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Enhanced optical Kerr effect method for a detailed characterization of the third-order
nonlinearity of two-dimensional materials applied to graphene
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Using an enhanced optically heterodyned optical Kerr effect method and a theoretical description of the
interactions between an optical beam, a single layer of graphene, and its substrate, we provide experimental
answers to questions raised by theoretical models of graphene third-order nonlinear optical response. In particular,
we measure separately the time response of the two main tensor components of the nonlinear susceptibility, we
validate the assumption that the out-of-plane tensor components are small, and we quantify the optical impact of
the substrate on the measured coefficients. Our method can be applied to other two-dimensional materials, as it
relies mainly on the small ratio between the thickness and the wavelength.
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I. INTRODUCTION

During the past decade, extensive research has been per-
formed on graphene and other two-dimensional (2D) materials
for applications in photonics and optoelectronics [1]. The
third-order nonlinear optical response of graphene has been
investigated by many groups both theoretically [2–8] and
experimentally [9–15]. More recently, other 2D materials
have also been studied [16,17]. Regarding the research trend
combining graphene or 2D heterostructures with integrated
photonics [1,18], characterization of 2D nonlinearities will
play a key role in current and future progress in photonics.

The tensor nature of the nonlinear susceptibility of graphene
has not yet been studied, although it is a parameter that
could influence the observed nonlinearity, e.g., in waveguiding
structures that can involve in- and out-of-plane components.

In this paper, we address the theoretical hypothesis [2–8,19]
that the nonlinear optical response of graphene is limited
to in-plane components. This apparently simple question is
still open from an experimental point of view. It is indeed a
long journey to provide an experimental answer by a direct
measurement performed on a single-layer sample. The first
reason is that a proper modeling of the interaction of an
electromagnetic wave with a 2D material reveals that textbook
expressions are incomplete, and that an extended theory should
be used [20,21]. Secondly, as existing methods to probe 2D
materials do not provide access to the real and imaginary parts
of the third-order susceptibility tensor, it is also necessary to
define a new experimental scheme.

The anisotropy induced by a pump beam on a graphene sam-
ple has been studied for different polarization angles between
the pump and the probe [22,23], but there is no experimental
work studying separately the two main tensor components
used in the theory. Multiple reasons can probably explain
this, including the very low signal provided by monolayer
or few-layer graphene samples, the limited possibilities to
probe various tensor components with Z-scan (which is a
single-beam method), and the fact that only the magnitude of
the fast component of χ (3) is accessible in four-wave mixing
experiments.
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As explained in Ref. [14], the optically heterodyned optical
Kerr effect method (OHD-OKE) [14,24] has many advantages
over other widely used methods. In this paper, we implement
an enhanced version called 2D-OHD-OKE, in which the
sample is tilted, and linear polarization angles are tunable;
and we provide the theoretical framework to extract tensor
components from phase and amplitude jumps.

In Sec. II, we model the interactions of a plane wave
with a graphene sheet and provide the expression of the
2D-OHD-OKE signal, taking into account new configurations
that provide access to the real and/or imaginary parts of the
tensor components of the nonlinear susceptibility. In Sec. III,
we provide the temporal response of the tensor susceptibilities
that can be accessed with our setup on a monolayer graphene
on glass sample. In this way we achieve our goal, and
we demonstrate that the measured out-of-plane components of
the third-order nonlinear susceptibility tensor are negligible.
We discuss the results and conclude on the use of 2D-
OHD-OKE to access nonlinear optical parameters of any 2D
material.

II. METHODS

In OHD-OKE, a pump and a probe pulse are focused on
the sample (see [14], Fig. 1). The third-order nonlinearity of
the sample is recorded by measuring the polarization changes
induced by the pump on the weak probe pulse. As this
polarization change is very small, optical heterodyning using
a weak phase-shifted part of the probe is performed. Figure 1
shows the interaction of the two beams with the sample.
We calculate the phase and amplitude changes by means
of boundary conditions integrating the linear and nonlinear
polarization response of the graphene surface.

