
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(ESOI) in the case of uncoupled valleys. Second, we consider
optoelectronic properties of the ESs and demonstrate the
emergence of spin- and valley-polarized edge photocurrents
due to illumination of the monolayer by circularly polarized
light. The origin of the effect concerns selection rules for
optical transitions from bulk states to edge states caused by
circularly polarized light in the two valleys. The selection
rules are essentially different from those for interband optical
transitions in the bulk that give rise, for example, to the valley
Hall effect [20]. This paper is organized as follows: in Sec. II
we derive a general boundary condition and resulting ES
spectra for the two-band continuum model, and Sec. III is
devoted to the derivation of the edge photocurrent.

II. EDGE STATES IN THE TWO-BAND
kp APPROXIMATION

In the TMD monolayers conduction and valence band
edges are located in the K and K ′ valleys of the honeycomb
lattice Brillouin zone. Within a two-band kp approach, the
dynamics of electrons in the K (K ′) valley is described by the
Hamiltonian [3,21]

Hτ =

⎛⎜⎝m + τ�c vp−,τ 0 0
vp+,τ −m + τ�v 0 0

0 0 m − τ�c vp−,τ

0 0 vp+,τ −m − τ�v

⎞⎟⎠
(1)

where 2m is the band gap without spin splitting, 2�c,v are
the values of spin splitting in the conduction and valence
bands, respectively, the index τ = +1 (−1) denotes the
K (K ′) valley, p±,τ = τpx ± ipy (px,py are components of
in-plane momentum), and v is the velocity matrix element
between the band extrema. The Hamiltonian Hτ (1) possesses
a diagonal form in the spin subspace, with the upper left
(lower right) block acting on two-component wave functions
of spin-up (spin-down) states. To describe the edge of the TMD
monolayer one should supplement the Hamiltonian with a BC
for envelope wave functions. In the present work we consider
a translation-invariant edge for which projections of the valley
centers onto the edge direction are very distant from each other
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(like at zigzag or reconstructed zigzag edges). Therefore, we
will neglect the valley coupling at the edge.

However, even at the translation-invariant edge, additional
ESOI can mix the spins. Let us derive the most general BC
that describes this entanglement in our model. Since Hτ (1)
is first order in momentum, a general BC has the form of a
linear combination of two-component wave functions �↑(↓)

τ =
(ψ↑(↓)

c,τ ,ψ↑(↓)
v,τ )T belonging to spin-up (spin-down) states:

[�↑
τ − Mτ�

↓
τ ]edge = 0, (2)

where Mτ is the second-order square matrix consisting
of phenomenological parameters that characterize the edge
structure. The explicit form of the matrix Mτ is determined by
the Hermiticity of the Hamiltonian Hτ in a confined region:

[M+
τ nσ τMτ + nσ τ ]edge = 0, (3)

where σ τ = (τσx,σy) is a vector of the Pauli matrix and n =
(nx,ny) is an outer unit normal to the edge. Equation (3) can
also be obtained from the requirement of a vanishing normal
component of the probability current at the edge [22]. Time-
reversal symmetry relates the matrices in BC (2) from the
two valleys: M−1

τ = M∗
−τ . These conditions lead us to the

four-parametric form of matrix Mτ :

Mτ = ieiχ [σ0 sinh ξ + τσz cosh ξ cosh η cos ν

− iτnσ τ cosh ξ (sinh η + σz cosh η sin ν)], (4)

where σ0,σz are the identity and third Pauli matrices, re-
spectively, and χ,ξ,η,ν (0 � χ,ν < 2π , −∞ < ξ,η < +∞)
are real phenomenological parameters characterizing edge
properties. As matrix Mτ depends on the parameter χ through
a common phase factor eiχ that we assume is constant as
a function of the coordinate along the translation-invariant
edge, we eliminate it by means of a unitary transforma-
tion, (�̃↑

τ ,�̃↓
τ )T = U (�↑

τ ,�↓
τ )T, where U = diag{σ0,e

−iχσ0}.
Thus, only three boundary parameters, ξ,η,ν, characterize
the translation-invariant edge in the TMD monolayer in the
absence of intervalley interaction. Their physical meaning may
be obtained by considering limiting cases of the BC (2). In the
limit ξ → +∞, two-component wave functions with opposite
spins become decoupled and satisfy the BC (for a derivation,
see Appendix A):

