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Spin-orbit coupling is a single-particle phenomenon known to generate topological order, and electron-electron
interactions cause ordered many-body phases to exist. The rich interplay of these two mechanisms is present in
a broad range of materials and has been the subject of considerable ongoing research and controversy. Here we
demonstrate that interacting two-dimensional electron systems with strong spin-orbit coupling exhibit a variety
of time reversal symmetry breaking phases with unconventional spin alignment. We first prove that a Stoner-type
criterion can be formulated for the spin polarization response to an electric field, which predicts that the spin
polarization susceptibility diverges at a certain value of the electron-electron interaction strength. The divergence
indicates the possibility of unconventional ferromagnetic phases even in the absence of any applied electric or
magnetic field. This leads us, in the second part of this work, to study interacting Rashba spin-orbit coupled
semiconductors in equilibrium in the Hartree-Fock approximation as a generic minimal model. Using classical
Monte Carlo simulations, we construct the complete phase diagram of the system as a function of density and
spin-orbit coupling strength. It includes both an out-of-plane spin-polarized phase and in-plane spin-polarized
phases with shifted Fermi surfaces and rich spin textures, reminiscent of the Pomeranchuk instability, as well
as two different Fermi-liquid phases having one and two Fermi surfaces, respectively, which are separated by a
Lifshitz transition. We discuss possibilities for experimental observation and useful application of these novel

phases, especially in the context of electric-field-controlled macroscopic spin polarizations.
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I. INTRODUCTION

Spin-orbit coupling manifests itself in a great variety of
spin textures in solids [1-11], many of which are associated
with topological effects and states of matter [12-21]. Electron-
electron interactions [22,23], on the other hand, lead to ordered
states, including a large number of phases characterized
by spin ordering [24-33]. It is therefore natural to expect
systems that have strong electron-electron interactions as
well as strong spin-orbit coupling to exhibit a multitude
of exotic, unconventional states of matter. In light of this,
the fascinating interplay of spin-orbit coupling and electron-
electron interactions has received considerable attention in
recent years, in materials ranging from topological insulators
to conventional semiconductors [34—44].

Besides the fundamental scientific importance of the
subject, current interest in it is fuelled by its inherent great
potential for technological applications [45]. Present-day
information technology is based on semiconducting and spin-
based devices to store and process information. Combining
magnetic and semiconducting properties may lead to faster and
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more efficient operation with minimal power consumption.
This merger was attempted in the past using ferromag-
netic semiconductors, but the achievement of larger critical
temperatures 7, required sizable concentrations of magnetic
impurities, leading to seemingly intractable difficulties such
as very low mobilities and phase separation [46-55]. One
aim of the present work is to perform a conceptual study to
determine whether, in a series of selected model systems, spin-
orbit coupling can provide an avenue to combine magnetic
and semiconducting properties without resorting to magnetic
doping. In this context, the larger question is whether spin-orbit
coupling can be harnessed to generate and preserve spin
polarizations in equilibrium, which in the long run could
foster the development of long-sought spintronics applica-
tions. In this work, we answer the above questions in two
steps.

We first study the spin polarization induced by an electric
field in a Rashba spin-orbit coupled system in the presence
of electron-electron interactions. The current-induced spin
polarization is also known as the Edelstein effect [56-61],
and a spin polarization is understood as an average over the
individual spin orientations of the electrons in all occupied
states. Our transport formalism captures spin-orbit coupling,
disorder, and driving fields on the same footing, while
treating electron-electron interactions in the Hartree-Fock
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approximation. We find that a generalized Stoner criterion can
be formulated for the electrically induced spin polarization,
predicting that at a certain interaction strength the spin density
response to an external electric field diverges. Beyond this
point in parameter space the spin polarization is sensitive to
an infinitesimal electric field and as a result the system is
expected to develop a spontaneous in-plane spin polarization
in equilibrium, in a manner reminiscent of the Bloch transition
to a ferromagnetic phase.

The emergence of a dramatic interaction enhancement for
the electrically induced spin polarization motivates a focus on
the equilibrium state in the second step. We investigate the
ground state of the same interacting system in the absence
of an electric field in the Hartree-Fock approximation. This
problem has been studied in the past and indeed phases
that are qualitatively similar to both the IP and OP phases
have been proposed [62-69], as has the well-known Stoner
ferromagnetism [70,71]. The aim of the current work is to give
a more complete description of these phases, particularly the
IP phase, and most importantly to understand the competition
among the various phases and thereby to construct a complete
phase diagram. We give a detailed comparison with previous
work in Sec. VIII. Our present investigation is driven by
the expectation that, since the appearance of an electrically
induced spin polarization is qualitatively different from the
generation of net spin densities via the Zeeman effect,
the equilibrium phase that is expected to emerge when the
corresponding response function diverges will be qualitatively
different from ordinary Stoner ferromagnetism. In the second
step of this work, therefore, we present mean-field analytical
and numerical calculations of the interacting ground state of
a Rashba spin-orbit coupled semiconductor. Our equilibrium
formalism utilizes classical Monte Carlo simulations to solve
the Hartree-Fock equations. Where possible, we compare the
Monte Carlo results to analytical approximations, obtaining
excellent agreement.

A central result of our work is a detailed map of the entire
Hartree-Fock phase diagram for the interacting spin-orbit-
coupled system shown in Fig. 1. It reveals a rich diversity
of phases involving out-of-plane and in-plane spin-polarized
phases even at relatively small values of the Wigner-Seitz
radius r,, as well as a Lifshitz transition [72] between spin-
unpolarized Fermi liquid phases with one and two Fermi
surfaces, respectively. As expected from the nonequilibrium
calculation performed in the first step, the spin-orbit-induced
in-plane spin-polarized state is characterized by a Fermi
surface shifted away from the origin. We further show that
at high values of the spin-orbit coupling and electron-electron
interaction strengths, the Fermi surface is both shifted away
from the origin and distorted, in a manner that recalls the
Pomeranchuk instability [73-80].

The spin-polarized phases that we identify differ qualita-
tively from the customary Stoner ferromagnetism. Specifically,
Stoner ferromagnetism involves an abrupt transition from an
unpolarized to a fully spin-polarized phase (i.e., occupation
numbers at most equal to unity) without any intermediate
partially polarized phases. The spin polarization may point
in any direction, and there is no spin texture in reciprocal
space. In contrast, the spin-polarized phases that we describe
in this work can be either fully spin-polarized or partially
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FIG. 1. Phase diagram of 2D electron liquid with Rashba spin-
orbit coupling obtained by solving the Hartree-Fock equations using
a Monte Carlo method. Here, @ and r, are dimensionless measures
for the strength of Rashba spin-orbit coupling and electron-electron
interactions, respectively: & corresponds to the ratio of Fermi
wavelength and spin-precession length, and r, is the Wigner-Seitz
radius of the 2D electron system. The distinguishing ground-state
features for each individual phase are indicated schematically. For
the paramagnetic Fermi-liquid phase FL1 (FL2), there is no net spin
polarization, and the ground state is a Fermi sea formed from one
(both) spin subband(s). In contrast, the OP phase is characterized
by a centered Fermi surface and an out-of-plane magnetization.
The IP phase is the most unconventional, exhibiting an in-plane
magnetization associated with a shifted Fermi sea.

polarized (involving occupation numbers of 0, 1, or 2). Their
spin polarization can be out-of-plane, in-plane, or tilted in
reciprocal space, and are generally accompanied by a complex
spin texture in reciprocal space, which is directly related to
the spin texture of the Rashba spin-orbit effective field in
the absence of electron-electron interactions. To begin with,
an out-of-plane spin polarization emerges at relatively small
values of 7, as a result of the fact that electrons save exchange
energy by lining up their spins parallel to each other. This
can only occur in a direction perpendicular to the plane so
as to avoid the effect of the Rashba interaction. However, a
weak angular structure of the spin polarization in reciprocal
space reflects the presence of the Rashba spin-orbit coupling
[62,65]. At larger values of ry, the in-plane spin-polarized
phase emerges, which involves the creation of a spontaneous
net spin-orbit effective field and is accompanied by a sizable
shift in the Fermi surface. The spin texture of this phase
becomes exceedingly complex as r; and the spin-orbit coupling
strength increase.