A. Boundary conditions

Starting from the modeling of the sheet currents [20] at the
planar interface between two semi-infinite media (a) and (b),
we write each field �F as

�F = �Fa(x,y,z)H (−z) + �F(x,y)δ(z) + �Fb(x,y,z)H (z), (1)

with H the Heaviside step function and δ the Dirac distribution,
where the surface field �F is located at z = 0 and varies in the
(x,y) graphene plane. Inserting fields with these expressions
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in Maxwell’s equations and collecting terms multiplying the
same functions H (z), H (−z), δ(z), and δ′(z) provide elegantly
the plane-wave solutions in the half-spaces defined by z < 0
and z > 0, as well as the boundary conditions at the interface.
Assuming that media (a) and (b) are dielectric and isotropic,
they are characterized by real refractive indices na and nb.
Writing the electric field �E, the displacement field �D, the
polarization field �P , and the magnetic field �B as in (1), we get
the boundary conditions

�Bb − �Ba = −ẑ × μ0∂t
�P, (2)

ẑ × ( �Eb − �Ea) = −(ẑ × �∇)Pz, (3)

ẑ · ( �Db − �Da) = −�∇ · �P, (4)

which differ from those in Ref. [19] in that the polarization
induced in the graphene sheet can have components along the z

axis. This accounts for the extent of the orbitals on both sides
of the graphene sheet. Starting from (2)–(4), and following
the classical derivation of Fresnel coefficients (see Sec. 1.5 of
Ref. [25]), we get the transfer matrix

E
‖
t = 2

(
nb

na

+cos αt

cos αi

)−1[
E

‖
i +i

k0

2na

Px

ε0
−i

k0na

2
tan αi

Pz

ε0

]
,

(5)

E⊥
t = 2

(
1 + nb

na

cos αt

cos αi

)−1[
E⊥

i + i
k0

2na cos αi

Py

ε0

]
, (6)

where ‖ and ⊥ denote, respectively, the components parallel
and orthogonal to the incidence plane of the incident and
transmitted fields Ei and Et , and αi (αt ) is the angle between
ẑ and the incident (transmitted) wave vector. They verify the
Snell-Descartes relation na sin αi = nb sin αt . For later use, we
define the coefficients M,N,P,Q,R so that

[
E

‖
t

E⊥
t

]
=

[
P 0
0 M

][
E

‖
i

E⊥
i

]
+ 1

ε0

[
Q 0 R

0 N 0

]⎡
⎢⎣
Px

Py

Pz

⎤
⎥⎦, (7)

where the coefficients Q, N , and R are in the order of k0.

B. Linear material response

The main difference between a model of graphene using
bulk or surface parameters appears in the constitutive relations.
Indeed, in the bulk approach, the polarization of the medium is
calculated with respect to the field transmitted in the graphene
using (5) and (6), with nb = ng the refractive index of graphene
and P = 0. In the surface approach, we should consider the
total electric field surrounding the surface sheet, as explained
in Refs. [21] and [26]. In what follows, we calculate this
field as the symmetric combination [21] of the incident ( �Ei),
reflected ( �Er ), and transmitted ( �Et ) field in the graphene plane.
Assuming that the contribution of the graphene susceptibility is
a small perturbation of the total field, we setP = 0 to calculate
this symmetric surface field �E(s) = [ �Ei + �Er + �Et ]/2 in the

FIG. 1. (a) Interaction of the pump-and-probe beams with the
sample. Half- and quarter-wave plates are denoted, respectively, by
λ/2 and λ/4. Iris denotes an iris diaphragm. (b) The pump-and-probe
beams define the horizontal plane that intersects the sample along the
y axis. Sample tilt around ŷ is denoted by αi .

axes of the sample (see Fig. 1),⎡
⎢⎣
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]
, (8)

so that we can finally calculate the contribution of the graphene
surface to the transmitted field, combining

Pi = ε0

∑
j=x,y,z

χij ⊗ E
(s)
j (i = x,y,z) (9)

with (8), (5), and (6). In (9), ⊗ denotes the convolution product
on time. Note that due to (1), χij is a surface quantity that could
be linked to the volume quantity χv

ij using χij = dχv
ij , where

d ≈ 0.33 nm is taken as the distance between two graphene
sheets. For χv

ij in the order of unity, k0χij ∼ k0d < 10−3 in the
visible and infrared regions.

This theory is valid for linear interactions. In the following
section, we show that it can apply equally to the pump-probe
geometry of Fig. 1 when we are interested in the Kerr effect
and two-photon absorption.

C. Nonlinear interaction

Most theoretical papers on graphene use the conductivity
σij rather than the susceptibility χij . In what follows, we will
consider the surface polarization that is linked to the surface
current �J = ∂t

�P , so that σij (t) = ε0∂tχij (t), or equivalently
in the spectral domain σ̃ij (ω) = −iε0ωχ̃ij (ω).