[ψ↑(↓)
c,τ − ias,τ e

−iτϕψ↑(↓)
v,τ ]edge = 0, (5)

where as,τ = sτ (1 + sτ cosh η cos ν)/(sinh η + cosh η sin ν),
ϕ is an angle characterizing the unit normal n = (cos ϕ, sin ϕ),
and s = +1 (−1) for spin-up (spin-down) states. However,
disentanglement of the wave functions belonging to opposite
spin projections in BC (5) does not mean vanishing ESOI,
as a1,τ �= a−1,τ in the general case. It is known [23] that
BC (5) is equivalent to the insertion of a diagonal in the
spin subspace potential in the Hamiltonian (1), which is a
combination of electrostatic (∝ σ0) and pseudoelectrostatic
(∝σz) potentials, V ↑(↓)

edge = [V (r)/2][σ0(1−a2
s,τ )+σz(1+a2

s,τ )],
where V (r) tends to infinity outside the two-dimensional (2D)
material and is zero inside of it. The sign of as,τ is determined
by the sign of V (r) outside of the TMD monolayer. In addition,
at η → +∞ in BC (5), values of the boundary parameters a±1,τ

coincide and equal a = cos ν/(1 + sin ν), which is determined
only by the parameter ν. Therefore, we can conclude that

FIG. 1. Solid black and dashed green lines represent typical
spectra of ESs in the K (left) and K ′ (right) valleys derived from
Eq. (7) for ESOI described by the following phenomenological
parameters: Dashed green lines correspond to ξ = −2.9, η = 0.5,
ν = 0.6; solid black lines correspond to ξ = −2.9, η = 1.5, ν = 0.6.
Red and blue shaded regions show projections of spin-up and
spin-down bulk bands, respectively. Bulk parameters are as follows:
2m = 1.8 eV, �c = 10 meV, �v = 143 meV, v = 2.5 eV A.

ξ and η describe different types of ESOI, like Rashba and
Dresselhaus interface spin-orbit parameters for Schrodinger’s
electrons in GaAs/AlxGa1−xAs quantum wells [24], but ν is
responsible for coupling bands with the same spin.

Now we are able to calculate spectra of ESs with the general
BCs (2) and (4). Suppose that the 2D crystal fills a half plane
y > 0. Then, the ES wave function has the form

�↑(↓)
τ = C↑(↓)

τ

(
1

h̄v(τkx−κ
↑(↓)
τ )

ε+m−sτ�v

)
e−κ

↑(↓)
τ y+ikxx, (6)

where C↑(↓)
τ is a normalization constant and κ↑(↓)

τ = {k2
x −

(ε − m + sτ�c)(ε + m − sτ�v)/(h̄v)2}1/2 is the decay length
of ESs. Substituting wave function (6) in the BC (2), we obtain
a general dispersion equation for ESs:[

1 + a+1,τ

h̄v(τkx − κ↑
τ )

ε + m − τ�v

][
1 + a−1,τ

h̄v(τkx − κ↓
τ )

ε + m + τ�v

]
+ τv(tanh ξ−1)

sinh η+ cosh η sin ν

[
h̄v(τkx−κ↑

τ )

ε+m−τ�v

− h̄v(τkx−κ↓
τ )

ε+m+τ�v

]
= 0. (7)

In Fig. 1 we reveal the typical dispersion of ESs in the K and
K ′ valleys given by the above equation. In the general case,
ESs possess linear dispersion and exist for those longitudinal
momenta when their energies do not overlap with projections
of bulk bands. The second term on the left-hand side of Eq. (7)
is responsible for coupling spins due to ESOI as it goes to
zero at ξ → +∞, which is the above-discussed limit of spin
disentanglement. In this limit, ES spectra are determined by
their own parameter as,τ for each spin projection:

ε↑(↓)
e,τ (px) = −τ ṽs,τpx + εs,τ , (8)

where ṽs,τ = 2as,τ v/(1 + a2
s,τ ) is an effective speed of ESs,

εs,τ = m̃s,τ (a2
s,τ − 1)/(a2

s,τ + 1) + sτ (�c + �v)/2 is the en-
ergy of ESs at the center of the corresponding valley, and
m̃s,τ = m − sτ (�v − �c)/2. The valley index τ determines
the chirality of ESs (see Fig. 2) which exist for those wave
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FIG. 2. Red (blue) lines show spectra of spin-up (spin-down)
ESs (8) in the K (left) and K ′ (right) valleys in the absence of ESOI
(i.e., a+1,τ = a−1,τ ). Solid lines correspond to a±1,τ = 0.5; dashed
lines correspond to a±1,τ = −0.2. Red and blue shaded regions show
projections of spin-up and spin-down bulk bands, respectively. Bulk
parameters are the same as in Fig. 1.

vectors kx while their decay length is positive:

κ↑(↓)
τ = τkx

m̃s,τ

(
εs,τ − sτ

�v + �c

2

)
+ m̃s,τ ṽs,τ

h̄v2
> 0. (9)

We note that condition (9) allows spin-polarized ESs to exist
even when their spectra overlap with the projection of the bulk
band characterized by opposite spin. In particular, inequality
(9) specifies that at as,τ > 0 ES spectra intersect the bulk gap,
but at as,τ < 0 they are out of the gap (see Fig. 2). Wave
functions of ESs with spectrum (8) read as follows:

�↑(↓)
e = C↑(↓)

τ

(
1

− τ
as,τ

)
e−κ

↑(↓)
τ y+ikxx, (10)

where C↑(↓)
τ = [2a2

s,τ κ
↑(↓)
τ /Lx(1 + a2

s,τ )]
1/2

is the normaliza-
tion factor.

Here we point out that in the absence of ESOI (ξ,η →
+∞), ES spectra for two spins are parallel to each other with a
constant energy difference for every momentum: ε↑

e,τ − ε
↓
e,τ =

2τ (�v + a2�c)/(1 + a2).

III. SPIN-VALLEY EDGE PHOTOCURRENTS

In this section we reveal that illumination of a semi-infinite
2D TMD crystal by circularly polarized light induces spin-
and valley-polarized edge photocurrents. As we mentioned in
the Introduction, the effect is due to the difference in transition
probabilities between bulk and edge bands in the two valleys
caused by the light.

For definiteness and simplicity we consider the absence of
spin-orbit interaction at the edge. Therefore, ESs are described
by a single parameter a for both spins and valleys (we
suppressed spin and valley indexes). However, the obtained
results are also valid when the two spin-polarized ES branches
are described by different parameters, a+1,τ �= a−1,τ (8), while
one can populate only one of them in each valley. We will
assume that a ∼ 1, so that ES spectra intersect the gap as shown
in Fig. 3. This situation agrees with tight-binding calculations
of ES spectra at the zigzag edge of MoS2 [15]. Throughout
this section we suppress the valley index τ everywhere except
where it is needed.

kx [Å-1]

K K'

E[
eV

]

εF
ħω0 ħω0

ε*1 ε*-1

kx [Å-1]

μe,1 μe,-1

μv,1 μv,-1

FIG. 3. Schematic picture of quasi-Fermi levels in edge (μe,±1)
and valence (μv,±1) bands under illumination of clockwise circularly
polarized light with frequency ω0 in the case of spin-polarized ESs
described by formula (8) with a+,τ = a−,τ > 0. εF is equilibrium
Fermi energy. ε∗

±1 is the minimal energy of ESs that radiatively
recombine with holes in the valence band.

Now we turn to the bulk states. Below we are interested
only in valence band states with energies around the band
extremum. In this limit (vp � 2m̃) spectra of the spin-up (spin-
down) states in the valence band of the K (K ′) valley are
expressed as follows:

εv = εt − (vp)2

2m̃
, (11)

where εt = −m + �v is the energy of the upper valence band

top in each valley and p =
√

p2
x + p2

y is the 2D momentum

modulus. Under the assumption about the type of edge
mentioned above, bulk states should satisfy the BC (5) with
the same parameter a for both spins. This BC is satisfied by a
superposition of incident plane wave and plane wave scattered
off the edge with a common longitudinal momentum px :

�px,εv
= 1√

2
[ψpx,−py

+ Rεv,kx
ψpx,py

], (12)

where ψpx,±py
are plane-wave solutions of the Hamiltonian (1)

in the limit vp � 2m̃ and Rεv,kx
is a reflection coefficient that

is determined by the BC. Plane-wave states around extremum
of the valence band have the form (see Appendix B)

ψpx,py
= 1√

LxLy

⎛⎝− vp

2m̃

eiϑp

⎞⎠eikr, (13)

where LxLy is the system area, eiϑp = p+,τ /p, and k =
(px,py)/h̄ is the 2D wave vector. In fact in the semi-infinite
sample py is not a good quantum number and should be treated
as a function of energy and px from Eq. (11): py(ε,px) =
[
√

2m̃/v]
√

εt − εv − (vpx)2/2m̃. For valence band states with
energies around the band extremum the reflection coefficient
can be approximated as follows: Rεv,kx

≈ −e−i2θp .
We suppose that the semi-infinite 2D crystal is illuminated

in the negative direction of the z axis by a clockwise polarized
light with frequency ω0 [in the case of counterclockwise po-
larization one should exchange τ → −τ in the final formulas
(19) and (20)]. Due to spin splitting of the valence bands
(on the order of 0.1 eV) one can tune the frequency ω0 of
the illuminated light and Fermi energy εF in the monolayer to
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induce electrical dipole transitions only from the upper valence
band in the K (K ′) valley to ESs with the corresponding
spin (see Fig. 3). Our aim is to calculate the induced edge
photocurrent owing to these transitions. To this end we derive a
kinetic equation for the distribution function in the framework
of the Keldysh formalism [25] (see Appendix C):