The calculations presented in this work are based on the
paradigmatic [81] Rashba Hamiltonian as a minimal model
of a two-dimensional (2D) spin-orbit coupled semiconductor.
This choice is motivated in part by the expectation that
the proven ability [82-84] to tune independently both the
2D-electron density and the structural inversion asymmetry
that gives rise to the Rashba spin-orbit coupling using external
electric fields will enable experimental access to, and novel
technological exploitation of, the identified unconventional
phases. However, we expect our qualitative findings to hold

235425-2



GENERALIZED STONER CRITERION AND VERSATILE ...

quite generally in 2D semiconductors with strong spin-orbit
interactions [21,85-90].

The emergence of a net effective magnetic field is familiar
from the customary description of electrically induced spin
polarizations, which we recall occurs in gyrotropic materials
[91,92] in a nonequilibrium diffusive regime [56,57]. Stoner
ferromagnetism, on the other hand, has no such symmetry
restrictions. Hence we expect in-plane spin-polarized phases
with shifted Fermi surfaces to emerge in systems displaying
electrically induced spin polarizations. Whereas most 2D
spin-orbit models do give rise to electrically induced spin
polarizations, we stress that the in-plane polarized phases
with shifted Fermi surfaces we reveal in this work are not
a universal feature of spin-orbit coupled systems. In addition
to the requirement of gyrotropic symmetry, it is also necessary
for the system to have two Fermi surfaces in the noninteracting
state. In analogy with Stoner ferromagnetism, one of these can
be regarded as the minority spin subband and the other as the
majority spin subband. Electron-electron interactions enhance
the contribution to the spin polarization stemming from the
majority subband and reduce that of the minority subband.
However, a system in which spin-orbit coupling is dominant,
such as a topological insulator, has a single Fermi surface,
which corresponds to the minority spin subband. Hence we do
not expect exotic in-plane spin-polarized phases in topological
insulators.

The effects we predict are readily observable in experi-
ments. The net spin-orbit effective field singles out a spatial
direction. When a small in-plane external magnetic field is
applied, we expect an anisotropy in the resistance as the
magnetic field is rotated in the plane of the 2DEG. The
system will display an anomalous Hall effect as well, which
we expect to be rather complex in nature, involving a net
effective magnetic field at each point on the Fermi surface.
The calculation of this effect will need to be performed
separately.

The organization of this paper is as follows. In Sec. II,
we develop our density matrix formalism for the interacting
Rashba spin-orbit coupling system under an applied electric
field. In Sec. III, we analytically study the current-induced spin
polarization in the interacting Rashba system and determine
the exact expression for the spin polarization. In Sec. 1V,
we introduce the numerical methods used in studying the
ground state of the interacting Rashba system. In Sec. V, we
numerically determine the phase diagram of the interacting
Rashba system, in which an in-plane spin-polarized ground
state emerges under certain circumstances. In Sec. VII, we
give a complete analytical treatment of the small spin-orbit
coupling limit. The results are discussed in Sec. VIII. We end
with a summary and outlook.

II. DENSITY MATRIX FORMALISM

In this and the next section, we will perform the analytical
calculation on the Coulomb interaction effect on the current-
induced spin polarization in a 2D Rashba spin-orbit coupled
electron system, determining the spin susceptibility to an
electric field in the presence of electron-electron interactions.
We only focus on the density matrix formalism in this
section.
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A. Hamiltonian

The many-body Hamiltonian is

H=3" [(sIHRIs) chyews] + V', )
kk'ss’

where cy; is the annihilation operator for a single electron with

wave vector k and spin index s = &+, and c,tx is the correspond-
ing creation operator. The single-particle Hamiltonian is [87]

Hy = Hoedw + U + He g )

where the three contributions, discussed in the following,
are the band Hamiltonian (Hp), the coupling to the electric
field (Hg), and a disorder potential accounting for short-range
scattering (U). The Coulomb interaction term V* will be
discussed below.

In the presence of Rashba spin-orbit coupling, the
band Hamiltonian takes the following form in the crystal-
momentum representation:

272
Hoyp = —— +ao - (kx32), 3
2m

where m is the band effective mass, « is the Rashba coefficient,
o = (0x,0y,0;) is the vector of Pauli matrices, k = (ki ,ky) is
the in-plane wave vector, and Z is a unit vector along the z
direction. It is possible to include the Dresselhaus spin-orbit
coupling [44], but it is not the focus of this paper. There are
two spin-split bands: the upper band with energy e and the
lower band with energy ex_, where gx.. = h%k*/2m + ak and
k = |k|. For the lower band, there is a ring of energy minima
Emin = —ozzm/Zh2 atk =k, = am/hz.

There are two possible Fermi sea configurations, depending
on whether the upper band is occupied or not. At low density,
only the lower band is occupied and the Fermi sea consists of
a single annulus with inner radius kg ; and outer radius kg o:

Tnh?
kpo = ke + , )
ma

2
wnh

kpi =k — ,
mo

where n is the electron density. From Eq. (4), we see that
a critical carrier density n. = k>/m = m?a®/mh* may be
defined corresponding to the point at which kg; > 0. When
the density exceeds n., the upper band is also occupied and
the Fermi sea is composed of two circular Fermi disks with
opposite spin alignments. The radii of the upper and lower
disks are, respectively,

kpp=y/2nn— k2 — ke, kp_=.2nn—kZ+k.. (5)

We consider a uniform electric field applied in the plane
of the sample. Working in the Pauli basis of spin eigenstates
of the matrix o, the potential eE - r describing the coupling
to the electric field E = (Ey, E,), with r the position operator
and e the elementary charge, is simply represented by

0
Hpy =ieE - —. 6
e =ieE - o (6)
The disorder potential in real space is conventionally
written as

U(ry=Y_ U —R)), (7
1
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where summation over [/ indicates the inclusion of all
impurities and R; is the impurity coordinate. The configu-
ration average of the short-range disorder potential U in the
reciprocal space is

(kIUK) (K'[U k) = n|Unie P/ A, ®)

where n; is the impurity density and A is the total area.
The Coulomb interaction V takes the standard form

1
e S S s ©
kk'ss’ g#0

In 2D, the screened Coulomb potential matrix element for
momentum transfer ¢ = k — k' is

2

"~ 2e.80(kTrE + Iq1)

where krg is the Thomas-Fermi wave number and &, is the
static dielectric constant. Finally, the Wigner-Seitz radius r; is
introduced by

v, (10)

mez

Vg = —m—m——————,
Ame,eoh’ /TN

which represents the relative strength of the electron-electron
interactions to the average kinetic energy. We note that,
although strictly speaking the Wigner-Seitz radius is poorly
defined in multiband systems, here we use the definition of r;
for @« = 0 purely as a convenient dimensionless parameter to
quantify the strength of the electron-electron interactions.

D

B. Kinetic equation

We follow the density matrix formalism for the kinetic
equation of the interacting systems [21,88,93]. The quantum
Liouville equation for the many-body density matrix F is

dF
dt

where H is the many-body Hamiltonian (1). The one-particle
reduced density matrix is

+%[H,F]=O, (12)

Prp = Tr(cy s F), (13)

where Tr is the trace over all variables including momenta and
spins. By employing Wick’s theorem we obtain an effective
single-particle kinetic equation [21]

ey L il + 0G0 = S L g, 0
where fy is the k-diagonal part of the single-particle density
matrix p, J(fx) is the Born scattering term due to the impurity
scattering potential U, and By, is the Hartree-Fock mean-field
Coulomb interaction. Note that f; is a 2 x 2 matrix since
we do not write the spin indices explicitly. The interplay of
electron-electron interactions and disorder involve only the
k-diagonal part of p. The contribution of its k-off-diagonal part
is associated with Altshuler-Aronov corrections [94,95], which
is not the focus of this article. Similarly, weak localization and
antilocalization corrections to the semiclassical limit are not
included in our study, which allows us to write J( f) in the
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first-order Born approximation as follows [87]:

_ dk' 2 [T s
I0 = tim [ 5 Wl [ e
% [efiHOk/t/ﬁ(fk _ fk/)eiHOkt/h
+e R fi — fro)e! T, (15)

The electric-field driving term D,f = (eE/h) - (0fx/0k) is
nonzero when the term (6) is included in H. The mean-field
(exchange) Coulomb interaction By can be written as

dk’
—— Viw fis (16)

Bi(fi) = )2

and then Tr[(—By) fx] gives the expression of the exchange
energy by using Eq. (10) [which corresponds to the exchange
energy appearing below in Eq. (34)].

