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Improved projected Green’s function approach to electron tunneling lifetime calculations
in quantum wells
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We demonstrate that the use of an optimal initial state of a wave function generated using Lanczos method
allows the previously proposed projected Green’s function approach to predict the tunneling lifetime of a particle
crossing a double quantum well with a considerably improved accuracy. It is further revealed that the electron
tunneling lifetime of such system depends linearly or quadratically on the barrier thickness or the well width. We
also investigate the asymmetric double quantum well structure and find that the electron tunneling lifetime in it
is strongly dependent on barrier thickness. Finally, we discuss the possible experimental designs to observe the
above-mentioned tunneling features.
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Tunneling of carriers in semiconductor heterostructures
has attracted enormous interest in both experimental and
theoretical research, especially the tunneling current through
the double-barrier potential of symmetric or asymmetric
structures [1–4]. Numerous phenomena have been observed
in such systems, such as the negative differential resistance,
the current-voltage response, and the Josephson effect [5–7].
In recent decades, quantum well (QW) structure based devices
have emerged and been widely used, i.e., QW-based optoelec-
tronic devices, multiple QW semiconductor lasers, quantum
structures for optical modulation, and quantum interference
devices [8–12]. The accurate measurement of the tunneling
times of electrons in double-well quantum systems has been
a long-lasting significant issue, as the tunneling time is not
only an important parameter in evaluating the performance of
different electronic devices but also a fundamental physics
problem that has been debated for more than 80 years
[13,14]. The present paper does not discuss the controversy
[15,16] of the definition of tunneling time, but aims at
dealing with the commonly observable quantity: tunneling
lifetime.

Experimentally, the electron tunneling lifetime in a QW
system can be detected indirectly, such as by monitoring
the decay of the electron localized between two barriers
[17]; in theory, the tunneling lifetime of an electron’s wave
function can be calculated directly: many theoretical tools
have been employed for such purpose, e.g., the argument
principle method approach (APM) [18] and the transmission
line analogy method [19], both of which try to find the roots
of the wave function and can get the lifetime effectively in
symmetric double-barrier systems and other simple cases.
However, for the asymmetric cases and multibarrier cases,
the roots will be much more complicated and even impossible
to find out. On this aspect, the formerly proposed projected
Green’s function (PGF) method [20–23] is better, as it avoids
solving the wave function directly and maps the system to a
matrix to get eigenvalues and eigenvectors: it can evaluate the
tunneling lifetime by directly treating the imaginary part of a
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Green’s function, regardless of the complexity of the system
or structure.

In the PGF scheme, a tunneling particle is localized in
a quantum well at the beginning and is supposed to tunnel
through the barriers at t>0. This is a dynamics process which
calls for the solution of several complicated problems such
as finding complex roots of nonlinear equations, treating the
time-dependent Green’s function, etc. In previous theoretical
works, the APM method was used to treat this problem. It
can extract all the complex solutions by using the argument
principle method to solve the Schrödinger equation. However,
when the barrier structure is extended from double-barrier to
multibarrier cases, or when the symmetry of the structure is
broken, the roots of the wave function will be much more
difficult to find out, and in most cases it is impossible to deal
with. In this paper, in combination with the Lanczos method
[24], we investigate the projected Green’s function method for
realizing the optimal initial wave function [24]. Assuming a
decay phase of the wave function which is affected by both
electron tunneling effect and electron scattering effect from
phonons or impurities, after applying Fourier transformation,
we convert the original time-dependent Green’s function into
an energy-dependent Green’s function. The tunneling lifetime
can be obtained from the imaginary part of the Green’s function
in energy space. In the process of solving PGF, we exploit the
Lanczos method (in building the eigenfunction) which makes
the results much more precise.

