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Inelastic scattering of the medium-energy (∼10–100 eV) electrons underlies the method of the high-resolution
electron energy-loss spectroscopy (HREELS), which has been successfully used for decades to characterize
pure and adsorbate-covered surfaces of solids. With the emergence of graphene and other quasi-two-dimensional
(Q2D) crystals, HREELS could be expected to become the major experimental tool to study this class of materials.
We, however, identify a critical flaw in the theoretical picture of the HREELS of Q2D crystals in the context of the
inelastic scattering only (“energy-loss functions” formalism), in contrast to its justifiable use for bulk solids and
surfaces. The shortcoming is the neglect of the elastic scattering, which we show is inseparable from the inelastic
one, and which, affecting the spectra dramatically, must be taken into account for the meaningful interpretation
of the experiment. With this motivation, using the time-dependent density functional theory for excitations, we
build a theory of the simultaneous inelastic and elastic electron scattering at Q2D crystals. We apply this theory
to HREELS of graphene, revealing an effect of the strongly coupled excitation of the π + σ plasmon and elastic
diffraction resonances. Our results open a path to the theoretically interpretable study of the excitation processes
in crystalline mesoscopic materials by means of HREELS, with its supreme resolution on the meV energy scale,
which is far beyond the capacity of the now overwhelmingly used EELS in transmission electron microscopy.

DOI: 10.1103/PhysRevB.96.235414

I. INTRODUCTION

While electron energy-loss spectroscopy (EELS) is a
powerful experimental tool in the studies of the growing family
of quasi-two-dimensional (Q2D) materials, its theoretical
support for these systems remains unsatisfactory, being based
on, often irrelevant, analogies with the bulks and surfaces
of the three-dimensional (3D) solids [1]. For the latter, the
interpretation of spectra of the inelastically scattered electrons
traditionally relies on the concept of the energy-loss functions,
such as −Im 1/ε(q,ω) [2], where ε(q,ω) is the wave-vector
and frequency-dependent dielectric function. Other popular
loss functions, which came from the field of surface science,
are −Im g(q,ω) and its long-wave limit −Im 1/[ε(ω) + 1],
where g(q,ω) is the so-called g function [3,4]. Loss functions
define absorption in the electronic response of the target
system, which causes the probing electrons to lose energy.

The description in terms of loss functions is convenient,
since the latter are properties of the target system only, saving
us the trouble of considering details of the scattering process.
Moreover, doing so is justified, as long as the characteristics
of the elastic scattering at the crystal lattice change slowly
within the energy range of interest, constituting a background
to the sharp features of the energy losses due to the inelastic
scattering at the electronic subsystem of the target. This
condition is usually satisfied in the EELS of the bulk solids
(films) and surfaces, which has led to the loss-functions
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formalism becoming generally adopted in the theory, and later,
with the emergence of graphene [5], automatically transferred
to the field of Q2D materials.

Recent advancements in the understanding of the interac-
tion of projectile electrons with Q2D crystals have, however,
revealed that the elastic scattering at these systems is far
from changing slowly with the energy. In particular, sharp
peaks and dips in the energy dependence of the reflection
and transmission coefficients were predicted for graphene in
the medium (∼10–100 eV) incidence energy range, which
were identified as the manifestation of scattering (diffraction)
resonances (finite-lifetime empty states due to the in-plane and
the perpendicular motions coupled by the periodic potential)
[6]. Diffraction resonances in graphene have later been con-
firmed and studied experimentally [7–10]. In this conjunction
we also note that resonances in atomic beams scattering from
corrugated solid surfaces had been earlier observed [11]. As a
consequence, a solid picture of the electron scattering at Q2D
crystals becomes impossible without a theory which takes into
account all the facets of the probe-target interactions. With
such an approach lacking presently, the purpose of this work is
to construct the theory of EELS in application to Q2D crystals
in the natural terms of the quantum-mechanical scattering of
a charge at a many-body system. In this way, all the features
of the inelastic and elastic scattering are included, as well
as, importantly, the effects of their intermixture. Building this
theory, we use the time-dependent density functional theory
(TDDFT) [12] to consistently account for the single-particle
as well as collective (plasmonic) excitations.