III. INTERACTING SPIN-ORBIT COUPLED ELECTRONS
IN AN ELECTRIC FIELD

For a Rashba spin-orbit coupled system, the electrically
induced spin polarization is calculated by solving the kinetic
equation (14). The dynamics of the spin-density matrix can
be derived for a general spin-orbit coupled system. We will
concentrate on the zero temperature case in this section.

A. General decomposition of the density matrix

Most generally, the density matrix can be decomposed as
Jfx = ngl + Sy + Sk1. The scalar contribution nj represents
the charge density, while Sy is the fraction of the spin density
at each k parallel to the Rashba effective field o3 = o - (k x
2), and Si is the part perpendicular to the Rashba field. We
can write Si | & oy, where o, =0 - kis orthogonal to oy
in the sense that troy | oy = 0, with tr the spin trace.

The philosophy of our approach can be summarized as
follows. We begin with the noninteracting system, so By is
zero. To achieve this formally one could let, e.g., the relative
permittivity &, — oo. In the absence of an external electric
field, there is no net spin polarization in the system, whereas
when an electric field E is applied to the noninteracting system
it gives rise to a finite electrically induced spin polarization.
At this point, we turn on the electron-electron interaction,
and in the presence of a nonzero electrically induced spin
polarization By itself becomes nonzero. This nonzero field
is inserted into Eq. (14), which is then solved to yield an
additional contribution to the spin polarization, which in turn
gives rise to a new contribution to By, and this self-consistent
process is iterated in search of a closed-form solution.

It is important to note that (i) B; enters the kinetic
equation through the commutator [Bg, fx] on the right-hand
side, and that (ii) By o« E. Within the framework of linear
electric-field response, one may therefore replace f inside the
commutator by the equilibrium density matrix, given below,
which commutes with the spin-orbit Hamiltonian. This implies
immediately that all terms involving the identity matrix and
oy drop out of the commutator, and the electron-electron
interaction correction only affects S, . As a result there is
no enhancement of the charge density. Only the spin density
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is enhanced, that is, the difference between spin up and spin
down.

B. Noninteracting case

Without the electron-electron interactions, B; =0 in
Eq. (14). The transport equation (14) is then much simplified,
and can be evaluated by using Eq. (3). In this section, we will
assume mao/li’kp < 1 so a perturbative treatment of « is used
to calculate the spin polarization.

The Fermi-Dirac distribution function of the Rashba system
takes the general form

+ - + -
for = Jok T fox +a~(1}x2)f0k fOk’ (17)
2 2
where foj,i = O(er — &r+) with O(x) is the step function at
x = 0 and k is an unit vector along the k direction. The Fermi
level of the Rashba system er = /i%k2/2m + m & /h*, where
kr = ~/27mn is the Fermi wave number in the absence of spin-
orbit coupling. In the leading order in «, Eq. (17) becomes

R2k3 R2k3
Jor = @<2—mF - 8Ok> — €50,k 5<2—mF - 80k), (18)

where o = ﬁ2k2/2m and eso x = @ 0 - (k x ) is the Rashba
spin-orbit term.

The applied electric field will induce a correction to the
density matrix fgg, so the total density matrix will be written
as

fe = fox + fEk, (19)

with corresponding decompositions for ny and Si. The
scattering term (15) can be decomposed as J(fx) = J(ng) +
J(Sk) + J(fier), while J(for) = 0. In the order of o, we
obtain, from Eq. (15),

2mnju’® / do’

J(ng + Sgp) = N E[(”k + Sk) — (e + Swep)]s

(20)

where we write Uy = u for short-range impurities. For the
model we study, it is safe to write Eq. (20) as J(ng + Sk) =
(nk + Sky)/70 where 7, ' = mnju? /R

In linear response, the driving term D,f that is due to
the electric field can be approximated as D,f ~ (eE/h) -
(0for/9k), whose parallel component to the Rashba field is, in
the leading order in «,

eamE - k
52
Note that, up to linear order in «, there is no o component in

D,f . The solution of the kinetic equation (14) is simply Sk =
7 D,fH, so the noninteracting y-direction spin polarization is

Adk 1 eaE,Am 1
©) _ T ho, Sy | = ——— . (22
»~ ) @y r<2 g "") e

This is the current-induced spin polarization due to the Rashba
spin-orbit coupling [56-61,91,92]. Note that Eq. (22) also
matches the expression for the 2D Dirac fermions [87] in

E s !
Dy =— k|| 50k = ke) = 28k —ke) . (21)
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which the Rashba spin-orbit coupling is the dominant term in
the Hamiltonian.

C. Interaction enhancement of the current-induced
spin polarization

In the presence of the electron-electron interaction, we will
add By [see Eq. (16)] to the kinetic equation (14) and then
self-consistently solve for the density matrix. We will keep
the leading order in « in the spin polarization, and observe a
divergence when the electron-electron strength r, exceeds a
critical value.

The self-consistency in solving the kinetic equation (14)
relies on the iteration of the density matrix solution Sy, as
shown in Refs. [21,88]. We start the first iteration by setting
fx = fok, which corresponds to the noninteracting results. The
resulting first-order term in By takes the form

(1) e3TOExotm
7 e, eohike

where we only keep the o3, component because the parallel
component drops out of the commutator with Hog. The
definition of I,(k) is

o [ sty
0o 27kt + q(k,kg,y)
kp(kg — kcosy)
[ "~ Tkrr + gk ke, y)1g Gk ke, y)

I,(k)sinB oy, (23)

} . (24

where g (k,kg,y) = \/ k2 + k12: — 2kkg cos y. The driving term
due to the electron-electron interaction becomes

D = LB )~ LB 5] @50

70023 E .m?
27 e, e0hilke

where Sy is the spin-dependent part of fo, [see Eq. (18)],
which may be displayed as

L(k)8(k — kg)sinf o,, (25b)

mo A
Sok = =70 - (k x 2)8(ke — K. (26)

With Dze’(l) appearing on the right-hand side of the kinetic
equation (14), we obtain
ds;) L

dt h

The solution of Eq. (27) is found straightforwardly as

[Ho. Sy ] = Do @7

o0
S](clj — 811)1.{)1+ i efngkf/ﬁ Die»(])eiHo;‘t/ﬁ eftstdt’ (283)
noae’ Evm? | (k)8(k — kg)sin 6 (28b)
= -7 — S1In 6o, .
dre, eohiokek ; ke

Then the first-order interaction enhancement of the spin
polarization is

Adk 1
1 — ) _
Sy = (271)2 Tr (EFIO'},Skl) =

rs1p(kg)

23/2

O — (V]
sy =k1sy .

(29)
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The second iteration is performed as
etEcam
2,80k ki

where the definition of I3(k) is

BY = Bi(s))) = M L(k)sindory,  (30)

dy  kpcos’y
(k) = f L Fm 7 31
= ) ke + gk G
For s;,z), we obtain
s = rLkp)s" /V2 = doslh. 32)

For the third iteration, we will write out S,(i) = )LZS,((IL), and

finally we get s = A2s§,2). Thus, for the nth (n > 0) iteration,
we have 50" = A5V~ = kgflsy).

To summarize, after having considered the electron-
electron interaction, the corresponding spin density correc-
tions, which only act parallel to the spin-orbit Hamiltonian,
are then iteratively calculated by including an effective Hamil-
tonian (16) as the driving source. The correction to the spin-
polarization stemming from electron-electron interactions is
represented by a geometric series, which can be summed
exactly. The total spin polarization of the system can be written
as

o0
sy = s;o) + Zkg_ls;l) = <1 + li—lkz)s;())’ (33)
n=1

with A, < 1. From Eq. (33), the spin polarization s, will
diverge if ry = «/5/ I5(kg). Thus, whereas the Edelstein effect
reflects a small perturbation in response to the electric field, the
divergence in this response signals a sizable enhancement. In
other words, when the electron-electron interactions become
sufficiently large, the spin polarization of the system will
respond to any small electric field. The response function
characterizing the Edelstein effect is proportional to the
product of the spin-orbit constant « and the scattering time
7, and we note that both of these drop out of the condition
for the divergence of the spin polarization. If we compare this
to the divergence of the Zeeman response to a magnetic field,
leading to the customary Stoner criterion for ferromagnetism,
it is evident that the role of the magnetic field in our setup is
taken over by the electric field, while the quantity ot plays the
role of the g factor. In fact, one way to visualize this effect is
to consider the spin-orbit coupling, the electric field and the
scattering time as giving rise to a net effective magnetic field
[96]. It is the spin response to this magnetic field that diverges.
In contrast to Stoner ferromagnetism, the spin polarization
here is not free to point in any direction, but is constrained to
lie in the plane because the net effective magnetic field lies
in the plane. Note once more that the divergence occurs only
in the spin-dependent part of the response function, not the
charge part. The latter is not renormalized by electron-electron
interactions.