To allow for a complete description of the material
properties in the pump-probe geometry of Fig. 1, we model
the third-order current density using

P (3)
i (t) = ε0

∑
j,k,l=x,y,z

χ
(3)
ijkl

1⊗ E
(s)
j

2⊗ E
(s)
k

3⊗ E
(s)
l , (10)

where
n⊗ denotes the convolution on the nth variable of

χ
(3)
ijkl(t1,t2,t3), and the electric-field components E

(s)
l can be

written as the sum of paraxial pump (p) and probe (b) beams,

E
(s)
l = E

p,(s)
l + E

b,(s)
l + (c.c.)

= [
A

p

l ei�kp�r + Ab
l e

i�kb�r] + (c.c.), (11)

where (c.c.) denotes the complex conjugate.
In the setup depicted in Fig. 1, the iris selects the

output component collinear with the probe beam. Introducing
(11) in (10) shows that these components appear in terms
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containing one factor Eb
· , and either the pair (Eb,(s)

· ,Eb,(s)
·

∗) or
(Ep,(s)

· ,E
p,(s)
· ∗), where · denotes any index. Taking into account

that the signal beam is very weak in comparison with the pump
beam, we get the spatially filtered contribution

P (3)
�ks ,i

(t) = 6 ε0

∑
j,k,l=x,y,z

χ
(3)
ijkl

1⊗ E
b,(s)
j

2⊗ E
p,(s)
k

∗ 3⊗ E
p,(s)
l ,

(12)

in which the leading 6 comes from the intrinsic symmetries of
the susceptibilities [27]. From (12) we define a pseudolinear
susceptibility independent of the absolute phase of Ep,

χNL
ij (t1) = 6

∑
k,l=x,y,z

χ
(3)
ijkl(t1,t2,t3)

2⊗ E
p,(s)
k

∗ 3⊗ E
p,(s)
l ,

(13)

that depends on the pump signal shape and intensity, so that

P�ks ,i
= ε0

∑
j=x,y,z

[
χ

(1)
ij + χNL

ij

] ⊗ E
b,(s)
j = ε0

∑
j=x,y,z

χij ⊗ E
b,(s)
j ,

(14)

which defines an effective first-order susceptibility for Eb,(s).

D. Optical Kerr effect

Combining (9), (8), (5), (6), and (14), we find a transfer
matrix between the incident and transmitted polarization
components,[

E
‖
t

E⊥
t

]
= M

[
E

‖
i

E⊥
i

]
=

[
A B

C D

][
E

‖
i

E⊥
i

]
, (15)

where

A = P + PQχx‖ + PRχz‖, (16)

B = MQχxy + MRχzy, (17)

C = PNχy‖, (18)

D = M + MNχyy, (19)

χi‖ = cos αtχix − sin αt

(
1 + n2

b/n2
a

)
/2 χiz. (20)

Measurement of the effects induced by the pump beam on
the probe could be performed as follows. First, we switch the
pump off, which defines the transfer matrix M0, and we set a
normalized probe polarization state I0 = (E‖

i ,E
⊥
i )t /Ei , which

defines the normalized output state T0 = M0I0/Et . Then we
tune the output analyzer to get a zero transmitted signal.
This is equivalent to projecting on the state T⊥ = (−T ⊥

0 ,T
‖

0 )†

orthogonal to T0. Finally, we switch the pump on, which
induces a nonlinear change δM = M − M0 on the transfer
matrix, and we detect the power change at the output, given by

|Eout|2 = |T †
⊥δMI0|2

∣∣Eb
i

∣∣2
. (21)

This signal is very weak as it is proportional to δM2 ∼
(k0d)2 < 10−6, and it does not provide the sign of δM. To
improve this, optical heterodyning is performed.