2469-9950/2017/96(23)/235414(8) 235414-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.235414


NAZAROV, SILKIN, AND KRASOVSKII PHYSICAL REVIEW B 96, 235414 (2017)

z p
p′

(a)

θi

θs

z p

p′

(b)

θiθs

FIG. 1. Illustration of the reflection (a) and transmission (b)
geometries of the EELS experiment on a Q2D crystal.

II. METHOD

We are concerned with the EELS experiment as schema-
tized in Fig. 1 for both the reflection and transmission regimes.
The starting point of our approach is the general formula for the
double differential scattering cross section of a probe electron
at the electronic subsystem of a target, accompanied by the
elastic scattering at the target’s crystal potential. This formula,
in the real-space representation, reads [13–15]

d2σ

dωd�
(p′ ← p) = −16π3p′

p
Im

∫
ρ∗(r)

|r − r1|

×χ (r1,r′
1,ω)

ρ(r′)
|r′

1 − r′|drdr′dr1dr′
1.

(1)

In Eq. (1), χ is the interacting-electrons density response
function of the target system, p and p′ are the momenta of the
probing electron before and after the scattering, respectively,
ω = (p2 − p′2)/2 is the energy transferred to the target,

ρ(r) = 〈r|p+〉∗ × 〈r |p′−〉 (2)

is the complex-valued “charge density” determined by the
elastically scattered waves |p±〉, which are solutions to the
Lippmann-Schwinger equations [16]

|p±〉 = |p〉 + G0

(
p2

2
± i0+

)
V c|p±〉, (3)

〈r|p〉 = (2π )−3/2eip·r is plane wave, V c(r) is the crystal
potential, G0(E) = (E − Ĥ0)−1 and Ĥ0 = − 1

2	 + V c(r) are
the noninteracting Green’s function and the Hamiltonian,
respectively, and 0+ is an infinitesimal positive. Equations
(1)–(3) solve the inelastic scattering problem at an arbitrary
many-electron system with the interaction between the probe
charge and the electronic subsystem of the target accounted
for in the first Born approximation, while the probe-lattice
interaction is included nonperturbatively [13] (distorted-wave
approximation [16]). We note that Eqs. (1)–(3) account for both
the long- and short-range (dipole and impact [4], respectively)
scattering regimes as the two specific cases.

To make a connection to the pre-TDDFT literature on the
inelastic diffraction [17–21] based on the concept of the mixed
dynamic form factor (MDFF) [17], we note that (i) Eq. (1) can
be also written in terms of MDFF rather than χ . Although the
two forms are equivalent, expression via χ is of paramount
importance to us, allowing one to invoke the linear-response

TDDFT, for which χ is the key quantity [12] and (ii) For 3D
crystals, Eqs. (1)–(3) reduce to the results of Ref. [20], but
their applicability is broader, permitting, in particular, their
use in the Q2D case, in the Laue [see Eq. (6)], rather than
Bloch functions representation.

To make a connection to the loss-function formalism, we
note that, if the elastic scattering is neglected, meaning that
only the first term in the right-hand side of Eq. (3) is kept,
Eq. (2) gives ρ(r) = ei(p′−p)·r/(2π )3, and Eq. (1) integrates to

d2σ

dωd�
(p′ ← p) = −32π2p′

|	p|4p Im χ (	p,	p,ω), (4)

where 	p = p − p′, and χ is written in the reciprocal space
representation. If the target is a bulk solid, then the usual
bulk energy-loss function −Im 1/ε(	p,ω) is readily retrieved
from the right-hand side of Eq. (4). On the other hand, for
a Q2D crystal, Eq. (4) coincides (to a coefficient) with the
loss function of Ref. [1] in the transmission geometry (see
Appendix A for the connection to the g function of surface
scattering).