∂fe(ε)

∂t
= W ind

ε−h̄ω0,ε
[fv(ε − h̄ω0) − fe(ε)]

− fe(ε)
∫ +∞

0
W

sp

ε−h̄ω,ε[1 − fv(ε − h̄ω)]dω

− fe(ε) − feq(ε)

τR

, (14)

where fe,v(ε) are the Fermi-Dirac distribution functions for
states in the edge and valence bands, respectively; feq(ε) is
the equilibrium Fermi-Dirac function; W ind

ε−h̄ω0,ε
is the rate of

induced transitions between ES, characterized by longitudinal
momentum pe and energy ε, and the valence band state with the
same longitudinal momentum and energy ε − h̄ω0; Wsp

ε−h̄ω,εdω

is the rate of spontaneous transitions caused by interaction
with the ground state of the electromagnetic field; and τR

is a phenomenological relaxation time that describes other
relaxation processes between edge and valence band states
caused by, for example, phonon or electron-electron scattering
(below we discuss the range of the relaxation time). The rate
of the induced transitions reads as follows:

W ind
ε−h̄ω0,ε

= 2π

h̄

I�

ch̄ω0

∣∣V (+,τ )
ε−h̄ω0,ε

(q0)
∣∣2

ρv,e(ε − h̄ω0), (15)

where I is the intensity of the incident light, c is the
speed of light, � is the volume for the quantization of the
electromagnetic field, V

(+,τ )
ε−h̄ω0,ε

(q0) is the matrix element of
the interaction between valence and edge band states (C4), and
the density of the valence band states with definite longitudinal
momentum pe near valence band extrema is expressed by the
formula

ρv,e(ε) =
∑
py

δ
(
ε − εpe,py

) = Ly

√
2m̃

2πh̄v

�
(
εt − v2p2

e

2m̃
− ε

)√
εt − v2p2

e

2m̃
− ε

,

(16)

where �(· · · ) is the Heaviside step function. The probability
of spontaneous transitions is expressed as follows:

W
sp

ε−h̄ω,ε = �

(2π )2h̄c3

∑
λ=±

∫
doq

∣∣V (λ,τ )
ε−h̄ω,ε(q)

∣∣2
ρv,e(ε − h̄ω),

(17)

where integration goes over a solid angle of the light wave
vector q and summation runs over clockwise (λ = +) and
counterclockwise (λ = −) polarization of the electromagnetic
field.

It is known that intraband energy relaxation processes have
the shortest times in MoS2 monolayers [26,27] (on the order of
picoseconds). As electron-electron scattering is very efficient
in one dimension [28] and also due to the possibility of
relaxation in the edge band via scattering by bulk phonons,
we suppose that the relaxation time within the edge band
is of the same order. This allows us to solve the kinetic

equation (14) in the quasiequilibrium approximation, which
is justified when intraband relaxation times are shorter than
edge-bulk energy relaxation times. Therefore, we look for a
distribution function of the edge (valence) states in the form of
the Fermi-Dirac function with its own quasi-Fermi level μe,τ

(μv,τ ). We also suppose that additional edge-to-valence-band
energy relaxation processes, characterized by the relaxation
time τR , are on the order of nanoseconds. This is mainly
due to the suppression of phase space for these processes
caused by the great difference in the densities of bulk and
edge states. This allows edge-to-valence scattering only with
certain longitudinal momentum mismatch (as the valence band
quasi-Fermi level locates around the top of the valence band).

We are interested in a stationary solution that equates the
right-hand side of Eq. (14) to zero. After integrating the kinetic
equation over energy in the limit of zero temperature, we arrive
at the first implicit relation for μe,τ and μv,τ (D2). Another
relation between quasi-Fermi levels is imposed by a particle
conservation rule (i.e., the number of holes in the valence band
equals the number of photoexcited electrons in the edge band):

(εt − μv,τ )ρv = (μe,τ − εF )ρe, (18)

where ρv = LyLxm̃/2π (h̄v)2 is the density of states in
the valence band and ρe = Lx/2πh̄|̃v| is the density of
edge states. By virtue of the ratio between the densities
ρe/ρv ∝ h̄v/m̃Ly � 1 one has the inequality |εv − μv,τ | �
|μe,τ − εF |, which leads us to a simpler equation for μe,τ [in
comparison with Eq. (D2)]:

I

I0

[
δτ,1 + δτ,−1

(
h̄vκF

2m̃a

)2]
G(μe,τ − h̄ω0) − μe,τ − εF

h̄ω2
0 τ̃R

= 0,

(19)

where I0 = h̄ω4
0/c

2, τ̃R = τR[(v/c)2(e2/h̄c)4πa2/(1 + a2)n2
r ]

(nr is the refractive index of the environment), and

G(ε) = arctan

(
ky0(ε)

κF

)
− κF ky0(ε)

κ2
F + k2

y0(ε)
,

where ky0(μe,τ − h̄ω0) = py(μe,τ − h̄ω0,px = 0)/h̄. In de-
riving Eq. (19) we neglected the dependence of the decay
length of ESs on the energy [i.e., κ(ε) ≈ κ(εF ) ≡ κF ]. We
also disregarded the dependence of the momentum component
py(ε,pe) on pe since we consider the valence band states
around the band extremum, i.e., with longitudinal momenta
vpe � 2m̃. The expression in the square brackets in Eq. (19)
describes the distinction in probabilities of transitions from
valence band states (12) to ESs (6) in the K and K ′ valleys,
which significantly differs from selection rules for interband
transitions in the bulk [21]. This results in an uncompensated
edge photocurrent with a specific spin in a particular valley. In
the limit |μe,τ − εF |/εF � 1 we obtain an explicit expression
for the electron quasi-Fermi level in the edge band:

μe,τ = εF +
I
I0

h̄ω2
0 τ̃RG(εF − ω0)

[
δτ,1 + δτ,−1

(
h̄vκF

2m̃a

)2]
1 − I

I0
h̄ω2

0 τ̃R
∂G(εF −ω0)

∂ε

[
δτ,1 + δτ,−1

(
h̄vκF

2m̃a

)2] .

(20)

With known quasi-Fermi levels of the ESs in the two valleys,
we use a standard formula for one-dimensional current along
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FIG. 4. Dependence of photocurrent (21) on the intensity of
illuminating light at three different frequencies: h̄ω0 = 0.7 eV (red),
h̄ω0 = 0.6 eV (blue), and h̄ω0 = 0.5 eV (green). Solid lines represent
the solution for quasi-Fermi levels derived from Eq. (D2). Dashed
lines correspond to the approximated solution (20). The equilibrium
Fermi energy is εF = −0.4 eV. Bulk parameters are similar to those
in Fig. 1, with boundary parameter a = 0.8. The phenomenological
relaxation time τR = 1 ns, and the length characterizing the TMD
monolayer perpendicular to the edge direction is Ly = 1 μm.

the sample edge:

j = e

h
(μe,1 − μe,−1). (21)

The dependence of the photocurrent on the light intensity is
plotted in Fig. 4. Solid lines show the photocurrent obtained by
solving Eq. (D2) for electron quasi-Fermi levels; dashed lines
represent the approximated solution (20). At low intensities,
the current (21) is a linear function of the intensity with a
tilt that is determined by the edge-valence-band transition
probability difference in the K and K ′ valleys. However, in the
limit of high intensities the current goes to zero as edge bands
in both valleys tend to equal the population. This gives rise to
a maximum photocurrent in the middle region of intensities.
Here we notice that light intensity as high as hundreds of
milliwatts per square micrometer in a continuous-wave regime
for the near-infrared range of wavelengths can be realized by
means of fiber lasers [29]. Using the solutions (20), one can
obtain an approximated expression for maximal current in
Fig. 4:

jmax = e

h
(εt − εF + ω0)

1 − (
h̄vκF

2m̃a

)2

1 + (
h̄vκF

2m̃a

)2 , (22)

which is valid in the limit ky0(εF − ω0)/κF � 1. Therefore,
the greater edge-valence-band transition probability difference
in the two valleys is, the higher the maximal value of spin-
valley-polarized current along the edge is. Absolute values
of the maximal current can reach several microamperes. In
the case of clockwise polarization of light, uncompensated
photocurrent flows in the K valley in the negative direction
along the edge (see Fig. 3). As mentioned above for coun-
terclockwise polarization, one should exchange τ → −τ in
(20), which leads to uncompensated photocurrent in the K ′
valley but in the positive direction along the edge. Thus, the
direction of light polarization controls not only spin and valley
polarization of the uncompensated edge photocurrent but also
its flow direction.