These results suggest that at a certain interaction strength
the system becomes susceptible to infinitesimally small exter-
nal electric fields. This in turn suggests that the system tends
to develop a net in-plane spin polarization in the absence of
an external electric field. Moreover, since the nonequilibrium
spin polarization is accompanied by a shift in the Fermi surface
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away from the Brillouin zone center leading to the formation
of a net spin-orbit effective field, we expect the equilibrium
spin-polarized phase to have a Fermi surface displaced from
k = 0 and a nontrivial spin texture. In other words we expect
the system to develop an equilibrium phase with a nonzero
in-plane spin polarization that is physically distinct from
Stoner ferromagnetism and is associated with the creation of
a net spin-orbit effective magnetic field, whose spin texture
may be rather complex. The near-equilibrium approach we
have pursued so far cannot give us further insight, and to
determine the conditions for the existence of this equilibrium
phase as well as its qualitative nature we need to examine
the Hartree-Fock phase diagram of the interacting system in
equilibrium.

IV. INTERACTING SPIN-ORBIT COUPLED ELECTRONS
IN EQUILIBRIUM

We have seen that a small electric field, whose effect is
to shift the Fermi surface, can induce a spin polarization in
an interacting spin-orbit coupled system. This immediately
suggests the possibility that interactions alone could shift the
Fermi surface. The resulting state would carry no electrical
current, a fact that we will demonstrate explicitly below, but
would nevertheless have a net spin polarization. This is in
addition to the theoretical background for the 2D electron
gas with no spin-orbit coupling, which has a transition to
a ferromagnetic state at low density. Thus there are two
candidates for a spin-polarized state: the out-of-plane (OP)
state [62,65] and the in-plane (IP) state. The terminology refers
to the spin directions relative to the plane of the 2D system.
We find that these OP and IP states compete in a nontrivial
way and both appear in our final phase diagram, shown in
Fig. 1. The OP state may be thought of as a spin texture that
interpolates smoothly between a purely ferromagnetic state
with all spins pointing in the +z direction, which minimizes
the exchange energy, and the unpolarized Rashba-spin-split
Fermi-sea state, which minimizes the spin-orbit energy. Given
this description, we expect the OP state to become favored as
the density decreases, and this is indeed seen in Fig. 1. The
way this evolution takes place in momentum space will emerge
below in Fig. 3.

The IP state is actually a collection of spin textures
whose precise configuration depends on spin-orbit strength
and density, all of which are characterized by the spin direction
lying in the plane of the 2D system. While the OP state is in
some sense a perturbative modification of the venerable Bloch
ferromagnet by the spin-orbit coupling, the IP state is more
exotic. Its existence is perhaps best understood in the ideal
limit of large spin-orbit coupling k. >> kr, when the Fermi
disk moves way off the center of the Brillouin zone to a
location around k = k.. While maintaining a nearly circular
occupation has a small noninteracting energy cost [compared
to the annulus of Eq. (4)], the spin-orbit field is almost
constant on the displaced Fermi disk and does not compete
with the exchange field. Thus ferromagnetism is favored by
both exchange and the spin-orbit coupling, which is the basic
mechanism that drives the IP phase. Hence we expect low
density and large spin-orbit coupling to drive the IP phase,
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and this is reflected in the large area of the phase diagram (see
Fig. 1) that the IP phase occupies.

Our only assumption on the magnetic ordering of the
ground state is that each k-state corresponds to a definite spin
direction. This does exclude some types of spin-density-wave
(SDW) states [97]. Although SDW states can have a lower
exchange energy than the paramagnetic (PM) state [98], SDW
phases are usually disfavored by correlation effects beyond the
Hartree-Fock approximation (see, e.g., Ref. [99]), so we expect
that this will not change qualitatively the critical r; for the
ferromagnetic transition. Nevertheless, we cannot exclude the
possibility that SDW states may appear in the phase diagram
and this is a promising area for future research.

A. Total energy

We now consider the system without an electric field.
We also set the disorder potential equal to zero which is
permissible as long as localization effects are negligible. We
expect this to be the case in a system with strong spin-orbit
interactions, in which weak antilocalization rather than weak
localization occurs at larger disorder concentrations. In the
statically screened Hartree-Fock approximation, the exchange
energy of the system can be written as

1 Tr[e? )
Ey = —— Z tle” fi fi'] _ (34)
A parrd 2¢e,e0(kTr + |k — K'|)

where f; is the single-particle spin density matrix. The
total energy of the system becomes Ex = Tr[ f Hox] + Eex.
For convenience in the following numerical simulation the
exchange energy (34) may be rewritten as

e*[sk - S + ni nil

1
Ey=—— ,
YA ,;f 4 ereollerr + 1k — k')

(35)

where ny = (1/2) Tr f and s = (1/2) Tr(o fi) are the elec-
tron’s occupation number and net spin polarization at k,
respectively, so the spin structure in Eq. (34) is replaced by the
vector product of spin polarizations. Finally, the total energy
becomes

h2k? .
Ew=Y [g”k +ask - (k x 2)} + Eex, (36)
k

which will be a key variable in the following numerical
simulations.

B. Numerical procedure

We wish to minimize E; with respect to the occupation
numbers in momentum space and the spin directions. The
variables in Eq. (36) are classical so we can use a clas-
sical Monte Carlo simulation to find the minimum-energy
configuration. This is a significant advantage of the Hartree-
Fock approximation. In the future, spin-orbit-coupled systems
should also provide a fruitful area for the quantum Monte
Carlo method. Some efforts have already been made in this
direction, but have so far focused on the paramagnetic states
[100].

For our classical Monte Carlo simulations, we discretize
the reciprocal space a simple equidistant mesh in x and y
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direction, and replace the k-integral by a summation over Ng;s
discrete wave vectors. Each mesh point k in reciprocal space
is characterized by two variables, the occupation number 7y
and the embodied spin direction s;. The occupation numbers
ng can be 0, 1, and 2, which indicates an empty site, single
occupancy, and double occupancy, respectively. If ny = 0 or
2, we have sy = 0. If ny = 1, the spin direction s is a unit
vector that is free to rotate in three dimensions (3D), it is
therefore characterized by two angles, the polar angle 6 and
the azimuthal angle ¢. Note that this search method is limited
to Slater determinants of momentum eigenstates, so it does
not find all candidate ground states. For example, spin-density
wave states are outside the search space.

The choice of the discretization number Ny of the Fermi
surfaces in the Monte Carlo simulations was determined by
running-time limitations and the desire to minimize numer-
ical errors. The running times of the simulations increase
quadratically with Ngjs, so a reasonably small Ngs < 1000
is employed. In order to compare the energies quantitatively,
the value of Ngy;s was set to be fixed during all simulations, but
it was increased when necessary to identify phase boundaries.
In order to control the numerical error, there will be a lower
limit for Ny;s. Also, in determining the phases at small Rashba
strength [@ < 0.1, see Eq. (37) below for the definition of
@], we always need to increase Ngjs for more accurate Fermi
surface structures.

In the following, we will assume that the screening effect
is negligible due to the low electron density, so ktp = 0. The
divergence of V, does not cause any difficulty since the g =
0 term is absent from the discrete summations, due to the
neutralizing background [22].