E. Optical heterodyning

We make a slight change to the input conditions on the
quarter-wave plate in Fig. 1, or we modify the analyzer
angle, so that the input polarization state becomes I1 =
(I0 + iθI⊥)/

√
1 + |θ |2 or the projection state becomes T1 =

(T⊥ + ηT0)/
√

1 + |η|2, where the terms proportional to θ and
η correspond to the local oscillator field [14,24]. The measured
output field is therefore

|Eout|2 = |T †
1 (M0 + δM)I1|2

∣∣Eb
i

∣∣2
. (22)

To isolate the weak nonlinear signal from the background, both
the pump and probe beams are modulated at low frequencies
�p and �b by means of a chopper [28], and the signal power
is measured, with a lock-in amplifier at �bp = �p + �b, to
first order in δM. The 2D-OHD-OKE signal is

S(θ,η) = 2 Re[(T †
1 M0I1)∗(T †

1 δMI1)]
∣∣Eb

i

∣∣2
. (23)

In bulk OHD-OKE, (δM)2 cannot be neglected as k0d � 1,
which leads to an additional “homodyne” signal. The incident
electric fields in medium (a) can be calculated from the
incident power P and the effective beam area πw2

0 on the
sample, using P b = 2πw2

0bε0nac|Eb
i |2, and the same for P p.

F. In-plane 2D-OHD-OKE

As an example, we consider the in-plane 2D-OHD-OKE
configuration depicted in Fig. 1 and used in Ref. [14]. The
heterodyne parameters used to measure the real part of the non-
linear response are η = 0 and θ �= 0, and the refractive indices
are na = 1 and nb = 1.5 for a glass substrate. As the sample is
not tilted, αi = 0 = αt . We therefore have P = M = 2/(1 +
nb), N = Q = ik0/(1 + nb), and R = 0. From (20), we have
χi‖ = χix , and therefore

M = 2

[
(1 + nb) + ik0χxx ik0χxy

ik0χyx (1 + nb) + ik0χyy

]/
(1+nb)2.

(24)

Pump-and-probe polarizations are depicted in the inset of
Fig. 1. The input state is defined by I0 = (1,1)t /

√
2. When the

pump is switched off, χij = χ
(1)
ij = χgδij due to the sixth-order

symmetry of graphene, so that M0 is the identity matrix
multiplied by 2[1 + ik0χg/(1 + nb)]/(1 + nb), which implies
T0 = I0 and T1 = T⊥ = I⊥ = (−1,1)t /

√
2. As M0 will be

multiplied by a first-order term in k0d, we can ignore the term
proportional to k0χg , so that T

†
1 M0I1 = 2iθ/(1 + nb).

To evaluate δM, we calculate the pump field, which is
vertically polarized, orthogonal to its horizontal incidence
plane. Therefore, the symmetric surface field is given by E

p,⊥
t

according to (8). As this beam makes an angle α
p

i with ẑ,
using (6) we get E

p,(s)
x = 2E

p

i /(1 + nb cos α
p
t / cos α

p

i ), with
α

p
t = sin−1(sin α

p

i /nb). Using (13) and the symmetries of the
third-order susceptibility tensor, we get

δM = 12ik0

(1 + nb)2

[
χxxxx 0

0 χyyxx

]∣∣Ep,(s)
x

∣∣2
, (25)

S(θ,0) = S0Re[θ∗(χyyxx − χxxxx) + i|θ |2(χxxxx + χyyxx)],

S0 = 96k0

∣∣Ep

i Eb
i

∣∣2

(1+|θ |2)(1+nb)3
(
1+nb cos α

p
t / cos α

p

i

)2 , (26)
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FIG. 2. Experimental results: (a) 2D-OHD-OKE signal of
graphene at positive and negative heterodyne angle. (b) Normalized
difference and sum of 2D-OHD-OKE signals from (a) compared with
the pulse autocorrelation obtained by the OHD-OKE signal from the
silicon reference sample.

where, for the sake of simplicity, we write χijkl = χ
(3)
ijkl . Taking

S(θ,0) − S(−θ,0), we get access to Re(χxxxx − χyyxx) =
Re(χxyxy + χxyyx), where we have used symmetry relations.

Using (26) and the data from Ref. [14], we calculate
Re(χxyxy + χxyyx) = −200 nm3/V2.

III. EXPERIMENTAL RESULTS

In our experiments, we used a monolayer graphene film on
glass from Graphene Laboratories, Inc.; the film was grown by
catalyzed chemical vapor deposition (CVD). We verified that
the glass substrate does not present a nonlinear response.