Consider a one-dimensional double-barrier quantum well
system with the length L, the barrier thickness B1 and B2,
and the well width W, as shown in Fig. 1. The standard
Schrödinger equation of the electron in it can be written
as

Hψi(x) = − h̄2

2m

∂2

∂x2
ψi(x) + V (x)ψi(x) = Ejψi(x) (1)

where m denotes the effective mass of the electron, ψi(x) is
the eigenfunction with eigenvalue Ei , and V (x) is the potential
that contains one well and two barriers. Equation (1) satisfies
the boundary condition ψi(x = 0) = ψi(x = L) = 0, where
index i = 1, 2, . . . labels different eigenstates. We express the
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FIG. 1. The double-barrier QW structure: for the symmetric
case,B1 = B2; for the asymmetric case,B1 �= B2.

originally localized wave function as

φ(x,0) =
∑

i

ciψi(x), (2)

and the time-dependent wave function φ(x,t) as

φ(x,t) =
∑

i

ciψi(x) exp(−iEit/h̄), (3)

where t � 0 for physical reasons. In the tunneling es-
cape process, as the wave function φ(x,t) changes, the
time-dependent wave amplitude of the original wave
function φ(x,0) contained in φ(x,t) can be defined
as

〈φ(x,0) |φ(x,t)〉 =
∫ L

0
φ∗(x,0)φ(x,t)dx =

∑
c∗
i cie

−iEi t/h̄.

(4)

After performing a Fourier transform, we get∫ ∞

−∞
〈φ(x,0) |φ(x,t)〉eiEt/h̄dt = ih̄

∑
i

c∗
i ci

1

E − Ei + iδ

(5)

where δ is a small number added to ensure the convergence. In
order to relate Eq. (5) to the Green’s function G(x,x ′,E + iδ)
[20], we derive the following formula:

∑
i

c∗
i ci

1

E + iδ − Ei

= 〈φ|G|φ〉 =
∫ L

0

∫ L

0
φ∗

i (x)G(x,x ′,E + iδ)φi(x
′)dxdx ′. (6)

Here 〈φ|G|φ〉 is the so-called PGF, in which the Green’s function G(x,x ′,E) is defined as

(E − Ĥ )G(x,x ′,E) = δ(x − x ′). (7)

Substituting Eq. (7) into Eq. (6) results in

〈φ|G|φ〉 = 〈φ| 1

E + iδ − Ĥ
|φ〉. (8)

To deal with Eq. (8) we adopt a recursion method combined with the Lanczos method to translate the Hamiltonian Ĥ to a
matrix form [21,24,25], and the PGF can be written as

〈φ|G|φ〉 = G0(E + iδ) =

⎛
⎜⎜⎝

E + iδ − a0 −b1 0 · · ·
−b1 E + iδ − a1 −b2 · · ·

0 −b2 E + iδ − a2 · · ·
...

...
...

. . .

⎞
⎟⎟⎠

−1

00

(9)

with ai, bi, i = 0, 1, 2, . . . N − 1 being the recursion coefficients defined as follows:

Ĥφ = a0φ + b1ϕ1,

Ĥϕi = biϕi−1 + aiϕi + bi+1ϕi+1. (10)

· · ·
Here φ, ϕ1, · · · ,ϕN−1 is a set of wave functions that are localized in the system, and ai and bi describe the coupling of each

environment to itself and its neighbors [21,25]. We denote the determinant of the matrix 〈φ|G|φ〉 with the first i rows and columns
as Di(E + iδ). Then, Eq. (9) is simplified as

〈φ|G|φ〉 = G0(E + iδ) = D1(E + iδ)

D0(E + iδ)
. (11)

By expanding the determinants D0(E + iδ) in the denominator, we easily get

G0(E + iδ) = D1(E + iδ)

(E + iδ − a0)D1(E + iδ) − b2
1D2(E + iδ)

= 1

E + iδ − a0 − b2
1

D2(E+iδ)
D1(E+iδ)

. (12)

Here we define D2(E + iδ)/D1(E + iδ) as G1(E + iδ).