The Monte Carlo simulation utilizes random numbers to
decide the evolution of the system status and calculate the
averaged value of observables. In our case, the acceptance
criterionisexp[—(E,+1 — E,)/kgT] > w, where E is the total
energy, kg is the Boltzmann constant, » is the step number and
 is a random number from O to 1. In the following, we will
set T = 0, which gives a “greedy algorithm” that only picks a
lower energy state in every step, although the 7 > 0 case will
generally give information about critical temperatures of these
ferromagnetic transitions. In each step, we will allow two types
of trial changes: the spin direction and the occupation number
changes. The spin direction change is quite straightforward,
so we make it at first. In the occupation number update, we
move one electron from a random occupied site to another site
that is not fully occupied (ny < 2). Note that the choice of the
receiving site is random in the reciprocal space but, to improve
the efficiency of the algorithm, we assign a higher probability
to the sites around the initial site. All the other available sites in
the reciprocal space can still be reached, although with lower
probability. When the receiving site was previously empty
(ng = 0), we need to transfer the spin of the previous site to
the new one allowing random spin rotations. We parametrize
the spin direction in terms of the Euler angles with 6 the
polar angle and ¢ the azimuthal angle. We set a maximum
change for both 6 and ¢, while the actual changes are evenly
selected between zero and the corresponding maxima. We first
change the azimuthal angle ¢ ([0, 27]) and then the polar
angle 6 ([0, w]). For the special case in which the receiving
site is already singly occupied, (n; = 1), the Pauli exclusion
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principle requires that the transferred electron has the opposite
spin direction to the electron currently occupying the receiving
site.

V. NUMERICAL RESULTS

We plot the phase diagram in Fig. 1, as a function of the
dimensionless variables r;, and

moa dmey
Rymn e
where r; was defined in Eq. (11) while & is a measure of
spin-orbit coupling relative to the kinetic energy. We use E\j, as
the common base to characterize the strength of both Coulomb
interaction and the spin-orbit coupling. There are four different
phases in Fig. 1: FL1, FL2, OP, and IP phases, which will be
discussed in detail in the following sections.

&= g rsa=007¢r,a@€VA), ((37)

A. Fermi liquid phases

The FL1 and FL2 phases are the conventional Fermi
liquid (FL) states with one and two occupied spin subband,
respectively. The only effect of the exchange interaction is
to renormalize upwards the strength of the Rashba term
[37,38,62,64]. There is no net spin polarization. The phase
boundary separating FL1 and FL2 is well described by
the (noninteracting) critical density equation n, = m?a?/mh*
as noted above, which would give a horizontal boundary
&. = 1. The exact boundary after considering the exchange
interactions is

G142 (38)
2
where IC > 0.916 is the Catalan’s constant. The small upward
slope is an indication that the interaction slightly favors the
FL2 phase, due to the effect of the ngny term near k = k' =
0 in Eq. (35). The spin-orbit energy vanishes in first-order
perturbation theory in the FL2 phase.

The quadratic dependence on spin-orbit-coupling strength
for the total energy of FL phases is expected because, when o
changes sign, there will be no energy change at all. The total
energy of the FL2 state at & = 0.12 is plotted in Fig. 2, where
the linear r, dependence is expected if |7y — ;| ~ 0.1 and r{®
is any transition point.

B. OP phase

As rg increases, the interaction becomes more effective,
producing a tendency towards ferromagnetism. When o = 0,
there is the classic Bloch transition that occurs at

o 3«/571
C16(v2 - 1)

to a ferromagnetic state with magnetization along an arbitrary
direction. The numerical calculation is in excellent agreement
with this analytical result, see Fig. 1.

When « is finite, then the ferromagnetic phase is modified
to one that we refer to as the OP phase. The spins have a
z component and a component along the effective field due
to the Rashba coupling. Thus at small £ they point nearly
along the z direction, but as k increases they follow the

~ 2.011
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FIG. 2. The total energy E\y plots of the FL2 (black solid line)
and OP (orange dashed line) states vs r; at @ = 0.12. The units of the
energy are N, /i’k2/2m, where N, = nA is the total electron number.
We can see the linear r; dependence of the total energies when r; is
close to phase boundaries, which allows us to use the linear fitting to
determine transition points.

spin orbit-induced field. This is shown in Fig. 3. This spin
structure was first pointed out in Refs. [62,63]. The underlying
physical implication of the spin structure of the OP state is
the competition between the exchange interaction and the
spin-orbit coupling. The exchange interaction favors uniform
alignment of all spins, while the spin-orbit coupling favors
alignment of spins following the local fields.

The transition from FL2 to OP is first-order, as we can see in
Fig. 2, so the boundary is given by the equation Eg,(rs,00) —
Eop(rg,a) = 0, in an obvious notation. The effect of « on
the OP energy is quadratic. This then implies that the phase
boundary between the FL2 phase and the OP phase is vertical
at @ = 0, since the boundary equation reduces to ry(x) =
ro(a = 0) + r/a?/2,and then& ~ |ry(@) — ry(@ = 0)|"/?. The
quadratic coefficient r; is slightly negative, favoring the OP
phase.

C. IP phase

The right half of the phase diagram in Fig. 1 is the IP phase,
which is the main finding of this paper. The key feature of the
IP phase is that the spin polarization is completely in-plane,
see Fig. 4. Compared with the OP state, the IP state does not

FIG. 3. The OP phase at@ = 0.3 and r;, = 2.02 in a 3D view. The
OP phase comprises of a single band with circular Fermi surface and
nontrivial out-of-plane spin polarization. Its in-plane spin polarization
cancels out after summing over all the occupied states.
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FIG. 4. (a) and (b) The IP phase at & = 0.12 and r, = 2.25, and
& =1.13 and ry = 2.12. In (a), the ratio &@/r; ~ 0.1 is small and
the Fermi surface is roughly symmetric with spins almost parallel
aligned. In (b), the ratio &/r; ~ 1 is large and the Fermi surface is
deformed into a “heart” shape. The blue dot in (a) indicates the center
of the displaced Fermi surface. The spin texture in (b) follows the
Fermi surface deformation, and the spins are winding around a center
below the x axis.

have any symmetry on the Fermi surface, though both of them
only have a single band. The spin texture of the IP state is also
exotic and depends on the form of the Fermi surface. When
a/rs is small (~ 0.1), the Fermi surface is roughly a circle
and all spins are almost parallel aligned, as shown in Fig. 4(a).
In the limit of r; — oo, the Fermi surface becomes a rigid
circle, and the displacement of the Fermi surface is exactly
Ak = k., as required by the zero current condition. Here the
displacement can be along any in-plane directions and the
spin polarization is always perpendicular to the displacement
vector. In the large & /r;(~ 1) case, the Fermi surface becomes
“heart” like, see Fig. 4(b), and the spin texture takes on a
complex form. The shape of Fig. 4(b) is reminiscent of the
Pomeranchuk instability.

Ata = 0, the direction of the magnetization is arbitrary for
all r;. However, any small field destroys this isotropy, and the
spin-orbit field can play this role. This is what happens at the
point where the OP-IP phase boundary intersects the &@ = 0
axis in Fig. 1. At any finite & the symmetry is broken and we
have either the OP or the IP phase, depending on the value
of ry.
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D. Other phases

We recall that, in the noninteracting Rashba electron
system, for n > n., there are two circular Fermi surfaces,
while for n < n. there is a single disc-shaped Fermi surface.
It was recently shown using the Hartree-Fock approximation
that, for n < n., this disk can break up into two pockets with
either ferromagnetic or Neel order [67]. We note that in a
semiconductor 7, is extremely small and is nearly impossible
to realize experimentally, though it may be achievable in cold
atom setups. Hence we have not attempted to locate these
phases.

VI. MAGNITUDE OF THE FERMI SURFACE SHIFT

Because of the complexity of the k-space occupation in
the IP phase, numerical calculations are required to fully
understand it. However, it is important from several points
of view to have a qualitative understanding of the rough size
of the magnitude of the shift of the Fermi surface in k space. So
here we present asymptotic analyses to give semiquantitative
estimates of the shift in different parts of the phase diagram.
We define the average shift ¢ by the equation

N fdzkknk
1= T kny

where ny, is the occupation of state k summed over spin. The
direction of ¢q is not fixed by the Hamiltonian since the IP phase
is the result of a spontaneously broken rotational symmetry.
The magnitude is of great interest, since the larger ¢ = |q] is,
the easier it will be to detect experimentally.