IV. CONCLUSION

We developed a theory of ESs in monolayers of TMD
crystals which takes into account ESOI within intravalley
approximation. The theory relies on a general BC comprising
three real phenomenological parameters, ξ,η,ν, that character-
ize the microscopic structure of the edge. We revealed that ξ is
responsible for spin coupling, η accounts for the inequivalence
of the edge structure for opposite spin projections in the case of
decoupled spins, and ν describes the interband interaction of
states with the same spin. In the general case, ESs have linear
spectra determined by all three parameters. However, in the
case of decoupled spins (ξ → +∞), ES spectra become chiral
in the valley index and are described by a single parameter
(which is a function of η and ν) for each spin projection. The
sign of the latter parameter determines whether ES spectra are
in the bulk gap or outside of it.

We also considered optical pumping from valence band
states to ESs in the absence of the ESOI and demonstrated the
possibility for generation of spin- and valley-polarized edge
photocurrents. We revealed that the direction and valley and
spin polarization of the photocurrent are determined by the
direction of circular polarization of the light. Maximal values
of the photocurrent are of the order of several microamperes.
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APPENDIX A: DERIVATION OF THE SPIN-POLARIZED
BC (5)

In the limit ξ → +∞ the general BC (2) with matrix Mτ

(4) is reduced to the following:[ −ie−ξ−iχ

1 + τ cosh η cos ν

(
1 0
0 ia1,τ e

−iτϕ

)
�↑

τ

+
(

1 −ia−1,τ e
−iτϕ

1 −ia−1,τ e
−iτϕ

)
�↓

τ

]
edge

= 0, (A1)

where a±1,τ = ±τ (1 ± τ cosh η cos ν)/(sinh η + cosh η sin ν)
and we used the identity

sinh η − cosh η sin ν

1 + τ cosh η cos ν
= − 1 − τ cosh η cos ν

sinh η + cosh η sin ν
.

In the limit under consideration, wave functions accounting
for opposite spin projections are decoupled in the BC, as the
coefficient under �↑

τ in Eq. (A1) is exponentially small. This
leads us to a BC for spin-down states:

[ψ↓
c − ia−1,τ e

iτϕψ↓
v ]edge = 0, (A2)

where �↓
τ = (ψ↓

c ,ψ↓
v ). Subtracting the second row of the BC

(A1) from the first one, we arrive at a BC for spin-up states:

[ψ↑
c − ia1,τ e

−iτϕψ↑
v ]edge = 0, (A3)

where �↑
τ = (ψ↑

c ,ψ↑
v ).
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APPENDIX B: APPROXIMATE PLANE-WAVE SOLUTIONS
OF THE HAMILTONIAN (1) AROUND BULK

BAND EXTREMA

In this appendix we find plane-wave solutions of the
Hamiltonian (1) in a system without edge and show that for
energies around valence band extrema they are expressed by
formula (13). For simplicity we consider only spin-up electrons
in the K valley (i.e., τ = 1) and suppress the spin and valley
indexes below in this section. Therefore, components ψ1,2 of a
plane-wave solution �p = [eipr/h̄/(LxLy)1/2](ψ1,ψ2)T satisfy
the system

(m + �c − ε)ψ1 + v(τpx − ipy)ψ2 = 0,

v(τpx + ipy)ψ1 + (−m + �v − ε)ψ2 = 0. (B1)

Together with the normalization condition∫ Lx/2

−Lx/2
dx

∫ Ly/2

−Ly/2
dy�∗

p�p = 1,

solutions for the amplitudes can be represented as follows:

ψ1 = (εc,v + m − �v)

[(εc,v + m − �v)2 + (vp)2]1/2
,

(B2)

ψ2 = vpeiθp

[(εc,v + m − �v)2 + (vp)2]1/2
,

where energies for the plane-wave solutions read as follows:

εc,v = (�v + �c)/2 ±
√

m̃2 + (vp)2, (B3)

where the plus (minus) sign before the square root cor-
responds to bulk states in the conduction (valence) band.
Finally, expanding energies of the valence band states (B3) in
expressions for the amplitudes (B2) around the band extremum
(i.e., at vp � 2m̃), εv ≈ −m + �v + (vp)2/2m̃, we obtain
the following expression for the plane-wave solutions in the
vicinity of the valence band maximum:

�p = 1√
LxLy

⎛⎜⎝− vp

2m̃

eiϑp

⎞⎟⎠eipr/h̄, (B4)

which is identical to Eq. (13) in the main text. For the
states around the conduction band minimum εc ≈ m + �c +
(vp)2/2m̃, one can obtain the following expression:

�p = 1√
LxLy

⎛⎜⎝ 1

vp

2m̃
eiϑp

⎞⎟⎠eipr/h̄. (B5)

APPENDIX C: DERIVATION OF THE KINETIC
EQUATION (14)