235428-2



IMPROVED PROJECTED GREEN’s FUNCTION APPROACH . . . PHYSICAL REVIEW B 96, 235428 (2017)

For the system we are concerned with, it is rather complicated to get ϕi directly. Thus, we approximate the Hamiltonian by
dividing the wave function ϕi into M pieces. Therefore ϕi can be written as ϕi(xk) and here xk(k = 1, 2, 3, · · · M) denotes the
discrete position values of the system, with the length of each piece � = L/(M − 1). Under this approximation, ai, bi, and the
wave function ϕi in Eq. (9) are described as follows:

Wi(xk) = − h̄2

2m�2
[ϕi(xk+1) − 2ϕi(xk) + ϕi(xk−1)] + V (xk)ϕi(xk), ai =

∑
k

ϕi(xk)Wi(xk)�,

(13)

b2
i+1 =

∑
k

|Wi(xk) − aiϕi(xk) − biϕi−1(xk)|2�, ϕi+1(xk) = 1

bi+1
[Wi(xk) − aiϕi(xk) − biϕi−1(xk)].

Now, all the coefficients of PGF have been calculated. However, the eigenvector φ, which depends on the order of the H matrix
we selected, may be imprecise, because in the PGF we only choose the fixed value of M and get the eigenvalue and eigenvector
from only one diagonalization. To reach a higher accuracy, we adopt the Lanczos method to make the eigenvector φ much more
precise [24], the procedure of which is given as follows.

(1) Choose a set of random numbers as the wave vector (also, the order of the vector is chosen as M), and construct the H
matrix, following the Lanczos technique.

(2) Diagonalize of the matrix and obtain the eigenvalues and the eigenvector.
(3) Use the new eigenvector to rebuild the H matrix and again get another group of eigenvalues and eigenvector.
(4) Repeat steps 2 and 3 iteratively and compare these two groups of values (obtained from steps 2 and 3, respectively) at

each iteration: if the eigenvalue converges, stop the iteration and set the eigenvector as φ, which will be used in the PGF.
Then we get the coefficients ai, bi using Eq. (13) as well as the precise wave vector φ using Lanczos analysis. Equation (12)

can be rewritten as

G0(E + iδ) = 1

E + iδ − a0 − b2
1G1(E + iδ)

= 1

E − a0 − b2
1Re[G2(E + iδ)] + iδ − ib2

1Im[G1(E + iδ)]
. (14)

In the denominator of Eq. (14), δ is a very small but finite
positive value that has several interpretations. Mathematically
speaking, it ensures the convergence of the Fourier transform
of the Green’s function, but physically this δ can reduce the
decay lifetime of the localized wave function which represents
the effect of inelastic scattering, as illustrated in the literature:
for the quantum well structure, the electron will be scattered by
impurities or phonons, and the changes from its initial state into
another state are characterized by the parameters of δ or τb (see
later in the text) [18,26]. We assume iδ to be a phase factor that
is added to the time-dependent Green’s function in the form of
〈φ|G|φ〉∼ exp(−iEr t/h̄ − t/2τt ), where Er is the energy of
the resonant level. The total lifetime τt is multiplied by a factor
of 2 due to the accumulated time shift when the wave packet
is moving toward the potential barrier and when it is moving
away from the barrier [13,27]. Through this approximation,
the PGF will have a Lorentzian peak as follows:

〈φ|G|φ〉 = 1

E − Ei + i h̄
2τt

. (15)

Comparing this equation with Eq. (14), we directly get the
expression of τt :

1

τt

= 2
{
δ − b2

1Im[G1(Ei + iδ)]
}

h̄
= 1

τb

+ 1

τ
, (16)

where τt denotes the total lifetime of the electron in the system.
It contains two parts: the tunneling lifetime through the barriers
and the decay time τb due to the imaginary part iδ. Their
expressions are given by

τb = h̄

2δ
, τ = h̄

−2b2
1Im[G1(Ei + iδ)]

. (17)

The lifetime τ in Eq. (17) depends on the value of
G1(Ei + iδ) which is a matrix consisting of coefficients ai and
bi . It is valid and well defined only when G1 is a function that
is independent of energy E. To satisfy this condition, δ should
be larger than the energy-level spacing of the heterostructure
to make sure that G1 will not change much when we vary
the value of energy E. For systems considered here, δ is
chosen to be 2 meV to satisfy the convergence in the Fourier
transform and to obey the rules of longitudinal optical phonons
and carrier-carrier Coulomb interaction in the experiment
[22,28]. The variance of the imaginary part of the PGF and G1

according to the changes of E is plotted in Fig. 2, indicating a
valid value of δ.