For a rough estimate of ¢, we only need to understand the g
dependencies of the various contributions to the total energy.
The kinetic energy is the simplest. For parabolic bands, we
have for each k state that a shift by g increases the energy from
1%k2 /2m to B*(k + ¢)*/2m. On integration over k, the cross
term approximately cancels and we find that the dependence
of the kinetic energy on ¢ has the form /?¢?n/2m.

Atsmall g (¢ < kp), the spin-orbit energy is quadratic in g
and we write it as —a,ng?” but at large g (g > kp), it is linear
since the spins follow the effective field in that case and we
have —ang. Atsmall g (¢ < k), the exchange energy is also
quadratic in g : —aexng® but at large g (¢ > kr) it saturates
since the spin polarization is complete and the asymptotic
exchange energy density is Ecx/A.

A. Near the FL1-IP boundary

This transition is continuous and ¢ may be regarded as the
order parameter of the transition: its appearance marks the
onset of the spontaneous breaking of the rotational symmetry
and a Ginzburg-Landau analysis is appropriate. For small ¢,
the difference in energy of the two phases is

Epy — Ep (712”

A m - aso_aex>q2+0(q4)v for q < kF

The transition is signaled as usual by the change in sign of
the quantity in parentheses. ay, increases with « and a,. with
rg, giving the rough shape of the phase boundary. g grows
continuously from zero. Interestingly, there is no identifiable
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large ¢* term in this analysis, suggesting that g grows very
rapidly as we move away from the phase boundary.

B. Near the OP-IP phase boundary
This is a first-order transition, so the energies of the two
phases need to be estimated separately. We have
Er(q) _ R2n? h2nq2
A m + 2m
For the OP phase,

- asonqz - aean2~ (39

Eop R’mn?  2mesoad(wn)?

A m 3e2(1-C)

where C is a pure number that describes the spin-orbit energy
in the OP spin texture.

Setting Eop = Epp we see that g is proportional to « along
the IP side of the phase boundary. Thus g vanishes on the
horizontal axis in Fig. 1 and grows linearly along it. However,
at the upper end of the boundary where we come to the FL1-IP
boundary, ¢ must again vanish. Hence we expect that g will be
small along the OP-IP boundary and this expectation is borne
out by Fig. 4(a).

C. Deep in the IP phase
At large ¢, we have

Lo _Fn o, 1
J o= EC] —ong — XEe)u for g > kr,
with an equilibrium
_ ma
q= w2

Thus the magnitude of the shift is determined by the com-
petition between spin-orbit energy and kinetic energy since
the exchange energy is saturated. We have returned to the
noninteracting case, since this value of g is just same as the
shift in the minimum of the noninteracting dispersion relation
caused by Rashba spin-orbit coupling. This shift can be large,
as seen in Fig. 4(b). The equation also predicts that the shift
is approximately independent of r; deep in the IP phase. We
have verified this in the numerical simulations, though we do
not present a detailed analysis here.

VII. THE LIMIT OF SMALL SPIN-ORBIT COUPLING

Although for general parameters the ground state has
complex features which can only be characterized numerically,
an analytical treatment can be developed in the regime of small
spin-orbit coupling. This treatment, which is complementary
to the solution of the HF problem by the classical Monte Carlo
minimization, is described in this section.

Since only one spin band is occupied in the ferromagnets,
we consider a state described by fi = ni(1 + 0 - 0)/2, where
ng = 0,1 and @y is a unit vector. ny and @4 have only small
corrections (of order «) from their unperturbed values:

nk = O(N2kp — k) = no(k),

where 6, gives the polarization direction of the ferromag-
net. Our analysis is based on the single-particle mean-field

0r = 0o, (40)
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Hamiltonian

k2 dk
Hox — By = — (k% 2)— | = Vi S,
=B =—"-+ao-(kx2) /(271')2 -k Ji

(41)
which should be solved self-consistently for the HF ground
state. This implies the following condition:

1 dk’ ny
0 = C—|:a(2 x k) + ka’_kak’]~ (42)
k

2m)? 2

The physical meaning of Eq. (42) is that the spin direction 0
must be parallel to the total effective field at k, which is the
sum of the spin-orbit and exchange fields (the two terms in
the square parenthesis). Cy, is a scalar insuring that @, is a unit
vector. In the unperturbed case, Cy is isotropic:

dk’ no(k')
Qnp KT

Cr = = Co(k). (43)

Once suitable spin directions are found, the single-particle
energies are given by

272
&k =—4akx3) -0
2m
dk’' 1+6,-0
~ ] anp k,kfnk/Tkk. (44)

For the ground state, €; must be constant on the Fermi surface.
At o = 0, this is automatically true because ¢ is a function of
k. However, both ny and @ are generally anisotropic at finite
a, which makes the requirement of a constant Fermi energy
nontrivial.

A. Spin texture

We start from the corrections to 6; which, to lowest
order in «, are orthogonal to 6y. In the following, we
assume without loss of generality @ - § = 0. Discarding o>
corrections, Eq. (42) gives

dk’ no(k")
ky —View——0r - y|. (45
[ot + )y ek Ty Ok y:| (45)

Or -y =

Co(k)
Here, the angular dependence of 6 -y is determined
by the perturbation ok,. Therefore we define 6y -y =
o?rs‘ISG(k/kp)kx/k and transform Eq. (45) in a one-
dimensional integral equation for §6(p):

drp + [, dp'(p - p'lp — p'I7)86(p")
Jpdp'lp =PI

where p = k/kr is a dimensionless vector, with direction
P = p/p. The integration domain D corresponds to ng(k)
and is a disk with radius ~/2. The solution of Eq. (46) is found
numerically and is shown in Fig. 5.

The analysis of the component along (fy x y) is similar
to 0y - y. It turns out that the solution of Eq. (46) fully

characterizes the spin texture of the perturbed ferromagnet
which has the following form:

kxj’ + ky(00 . 2)(00 X 3’)
X .

86(p) = . (46)

(47)

0 ~ 0+ ;159(1(/1@)
N
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FIG. 5. Solution of Eq. (46). The function 80 (p) determines the
spin texture of the ferromagnetic states at small «, see Eq. (47), as
well as the critical point r}*, see Eq. (54).

For an OP state, with 6y = 2, the second term of Eq. (47)
becomes proportional to k x Z, i.e., the perturbation has the
same angular dependence of the spin-orbit interaction. On the
other hand, for an IP state with 8y = X, 63 becomes slightly
canted in-plane, along the y direction perpendicular to the
initial polarization.

B. Displaced Fermi surface

To complete our analysis of the ground state, we should find
the effect of spin-orbit coupling on the occupation numbers 7.
To this end, we simplify Eq. (44) by making use of Eq. (47):

hZ k2 N (0 . )k dk’
€ ~ — + oy - X)k, —
K= om 0y (27)?
Since in Eq. (48) the perturbation (6 - X)k, is not constant on
the unperturbed Fermi surface k = ﬁkp, it drives a change
of ny. It is easily checked that modifying the Fermi surface as
follows:

—— Vi—wny. (48)

k— k— —(00 £)§, (with k = V2kp), (49)
yields a constant single-particle energy, independent of the
direction k. Thus, Eq. (49) gives the desired change of the
Fermi surface to first order in «.

Equation (49) is a simple translation of the Fermi surface
which does not affect the exchange contribution to € [i.e., the
lastintegral of Eq. (48) is unchanged for a simultaneous shift of
k and ny ]. Therefore Eq. (49) is decided by the noninteracting
part and can be interpreted on the basis of the single-particle
velocity v, = ik, /m + ao,/h. If we require that (v,) =0,
we obtain (k) >~ (00 X) in agreement with Eq. (49).
As expected, the Ferml surface is unchanged for a OP state
(0 = 2) and the maximum shift is obtained for the IP state

@ = %).