Our experimental setup is based on that depicted in
Ref. [14], with the modifications appearing in Fig. 1. The
180-fs pulses at 1600 nm were derived from an optical
parametric oscillator (OPO), pumped by a Ti:sapphire laser,
with a repetition rate of 82 MHz. The pump-probe power
ratio is tuned around 15:1. The pump-and-probe beams are
spatially overlapped on the sample and focused down to a
beam waist of wp ≈ 20 μm and wb ≈ 15 μm, respectively.
The pump intensity is set around 5 × 1012 W/m2, which
is far below the damage threshold of graphene [29]. The
effective interaction length was L ≈ 100 μm. The heterodyne
parameters were either θ = ± tan 4◦, η = 0 or η = ± tan 4◦,
θ = 0. The angle between the pump and the probe beam is 34◦.
For the out-of-plane measurements, the sample was rotated
with a precision rotation mount. As in Ref. [14], we used a
silicon reference sample.

A. Temporal response of the tensor components

Starting with the configuration described in Sec. II F,
we recorded the temporal response of the 2D-OHD-OKE
signal shown in Fig. 2(a). At long delay, both signals are
equal, which is explained by studying the different tensor
components, namely by taking the difference and the sum
of the signals S(θ,0) and S(−θ,0) from (26). As shown in
Fig. 2(b), the first signal, Sθ

dif ∝ θ Re(χxyxy + χxyyx), which
is purely due to induced birefringence, has a fast response.
This is indeed demonstrated by the perfect fit with the
autocorrelation trace of the input pulses, which implies a
relaxation time shorter than the 180-fs pulse duration. The
second signal, Sθ

sum ∝ θ2 Im(χxyxy + χxyyx + 2χxxyy), appears
due to the nonlinear absorption of the local oscillator field
and therefore is negligible for materials with weak nonlinear
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FIG. 3. Experimental results: (a) comparison between |Sθ
dif| and

|Sη

dif|; (b) normalized Sθ
sum for parallel pump-and-probe polarizations,

providing Im(χxxyy) compared with the autocorrelation. Smoothed
data (Savitzky-Golay) are provided as a guide for the eye.

absorption. Here this signal is important, and it presents a
completely different behavior from the birefringent signal,
with a picosecond relaxation time characteristic of graphene
[30].

Next, we studied induced dichroism, which corresponds
to the imaginary part of the nonlinearity, similarly to the
birefringence, by considering S(0,η) and S(0, − η) [see
Fig. 3(a)]. The induced dichroism S

η

dif ∝ η Im(χxyxy + χxyyx)
is also characterized by a fast relaxation, which is in agreement
with the conclusion of Mittendorf et al. [22] that the anisotropic
distribution of photoexcited carriers in graphene has a fast
relaxation time of 150 fs. This anisotropic distribution is
actually the microscopic origin of the induced dichroism or
birefringence. The expression (and the observed behavior) of
S

η
sum is the same as Sθ

sum. The ratio from the nonlinear dichroic
losses to the nonlinear birefringence is evaluated to S

η

dif/S
θ
dif ≈

1.6, which provides Im(χxyxy + χxyyx) ≈ −320 nm3/V2 at
zero pump-probe delay.

We compared the in-plane OHD-OKE data of graphene
and silicon, as we did in Ref. [14], for the real part of
the nonlinearity. We verified that the two-photon absorption
coefficient of silicon is in agreement with published values.
As for the refractive part [14], the signals of graphene and
silicon presented opposite signs, which is not surprising
since it is well known that graphene is a saturable absorber.
Saturable absorption does not scale linearly with the input
intensity, so the measured Im(χxyxy + χxyyx) should decrease
with increasing intensity. This was confirmed experimentally.

Finally, the imaginary part of χxxyy was studied separately
by taking measurements in a different configuration, in which
the input pump-and-probe polarizations are parallel. In this
case, we get Sθ

sum ∝ θ2 Im(χxxyy), which is shown in Fig. 3(b).
We infer that the relaxation time of Im(χxxyy) is around 1 ps. By
comparing the magnitude of the signals, we find Im(χxxyy) ≈
1.7 Im(χxyxy + χxyyx). We note that Re(χxxyy) is not accessible
with simple experimental configurations, but it has probably
the same temporal dependence as Im(χxxyy). At zero pump-
probe delay, we find Im(χxxyy) ≈ −540 nm3/V2.