FIG. 2. Imaginary part of the modified PGF (red line) and −ImG1

(blue line) as a function of energy in the double-barrier system shown
in Fig. 1.
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TABLE I. Tunneling lifetime of a double-barrier case obtained with PGF only, with
PGF combined with Lanczos method, and with APM [18].

W1 (Å) B1 = B2 (Å) τ PGF only (ps) τ PGF + Lanczos (ps) APM (ps)

100 20 2.500 2.155 2.1
100 40 131.2 114.1 111.48
50 20 0.273 0.234 0.226
50 40 10.70 9.423 8.935

The performance of the combination of PGF and Lanczos
method in the symmetric double-barrier QWs is checked by
comparing the calculated electron tunneling lifetime with the
result of the APM method, which is shown in Table I and
Fig. 3. Using the barrier structure shown in Fig. 1 with the
barrier height Eh = 0.4 eV and the electron mass 0.1me, we
explored several typical cases: the well width W = 100 or 50 Å
and the barrier thickness B1 = B2 = 20 or 40 Å, as listed in
Table I. Apparently, the barrier thickness significantly affects
the tunneling lifetime: as it increases, the tunneling lifetime
should be longer, as expected from intuition. The tunneling
lifetime also increases as the well width enlarges, according
to Fig. 3, which is obtained using the fixed barrier width.
Compared with the results of APM, the PGF approach gives
a reliable tunneling lifetime with acceptable slight difference.
The Lanczos method for generating the eigenvector φ leads to
more exact results, cutting the percentage of difference from
20 to less than 5%.

Figure 4 shows the tunneling lifetime τ as a function of
the well width at different values of the fixed barrier thickness
B (for symmetric case B = B1 = B2). It is found that τ will
increase continuously as we increase W , meaning that the
electron spends more time dwelling between the two barriers.
This can be interpreted from the viewpoint of the distribution
probability of the electron: a larger W provides a more spacious
region for the electron wave function to diffuse, leading to a
more even distribution of the electron, and thus diminishes the

FIG. 3. A comparison of the tunneling lifetime as a function of
the well width obtained with the PGF and APM method. The value
of the barrier thickness is kept at B = 20 Å.

probability of tunneling out (the proportion of the probability
for an electron to be distributed near to the barrier is lower).
Comparison between these four different values of B shows
that larger thickness values cause τ to grow much faster than
it does with small thickness values. With a small value of
B = 35 Å, the increase seems linear, while a larger value
of B = 50 Å shows an exponential increase. The barrier
thickness affects τ strongly in the symmetric system as seen
from Fig. 5. Figure 5(a) shows τ as a function of B with
different values of fixed W. Furthermore, we plot the result of
the tunneling lifetime as a function of the well width while
the barrier thickness is kept at the value of B = 50 Å in
Fig. 5(a) (the purple dashed line). Comparison among the four
curves shows that the barrier thickness impacts the lifetime
more strongly than the well width. Then we choose a special
case of the fixed well width W = 50 Å [shown in Fig. 5(b)]
for detailed exploration. At B < 45 Å, the tunneling lifetime
increases almost linearly, because the very thin barriers fit
the conditions of Tsuchiya et al.’s work [17], in which the
tunneling lifetime can be indicated by the photoluminescence
(PL) decay time, and the increasing rate displays a similar
trend to a classic Newtonian velocity which is a function
of time and length. We call this region the “linear region”
or the “classical region.” On the other hand, the increasing
rate suddenly becomes very large at B > 45 Å, and the curve
behaves like an exponential function. We call this part “the
exponential region,” in which the tunneling lifetime is very