C. Energy and phase boundaries

Finally, we compute the total energy to lowest order in «,
which allows us to discuss the boundaries between different
phases. To make use of the previous characterization of the
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ferromagnets, we can apply standard results of linear-response
theory to the total Hamiltonian H = H,. With a obvious
notation (i.e., R = Hgp/a), we write

Ha = HO + Ole (50)

where the ground state [|i,) gives the total energy E, =
(V| Hy| ¥y ). The susceptibility xgg is defined by

(Va|RIYa) = XrRO (5D

and is related to E, as follows [22]:
Eq = Eo+ 5Xrre” = Eo + 3 (ValaR|Ys).  (52)

The last equation is very convenient, because it expresses the
change in total energy as one-half of the spin-orbit interaction
energy. Since the spin-orbit interaction is already linear in «,
the first-order corrections to |1, ) are sufficient to obtain the
desired oc a? energy change. Explicitly,

Ea - E() o dk

ng O - (k x2)

N,  2nJ) @n)?
_ o’m ,  1+(00-2)7°
N 2h2 |:(00 o \/Ers
V2
x / 89(p)p2dp:|, (53)
0

where in the second line we have used Egs. (47) and (49). Since
By - £)> =1 — (0, - 2)%, the above expression shows that the
minimum energy is attained by the OP phase at sufficiently
large density r; < r* (when the second term in the square
parenthesis dominates) while for r; > r}* the ground state is
in the IP phase. The critical density is obtained from 66 (p) by
numerical integration:

ok 1 V2 2
n= 80(p)pidp ~2.21. (54)
0

Since r;* is larger than r} >~ 2.011 (the value of the classical
Bloch transition), there is an OP region between the high-
density FL2 paramagnet and the low-density IP ferromagnet.
Equation (54) is in good agreement with the direct numerical
simulation based on the Monte Carlo method, see Fig. 1.

The evaluation of the energy of the ferromagnetic states
also allows us to make more rigorous the discussion at the
end of Sec. V B, about the boundary between the FL2 and OP
phases. The OP state is a special case of Eq. (53):

Eop Wk} <2 _l6ry E&Z),

3 7y

55
N, 2m (53)

where we have substituted to £ the well-known energy of the
a = 0 ferromagnet. For the paramagnetic phase, we have [43]

E Rk 8v/2r,
e A (8O ) (56)
N, 2m 3

where the «® correction is given by the noninteracting
Hamiltonian. In fact, the exchange energy of the paramagnetic
state (the second term in the parenthesis) is only modified
by a term of order a*Ina [42,43], which is negligible for
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the present discussion. Equating Egs. (55) and (56) gives the
small-o phase boundary:

~ rs(r%_rs) *
o = m_Z.ZQ/Q — Iy, (57)

where in the last step we used ry > r;. We see that at finite
a the phase boundary occurs at r, < r, i.e., the presence of
spin-orbit coupling slightly favors the formation of the OP
phase. This conclusion is in agreement with the numerical
phase diagram of Fig. 1.

VIII. DISCUSSION

The competition among the kinetic, interaction, and spin-
orbit contributions to the electronic energy produces a rich
variety of phases in the parameter space that varies the relative
strengths of these energies. We have identified 3 distinct
phases: Fermi liquid (both FL1 and FL2), OP, and IP. The
transitions between these phases appear to be first-order in all
cases. The IP phase in particular comprises a rich variety of
spin textures that interpolate between the vortexlike structure
induced by the spin-orbit field in momentum space and the
ferromagnetic structure in the limit where the kinetic energy
is small.

The phase diagram, Fig. 1, of the Rashba spin-orbit coupled
system contains a significant amount of information. The
Fermi liquid phases, FL1 and FL2 phases, have been studied
in the past. In particular, the FL1 phase is realized at n < n.,
with occupation in the form of a ring. For the very low
density (n < n.) case, the FL.1 phase will be a ring, and
then the strong exchange interaction would deform the FL1
phase into a one-node ferromagnetic or two-nodes “nematic”
state, as shown in Ref. [67]. In contrast to previous studies,
the IP ferromagnetic phase appears much more prominently
in our phase diagram, showing that the demanding condition
n < n. is not necessary. According to Eq. (37), the values
of « required to enter the regime with a nontrivial interplay
with the OP phase are routinely achievable. We expect that the
phase diagram in Fig. 1 also applies to the linear Dresselhaus
spin-orbit coupled systems [1,101], since the latter have the
same energy spectrum as the one in the linear Rashba spin-orbit
system.

A. In-plane spin polarized phase

The appearance in the phase diagram of the IP phase,
and its interplay with the OP states, can be qualitatively
understood as follows. When the exchange interaction is
small (r; < 2), the spin-orbit coupling plays the key role
in the band structure and is renormalized by the exchange
interaction in a perturbative way. In this regime, the Fermi
surfaces are circular, like the noninteracting case. If the Fermi
surface is still restricted to be circular, the spin alignment
due to a strong exchange interaction (r; > 2) can only result
in the out-of-plane spin polarization. The spin directions are
tilted in-plane, to form a spin-winding in momentum space
which follows the noninteracting Bloch states. However, the
spin-orbit interaction is still greatly penalized by the nearly
parallel alignment. If we allow asymmetric deformation of
the Fermi surface, then the situation becomes complicated,
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because the in-plane spin polarization state can be formed
together with a Fermi surface displacement, same as the
electrical field case discussed in Sec. II. In general, when
ry — 00, the state prefers the in-plane phase rather than the
out-of-plane phase, since the former one can lower the total
energy by gaining a significant amount of spin-orbit energy
with respect to the latter. The introduction of the asymmetric
deformation of the Fermi surface in the accessible n > n,
regime and the resulting in-plane spin states are the central
finding of this paper.

B. Detailed comparison with previous work

The phase diagram in Fig. 1, with its rich structure, is
essentially a generalization of the Bloch transition [22,102] to
the case with Rashba spin-orbit coupling. The appearance of
OP and IP ferromagnetic phases is quite natural considering
the anisotropic spin response of interacting electrons with
Rashba spin-orbit coupling (see, e.g., Ref. [103]). However,
divergences of the static spin susceptibility and our phase
boundaries are not directly related, as the transitions to IP
and OP states are first-order within Hartree-Fock (as in the
case without spin-orbit coupling [22]).

The appearance of the OP phase was previously discussed
in Refs. [62,65]. In that case, due to the assumption of circular
symmetry, the treatment of the spin textures is simpler and
can be reduced to a single integral equation. However, our
unbiased classical Monte Carlo approach optimizes the spin
texture and occupation numbers without any constrains, thus
is able to reveal the missing part of the phase diagram (the IP
phase). When the IP phase does not appear, our phase diagram
recovers previous studies [62,65].

A qualitative phase diagram, discussing the competition of
in-plane ferromagnetism with inhomogeneous states (e.g., the
Wigner crystal phase) and omitting the OP phase was given
in Ref. [104]. However, that discussion of the IP states is
only applicable with short-range interactions, thus cannot be
extrapolated to our case. For example, Ref. [104] finds that
the energy per particle scales as n>!=1/%) at low density (the
interaction is ~ 1/r* and 2 < o < 4), which would imply an
energy independent of n using « = 1. Instead, we find here the
expected dependence ~ n'/2, due to the dominant Coulomb
interaction.

Other types of broken-symmetry states were discussed in
Ref. [105]. However, the Hamiltonian considered there is
inversion-symmetric, and the new phases spontaneously break
the inversion symmetry (which for us is not a symmetry
of the Hamiltonian). Furthermore, time-reversal symmetry is
preserved in Ref. [105], in complete contrast to our IP and OP
ferromagnetic phases.

As a final note, we make contact with the case without
spin-orbit interaction, where it is well established that the low-
density ground state is an inhomogeneous Wigner crystal [22].
An important question, which attracted considerable efforts,
was if the transition to a uniform spin-polarized liquid survives
beyond Hartree-Fock. Quantum Monte Carlo studies initially
supported the existence of such a transition, although at much
larger values, r; ~ 26, with the Wigner crystal appearing at
lower density, r; ~ 35 [28]. However, the latest studies find
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a direct transition to the Wigner crystal at r; ~ 31, with no
spin-polarized liquid [106].

The main difficulty in settling this question is that the
energies of all the competing states are very close to each other.
Therefore, introducing spin-orbit interaction might drastically
change previous conclusions. In particular, our finding that
both the IP and OP states are favored by a finite value of
a (their phase boundaries move to smaller ry), suggests that
Rashba spin-orbit interaction might stabilize or even allow an
intermediate polarized phase. To reach a definite conclusion,
however, would require developing quantum Monte Carlo
studies of the spin-polarized phases including spin-orbit
interaction, which is well beyond the scope of the present
work.