In order to derive the kinetic equation (14) we first write
down the Hamiltonian of the system under consideration in
terms of second-quantization operators:

H0 =
∑
pe

εea
+
pe

ape
+

∑
px,py

εv,px ,py
a+

v,px ,py
av,px ,py

+
∑
px,py

εc,px ,py
a+

c,px ,py
ac,px ,py

+
∑

q,λ=±
h̄ω

(
c+

q,λcq,λ + 1

2

)
, (C1)

where ape
(a+

pe
) is the annihilation (creation) operator of

the edge state (10) with energy εe, av/c,px ,py
(a+

v/c,px ,py
) is

the annihilation (creation) operator of the valence/conduction
band state (12) with energy εv/c,px ,py

, cq,λ (c+
q,λ) is the

annihilation (creation) operator of a photon with clockwise
(λ = +) or counterclockwise (λ = −) polarization, and energy
ω = cq. In the above equation we suppress spin and valley
indexes for brevity. In terms of the creation and annihilation
operators of a photon field the vector potential reads as follows:

A(r,t) =
∑

q,λ=±

√
2πc2h̄

n2
rω�

[
cq,λeλe

i(qr−ωt) + c+
q,λe∗

λe
−i(qr−ωt)

]
,

(C2)

where � is the quantization volume and polariza-
tion unit vectors eq,± = [1/

√
2](cos αq ± i sin αq cos θq, −

sin αq ± i cos αq cos θq, ∓ i sin θq) [spherical angles αq , θq

characterize the direction of the photon wave vector q =
q(sin αq sin θq, cos αq sin θq, cos θq)]. The interaction of elec-
trons with the electromagnetic field reads as follows:

Vint =
∑

pe,px ,py ,q,λ=±

[
V (λ,τ )

εv,εe
(q)a+

pe
cq,λav,px ,py

+ H.c.
]
,

(C3)

where we take into account only transitions between valence
band electrons and edge states that are determined in the dipole
approximation by the matrix elements:

V (λ,τ )
εv,εe

(q) = τδpe,px

ve

c

√
2πc2h̄

n2
rω�

Ce

√
Lx√

2Ly

2iky(ε,pe)

κ2 + k2
y(ε,pe)

×
[
e−iταq

√
2

(1 + τλ cos θq)

+ eiταq

√
2

(1 − τλ cos θq)
h̄vκ + τvpe

2m̃a

]
. (C4)

From the above formula it follows that the ratio of probabilities
for induced transitions (at normal incidence of light cos θq =
1) in the two valleys for definite polarization has an order
of (h̄vκ/2m̃a)2 ≈ 1/4 � 1 at the boundary parameter values
|a| ≈ 1.

Now we introduce the Keldysh Green’s functions of
electrons, Gαβ

ν (t,t ′) = −i〈TC{aν(tα)a+
ν (t ′β)}〉 (ν are quantum

numbers of the edge or bulk state), and photons, D
αβ

q,λ(t,t ′) =
−i〈TC{cq,λ(tα)c+

q,λ(t ′β)}〉 (α,β = ±). Following standard pro-
cedure [25], we obtain a kinetic equation for the Green’s
function that determines the population distribution of edge
state [G<

e (t,t) = G−+
e (t,t)]:

i
∂

∂t
G<

e (t,t)

=
∫ +∞

−∞
�R

ee(t,t1)G<
e (t1,t)dt1+

∫ +∞

−∞
�<

ee(t,t1)GA
e (t1,t)dt1

−
∫ +∞

−∞
GR

e (t,t1)�<
ee(t1,t)dt1−

∫ +∞

−∞
G<

e (t,t1)�A
ee(t1,t),

(C5)
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where GR = G−− − G−+ and GA = G−− − G+−. In
Eq. (C5) we calculate self-energies in the second order in
perturbation (C3):

�R
ee(t1,t2) = �−−

ee (t1,t2) + �−+
ee (t1,t2)

= i
∑
p,q,λ

∣∣V (λ,τ )
εv,εe

(q)
∣∣2[

D−−
0q,λ

(t1,t2)G−−
0p,εv

(t1,t2)

−D−+
0q,λ

(t1,t2)G−+
0p,εv

(t1,t2)
]

= −iθ (t1 − t2)

×
∑
p,q,λ

∣∣V (λ,τ )
εv,εe

(q)
∣∣2

[n0δλ,+δq,q0 + (1 − fv)]

× e−i(εv+ω)(t1−t2),

�<
ee(t1,t2) = −�−+

ee (t1,t2)