FIG. 4. Tunneling lifetime τ as a function of the well width W
with a fixed barrier thickness B. Different colors indicate the different
barrier thicknesses in the symmetric double-barrier system.
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FIG. 5. (a) Tunneling lifetime τ as a function of the barrier
thickness B with a fixed well width W shown with the solid lines
of different colors The purple dashed line shows τ as a function of
the well width W with the barrier thickness B = 50 Å. (b) Tunneling
lifetime as a function of the barrier thickness B when W = 50 Å. The
two colors show two types of increase.

sensitive to the barrier thickness. The amplitude of the wave
function will decrease exponentially as we increase the value
of the thickness, which causes the curve to behave as shown
in Fig. 5(b).

Asymmetric QWs are structures that other theoretical
methods are incapable of but that are within the capability
of PGF. We then consider an asymmetric double-barrier case
(B1 �= B2), to study how the tunneling lifetime is affected
by the breakdown of symmetry. Figure 6 demonstrates the
results of the electron tunneling lifetime as a function of barrier
thickness B2 with fixed B1 and fixed well width W . As B2 is
enlarged, the tunneling lifetime increases, and the steepest
slope with the largest increasing rate occurs at B2 = 40 Å
(indicated by the black dashed line, which divides Fig. 6 into
two parts: zone I and zone II). After that, the increasing slows
down, and tends to a constant at B2 > 80 Å. It is rational that
the right barrier is very thin in the region of zone I, thus the
electron will traverse it much more easily, viz., the probability

FIG. 6. The tunneling lifetime as a function of the right barrier
thickness B2, with the fixed left barrier thickness B1 and the fixed well
width W. The black dashed line in the middle represents the symmetric
case B1 = B2 = 40 Å. Zone I denotes the region B2 < 40 Å and zone
II denotes the region B2 > 40 Å.

for an electron to tunnel in this direction is very high. So, the
tunneling lifetime increases quickly as we keep enlarging the
thickness value of B2. For the case of the thickness value B2

larger than 40 Å, the tunneling time keeps on increasing but
not that quickly, because the tunneling electron will meet a
growing resistance on the right side; thus it has an appreciable
probability to choose the left barrier to escape. At B2 > 80 Å,
the tunnel on the right is nearly prohibited and the electron
wave has a significant large probability to tunnel out from
left. Increasing B2 then will not affect the tunneling lifetime
considerably. Therefore, we see a horizontal line beyond
B2 = 80 Å.

Molecular-beam epitaxy, which is a convenient method for
controlling the barrier thickness and well width, is suggested
for the experimental implementation of the double-barrier
AlAs-GaAs-AlAs heterostructures. The double-barrier struc-
ture can be grown on a semi-insulating GaAs substrate: the
GaAs quantum well with the well width W is located in
the middle of two AlxGa1−xAs barriers with the respective
barrier thickness B1 and B2; the whole double-barrier system
is bounded by a GaAs cap layer and a GaAs buffer layer, which
have sufficient thickness. This system allows us to measure the
escape time of an electron in the well by time-resolved PL. We
are able to modify the GaAs layers to control the well width W
and to vary the AlxGa1−xAs layers so as to adjust the barrier
thickness B1 and B2. We suggest choosing very thin barriers
(B < 80 Å) to fit the conditions of this experiment [17].

In conclusion, we investigated the tunneling lifetime in
several typical double-barrier structures of semiconductor
heterostructures, using the PGF method combined with the
Lanczos technique. The relationship between the tunneling
lifetime and well, barrier width, and thickness is explored,
showing that not only the barrier thickness but also the well
width has a strong influence on the system. The symmetric
double-barrier case is further considered, showing an S-shape
curve of the tunneling lifetime as a function of the one-side
barrier thickness, indicating a good agreement with the PL
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decay time in experiments when the barrier is very thin.
Finally, we propose an experimental protocol of the symmetric
or asymmetric double-barrier structures to observe these
phenomena in future research.
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