C. Absence of electrical current in the in-plane
spin-polarized phase

We would like to emphasize that, even though the Fermi
surface is displaced from equilibrium, a simple standard
argument demonstrates that there is no net charge current in
the equilibrium system, as one expects from basic physical
considerations. We note that this is also consistent with our
finding that the charge conductivity is unaffected by the diverge
in the spin polarization. Briefly, in the basis of eigenstates of
the interacting system, the expectation value of the current
operator is simply the integral of the group velocity over
reciprocal space. If the eigenenergies of the interacting system
are denoted by &,, the net current density is

e d2k 88,1,‘
—_— — n — s
h) @ ok

where the integral runs over all k and, as above, ny is the
occupation of each eigenstate. We take for concreteness the

x component of this equation. At 7 = 0, one way to evaluate
this is to use ny to fix the limits of integration,

, __Efk”*%/km&@
K= ), 2w ), om ek,
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= —— — el 59
h ,/];Fy 2 le k]k”* (59)
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Here, kpy— and kg, represent the x components of the Fermi
wave vectors, with identical notation for the y components. It
is seen that j, vanishes identically since both kp,_ and kg,
are on the Fermi surface, making the energies equal.

Alternatively, one can integrate Eq. (58) by parts. Again,
considering the x component of this equation,

. e d*k ong
=— | —— &g —.
=5 ] R ok,
Here we note that ny has two discontinuities as a function of

ky, one at kp,_ and one at kp,,. With this in mind we can
write

(60)

dk,

e
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(61)

in agreement with the above.
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D. Symmetry considerations

The in-plane spin-polarized phase is accompanied by a
sizable shift in the Fermi surface and consequently involves
the creation of a spontaneous net spin-orbit effective field.
This recalls electrically induced spin polarization, which we
recall occurs only in materials that are gyrotropic, meaning
that light with left- and right-rotating elliptical polarizations
can propagate at different speeds. Hence we expect in-plane
spin-polarized phases with shifted Fermi surfaces to emerge
in systems displaying electrically induced spin polarizations.
This argument proves that the in-plane spin-polarized phase is
qualitatively different from ordinary Stoner ferromagnetism,
which is not subject to these symmetry restrictions. Rather,
this phase is reminiscent of the Pomeranchuk instability.

Although a number of 3D models (technically outside our
scope), such as the cubic Dresselhaus interaction, do not give
rise to a spin polarization in an electric field, most models
describing 2D systems in diamond and zinc-blende lattices
do. We therefore expect in-plane spin-polarized phases with
a shifted Fermi surface to occur generally in 2D systems
with strong spin-orbit interactions. We note, however, that in
addition to the requirement of gyrotropic symmetry, it is also
necessary for the system to have two Fermi surfaces in the
noninteracting state. Systems such as topological insulators,
in which the spin-orbit interaction is dominant and have a
single Fermi surface, are not expected to exhibit in-plane
spin-polarized phases.

E. Experimental detection

We would like to discuss the possibility of observing the
in-plane spin-polarized phase, the most unconventional phase
predicted by our work, in the laboratory. Given the shift in the
Fermi surface and the existence of a net spin-orbit effective
field it also follows that in the in-plane spin polarized phase
a spatial direction is preferred and rotational symmetry is
broken. When a small in-plane external magnetic field is
applied we expect an anisotropy in the charge current as the
magnetic field is rotated in the plane of the 2DEG. The Fermi
surface shift likewise introduces a new characteristic wave
vector in the system and this could in principle be detected by
point-contact interferometry [107].

Noting that the in-plane phase displays an unconventional
magnetization, we recall that one of the most reliable probes
of a magnetized system is the occurrence of the anomalous
Hall effect, which does not require an external magnetic field.
The experimental setup to detect this effect is straightforward.
However, due to the shift in the Fermi surface and the complex
in-plane spin texture, the calculation of the anomalous Hall
conductivity will need to be performed as a separate project.
Likewise, the magnetization can be detected by means of the
Kerr effect.

Electron spin resonance (ESR) is another important probe
of electronic systems, and is known to acquire unusual
features in the unpolarized states (FM2 phase), due to the
simultaneous presence of electron interactions and Rahsba
spin-orbit coupling [108-110]. Also, in this case, it is likely
that ESR could provide clear signatures of the phase transition,
but the specific form should be determined in future studies.
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We note also that inelastic light scattering can be a probe of
the phase boundaries we identify in this work [111-114].

Finally, experimental realization of the state we discuss
would create magnetic structures in the absence of any
doping with magnetic impurities, utilizing instead the electric-
field-tunable Rashba spin-orbit coupling. Such systems could
become building blocks for novel spintronic devices and
platforms for realizing Majorana fermions.

IX. SUMMARY OF RESULTS

In the first part of our analysis, we demonstrated that, when
an interacting Rashba spin-orbit coupled system is placed in
an external electric field, the current-induced spin polarization
diverges at a certain interaction strength, while the charge
current is unaffected by electron-electron interactions. Based
on this insight we concluded that an in-plane spin polarized
phase can exist in equilibrium in this system, in which the
Fermi surface is shifted away from the zone center and as a
consequence a net spin-orbit effective field exists.

In the second part, we established the complete mean-field
phase diagram of a Rashba spin-orbit coupled system in the
presence of electron-electron interactions. We recovered an
out-of-plane spin-polarized phase found previously, as well as
the expected in-plane spin-polarized phase. The Fermi surface
of the system is shifted from the center of the Brillouin zone,
and it displays a variety of spin textures, which depend on
the strength of the spin-orbit interaction. The in-plane spin-
polarized phase we have identified is akin to the Pomeranchuk
instability. Atlow interaction strengths, we found two expected
Fermi liquid phases, one with a single Fermi surface and one
with two Fermi surfaces, and mapped out the Lifshitz transition
between them.

X. OUTLOOK

Establishing the mean-field phase diagram is the customary
first step when approaching strongly correlated problems.
Bearing in mind that the Hartree-Fock approximation tends
to overestimate the exchange energy and underestimate r;
for the Bloch transition [115], the natural extension of
the theory involves going beyond mean-field to test our
results qualitatively and quantitatively by (i) performing a
random-phase approximation calculation and (ii) devising a
reliable method to include the correlation energy. Typically,
the inclusion of screening tends to shift the phase boundaries
to larger values of r,, but we do not expect the topology of the
phase diagram to change. We note that large values of r; have
been reported in semiconductor nanostructures [116,117].

The fact that the driving force behind the in-plane spin-
polarized phase is the spin-orbit interaction by itself gives rise

PHYSICAL REVIEW B 96, 235425 (2017)

to two important questions. Firstly, it is important to determine
what forms of spin currents, if any, are associated with the in-
and out-of plane phases. It is well known that spin currents,
at least when using the conventional definition, can exist in
thermodynamic equilibrium [118], and the possibility exists
that spin eddy currents could circulate in the spin-polarized
phases. Secondly, it has long been known that the form
of the spin-orbit interaction can be tailored by the material
growth direction [1]. An interesting open problem concerns the
possible spin-polarized phases associated with unconventional
forms of the spin-orbit coupling that lack the symmetries of
the Rashba model, such as its rotational symmetry.

In this context, in a future publication, we will study
the interplay of electron-electron interactions and spin-orbit
coupling in a 2D electron gas in a semiconductor with both
linear Rashba and linear Dresselhaus spin-orbit interactions.
When both Rashba and Dresselhaus interactions are present
and are of equal magnitude the effective magnetic field
describing the spin-orbit interaction singles out a well-defined
direction in momentum space [5]. The noninteracting ground
state already has shifted Fermi surfaces and the spins point
in a well-defined direction, hence interactions are expected to
stabilize a state with an in-plane spin polarization. The limit
in which the Rashba and Dresselhaus interactions are equal in
magnitude has been of interest because of the fixed direction
of the momentum-dependent spin-orbit magnetic field and the
occurrence of the persistent spin helix, which has been realized
experimentally [119].

We expect likewise a rich phase diagram in 2D spin-3/2 hole
systems, which exhibit very strong spin-orbit coupling having
anontrivial functional form, a complex subband structure with
several anticrossings, and a large Wigner-Seitz radius r, even
at relatively high densities. Based on the findings of this work
many possibilities exist for magnetic ground states that may
be observed experimentally.
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