= i
∑

p

∣∣V (+,τ )
εv,εe

(q0)
∣∣2

n0fve
−i(εv+ω0)(t1−t2),

�R
ee(t1,t2) = [

�A
ee(t2,t1)

]∗
, (C6)

where the terms with wave vector q0 = (0,0, − q0) describe
transitions induced by illuminated light with frequency ω0 =
cq0 and clockwise polarization, n0 = −iD−+

0q0 ,+(t,t) is the num-
ber of the illuminated light quanta, and the term proportional
to 1 − fv [where fv = −iG−+

0p,εv
(t,t) is the Fermi-Dirac distri-

bution function in the valence band] concerns spontaneous
recombination processes. After substituting Green’s func-
tions of the zero approximation GA

e (t1,t2) = [GR
e (t2,t1)]

∗ =
iθ (t2 − t1)eiεe(t2−t1), G<

e (t1,t2) = ife(t)eiεe(t2−t1) in Eq. (C5) and
accounting for only contributions from poles at integration,
over time we arrive at a kinetic equation similar to that used in
the main text [Eq. (14)]:

∂fe

∂t
= I�

ch̄ω0

2π

h̄

∑
p

∣∣V (+,τ )
εv,εe

(q0)
∣∣2

[fv − fe]δ(εv − εe + h̄ω0)

− fe

2π

h̄

∑
p,q,λ=±

∣∣V (λ,τ )
εv,εe

(q)
∣∣2

[1 − fv]δ(εv − εe + h̄ω)

− fe − feq

τR

, (C7)

where we add the term with phenomenological relaxation time
τR as in the main text, n0 = I�/ch̄ω0.

APPENDIX D: GENERAL RELATION FOR QUASI-FERMI LEVELS

In this Appendix we obtain a general relation for quasi-Fermi levels of electrons in valence and edge bands under illumination
of the light. Introducing the density of valence band states with definite momentum (16), we rewrite Eq. (C7) in the following
form:

I

I0

[
δτ,1 + δτ,−1

(
h̄vκe + τvpe

2m̃a

)2]
[fv(ε − h̄ω0) − fe(ε)]

√
εt − v2p2

e

2m̃
− ε + h̄ω0[ (h̄vκe)2

2m̃
+ εt − v2p2

e

2m̃
− ε + h̄ω0

]2

− fe(ε)

12π2(h̄ω0)2

[
1 +

(
h̄vκe + τvpe

2m̃a

)2] ∫ +∞

0
d(h̄ω)

h̄ω[1 − fv(ε − h̄ω)]
√

εt − v2p2
e

2m̃
− ε + h̄ω[ (h̄vκe)2

2m̃
+ εt − v2p2

e

2m̃
− ε + h̄ω

]2

− (1 + a2)n2
r c

3
√

2m̃

4a2πτR(ve)2ω2
0h̄vκe

[fe(ε) − feq(ε)] = 0. (D1)

To proceed further analytically, we consider the low-temperature limit [T � min(|μe,τ − εF |,|μv,τ − εt |)] to treat Fermi functions
as steplike ones. Then we integrate the above equation over energy and arrive at a final relation between quasi-Fermi levels
μe,τ ,μv,τ :

I

I0

[
δτ,1 + δτ,−1

(
h̄vκF

2m̃a

)2]{
arctan

[
κF [ky0(μe,τ − h̄ω0) − ky0(μv,τ )]

κ2
F + ky0(μe,τ − h̄ω0)ky0(μv,τ )

]
+ κF ky0(μv,τ )

κ2
F + k2

y0(μv,τ )

}

− θ (μe,τ − ε∗)
κF

[
1 + (

h̄vκ0
2m̃a

)2]
12π2κ0(h̄ω0)2

{
6(h̄v)2κ0ky0(μv,τ )

μe,τ − ε∗

2m̃
− κF ky0(μv,τ )

κ2
F + k2

y0(μv,τ )
[(μe,τ − μv,τ )2 − (ε∗ − μv,τ )2]

+ arctan

(
ky0(μv,τ )

κ0

)[(
μe,τ − εt − 3

(h̄vκ0)2

2m̃

)2

−
(

ε∗ − εt − 3
(h̄vκ0)2

2m̃

)2]}
− (1 + a2)n2

r c
3

4a2πτRω2
0(ve)2

[μe,τ − εF ] = 0,

(D2)

where ky0(ε) = ky(ε,0), κF = κ(εF ), and κ0 = κ(εe(0)). At integration we neglected the dependence of ES decay length and
terms proportional to vpe/2m̃ on the energy. In the limit ρe/ρv � 1 we can neglect the terms proportional to ky0(μv,τ ) in Eq. (D2),
which leads us to Eq. (19) in the main text.
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