B. Out-of-plane tensor components

To measure the out-of-plane tensor components, we tilt
the sample around the horizontal axis so that αi = 30◦, and
we calculate the coefficients Cijkl appearing in S(θ,0) −
S(−θ,0) = S1Re(2θ∗ ∑

ijkl=x,y,z Cijklχijkl). When the input
polarization of the probe beam is set vertical or horizontal, only
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FIG. 4. Experimental data and fitting of the odd part of the 2D-
OHD-OKE signal for a vertical input polarization of the probe (x
axis). The linear pump polarization is continuously set from vertical
(−90◦) to horizontal (0◦) and vertical (90◦). Cxyxy and Cxzxz denote,
respectively, the coefficients of the real parts of χxyxy + χxyyx and
χxzxz + χxzzx . Data are fitted to these curves: black, total fit; blue,
xyxy component; red, xzxz component. Coefficients Cxyxy and Cxzxz

are calculated using (a) the symmetric surface field, and (b) without
taking the field in the substrate into account.

four coefficients appear in S(θ,0) − S(−θ,0): Cxyxy = Cxyyx

and Cxzxz = Cxzzx or Czxzx = Czxxz, respectively. With the
probe polarized vertically, their variation with the polarization
of the pump beam is shown in Fig. 4 (dotted-dashed lines).
Experimental data appear as black dots. In panel (a) the
symmetric surface field is used, as explained in Sec. II B, while
in panel (b) the expressions for bulk materials are used. The
relative values of Re(χxyxy + χxyyx) and Re(χxzxz + χxzzx) are
obtained by fitting the experimental data. In Fig. 4, the black
curve shows the fitted curve while the blue and red curves show
the contributions of the two sets of susceptibilities to the total
curve. In panel (a) we see that the contribution xzxz to the fit
is very weak, and it is not needed to explain the experimental
data, as its amplitude is in the order of the experimental error.
Setting η = ± tan 4◦ and θ = 0, S(0,η) − S(0, − η) provides
the ratio of the imaginary parts of the same components,
which demonstrates that |χxzxz + χxzzx |/|χxyxy + χxyyx | <

0.1. Using a second set of experimental data, with the probe
beam polarized horizontally, we reach similar conclusions for
the real and imaginary parts of χzxzx + χzxxz. These results
validate the theoretical assumptions that χxzxz, χxzzx , χzxzx ,
and χzxxz are negligible [5], with a magnitude that does not
exceed 20 nm3/V2. Figure 4(b) shows that the use of a bulk
theory neglecting the substrate provides a ratio around 0.5,
which would lead to an opposite conclusion.

IV. DISCUSSION

A. In-plane components

To compare our values of the in-plane components with
other values from the literature that are mostly reported
as volume susceptibilities or as an effective nonlinear re-
fractive index, we provide the appropriate conversions in
Table I.

Comparison of the effective nonlinear refractive index with
the earlier values from Z-scan [11,12] was provided in a
previous work [14]. More recent reported values [13,31] are
in good agreement, in sign and magnitude, with those already
published values. It should be noted that Z-scan probes the
nonlinearity related to Re(χxxxx), so that we do not expect

TABLE I. Estimated parameters of the third-order optical nonlin-
earity from 2D-OHD-OKE. The real part of the complex nonlinear
index n2c corresponds to the effective nonlinear refractive index
measured in a previous work [14]. Conversion between this value
and the surface susceptibility is performed using k0dn2P

p/(πw2
0p)

for the phase shift. All the parameters correspond to the surface
components χxyxy + χxyyx . They are obtained with a pump intensity
around 5 × 1012 W/m2. The real (imaginary) part of σ (3) is calculated
from the imaginary (real) part of χ (3).

n2c χ (3)
s χ (3)

v χ (3)
v σ (3)

Units μm2/W nm3/V2 nm2/V2 esu Am2/V3

Real − 0.1 −200 −600 − 0.4 × 10−7 − 3.3 × 10−21

Imag. − 0.16 −320 −960 − 0.65 × 10−7 2.1 × 10−21

an exact match of the results. This is also true for results
from four-wave-mixing (FWM) experiments. Because we have
not measured Re(χxxyy), we estimate the magnitude of the
volume susceptibility |χ (3)

v | either by neglecting the χxxyy

component or by assuming that Re(χxxyy) is on the order of
Re(χxyxy + χxyyx). In both cases, we get an absolute value in
the order of 10−7 esu, which is in agreement with the value
from Ref. [9].

To compare our results with theoretical values, we need to
estimate the doping level of our graphene sample. Graphene
deposited on glass or silicon substrates is low p-doped, as
shown, for example, in Ref. [15], where the chemical potential
is evaluated between −0.3 and −0.2 eV. At those doping levels
and the wavelength used in our experiments (1600 nm, or
h̄ω ≈ 0.8 eV), the nonlinear conductivity in Ref. [4] diverges.
Assuming higher doping levels, so that h̄ω/|μ| < 2, Cheng
and co-workers estimated a nonlinear refractive index two
orders of magnitude lower than our value. In a later theoretical
work [5], the same authors added phenomenological relaxation
parameters and finite temperature in their theory. To compare
our values with these more recent theoretical predictions, we
refer to Table I. The predictions for chemical potential |μ| =
0.3 eV, presented in Fig. 4 of Ref. [5], show higher values of
Re[σ (3)] than ours, with a discrepancy varying from one to
two orders of magnitude depending on the phenomenological
relaxation parameter introduced in the theory. Predictions
from Ref. [7] for the same parameters agree with those of
Cheng and co-workers [5]. Finally, in Ref. [15], theoretical
values are compared to measurements performed with FWM
on chip in a continuous regime. The theoretical values of the
third-order surface conductivity are estimated to be around
10−18 A m2/V3, three orders of magnitude higher than our
values (Table I), while the experimental values are around
10−19 A m2/V3, in better agreement with our results. The
high discrepancy between the experimental results can be
due to many factors, such as the continuous regime and the
waveguiding geometry.

To conclude this discussion, it is clear that the values that
we measure match the values reported in other experimental
works better than those reported in theoretical studies. Pos-
sible explanations of these differences between theory and
experiments are discussed in Ref. [5].
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B. Out-of-plane components

To verify the theoretical assumption that the out-of-plane
components of the susceptibilities can be neglected [5],
we should considering working with sheet currents, with the
problem that textbook expressions do not allow us to calculate
the impact of the out-of-plane components, and therefore they
limit the possibility to measure them; alternatively, we could
use a 3D theory that neglects the local field and relates
microscopic parameters to light propagation in a homogeneous
medium. We have shown how to circumvent this problem
to measure the out-of-plane components, and we show that
χxzxz + χxzzx and χzxzz + χzxxz are negligible.

C. Temporal response

Measuring χxxxx is possible with one-beam techniques
involving a single polarization. However, it does not offer
the possibility to separate different contributions with different
time responses. The 2D-OHD-OKE method allows us to record
the temporal response of χxyxy + χxyyx and χxxyy separately.

D. 3D versus 2D material parameters

Nonlinear optical properties are usually measured through
amplitude changes, which have their origin in phase changes.
Going from amplitude and phase variations to tensor com-
ponents requires the use of a model. In this paper, we
provide a complete analytical model from Maxwell’s equation
to the measured power (23). This expression differs from
the one used in a bulk material. Therefore, we should
refrain from using equations relating experimental phase
changes to 3D propagation parameters in order to estimate
the susceptibilities. Doing so would, for example, introduce
the refractive index of the 2D material under consideration,
while the expressions based on the current sheets would
not. Indeed, our results show the possibility to measure
the third-order surface susceptibilities (or the associated

conductivities) considered in theoretical works [4,7], without
estimating the refractive index of the 2D material.

V. CONCLUSION

To verify that the out-of-plane components of the third-
order nonlinear optical susceptibility of graphene are negli-
gible, we have developed the 2D-OHD-OKE method, and an
appropriate model for the optical interaction of light at an
interface with a 2D material. Six new values for the real and
imaginary parts of these components for graphene have been
provided at zero pump-probe delay, together with their time
evolution. The out-of plane components that we measured are
negligible.

We have shown that χxyxy + χxyyx accounts for the fast bire-
fringent and dichroic contribution to the nonlinear response,
in agreement with [22] for the dichroic response. We have
compared its magnitude with χxxyy , which has a slower (ps)
relaxation time.

Equation (23) allows us to calculate the intrinsic parameters
from the experimental data of 2D-OHD-OKE. It reveals the
importance of taking the substrate into account, as it modifies
the symmetric surface field. Our modeling can be used to
discriminate between the optical and chemical interactions
between a 2D material and its substrate. It could also help
in the development of numerical simulation tools using sheet
currents to model the nonlinear optical response of graphene.
The 2D-OHD-OKE method presented here should apply to
all 2D materials, and provide an efficient means to retrieve
experimentally their fundamental parameters.
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