Returning to the simultaneous inelastic and elastic scatter-
ing, we note that, in a Q2D crystal, the in-plane component of
the wave vector conserves to within a reciprocal lattice vector
G. As a consequence, the density response function becomes
a matrix in the reciprocal lattice vectors χGG′(z,z′,q,ω), where
the in-plane wave vector q belongs to the first Brillouin zone.
Equation (1) is then conveniently transformed to

1

A

dσ

dωd�
(p′ ← p)

= −64π5p′

p
Im

∑
GG̃

G′G̃′

∫
χGG′(z1,z

′
1,q,ω)

× e−|G+q||z1−z|e−|G′+q||z′
1−z′ |

|G + q||G′ + q|
× a+∗

p,G+G̃
(z)a−

p′,G̃+G0
(z)a+

p,G′+G̃′ (z
′)a−∗

p′,G̃′+G0

× (z′)dzdz′dz1dz′
1, (5)

where a±
p,G(z) are the Fourier coefficients in the expansion

(Laue representation [22])

〈r|p±〉 =
∑

G

a±
p,G(z)ei(G+p‖)·r‖ , (6)

A is the normalization area, and G0 reduces the parallel
component of the transferred momentum to the first Brillouin
zone: p‖ − p′

‖ = q + G0.
A practical implementation of the approach based on Eq. (5)

includes solving the following subproblems:
(1) Calculation of the interacting density response function

χ of the Q2D crystal. This is done within the framework of
TDDFT with the use of the equality

χ−1 = χ−1
s − fH − fxc, (7)

where χs is the independent-electrons [Kohn-Sham (KS)]
density response function, and fH and fxc are the Hartree
and the exchange-correlation (xc) kernels, respectively [12].
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FIG. 2. Calculated EEL reflection spectrum of monolayer
graphene [thick black line: Eq. (5)], the one calculated with the use
of the surface loss function [dashed line: Appendix A, Eq. (A3)], and
the coefficient of reflection (thin blue line plotted against the right y

axis). For better visualization, EEL spectra are split into two parts,
the low-energy one scaled by 0.1.

(2) Calculation of the elastic scattering wave functions |p±〉
of the probe electron by solving Eqs. (3). In other words, the
z-dependent coefficients a±

p,G(z) in Eq. (6) must be found.
(3) Since the supercell method (substituting the Q2D crystal

with an infinite periodic array of such crystals) is used for
a practicable solution of the subproblems (1) and (2), the
construction of the quantities pertinent to the single Q2D
system from those of their array is necessary. For the density
response function χ , we use the method of the elimination of
the interaction between the fictitious copies of the Q2D crystal
[1]. To find the elastic wave functions, we first solve the band-
structure problem of the array system, then we construct |p±〉
of the single Q2D crystal by imposing the proper asymptotic
in vacuum (see Appendix B). These conditions ensure |p+〉
and |p−〉 to be the low-energy electron diffraction (LEED) and
the time-reversed LEED wave functions, respectively, of the
single Q2D crystal [23].

Our calculations use the local-density approximation
(LDA) for the ground-state KS problem [24] and the random-
phase approximation (RPA) [setting fxc = 0 in Eq. (7)] for
the dynamic response. The projectile electron is considered to
experience the same potential as electrons of the target.

III. RESULTS AND DISCUSSION

First, we present results corresponding to the experimental
setup of the high-resolution EELS (HREELS) [3]. In Fig. 2,
the reflection EEL spectrum of graphene calculated with the
use of the present theory is plotted together with the reflection
coefficient (the latter changing with p′, while p is fixed). The
energy of the incident electrons is Ep = 41.1 eV, the angle of
incidence is θi = 125◦, and the angle of scattering is θs = 55◦
(polar angles are relative to the positive z axis; see Fig. 1).
A strong peak of the π plasmon (∼5.6 eV at our geometry)
is almost unaffected by the elastic scattering. It is, however,
instructive how the influence of the elastic scattering changes
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FIG. 3. Calculated EEL transmission spectrum of monolayer
graphene [thick line: Eq. (5)], the one calculated with the use
of the loss function [dashed line: Eq. (4)], and the coefficient of
transmission.

the spectrum in the energy range of the π + σ plasmon,
the latter extending broadly from about 10 to 25 eV within
the energy-loss function approach [1]. A sharp peak in the
reflection coefficient due to the diffraction resonance [6] at
∼11.9 eV leads to a peak in the EELS intensity at this
energy. The same happens at ∼28.5 and 33 eV. Generally,
the EEL spectrum becomes a product of the interplay of the
inelastic and elastic processes. At the same time, it would be
an oversimplification to conclude that the EEL spectrum just
follows the reflectance: In Eq. (5) the reflectance coefficient
does not factorize and, therefore, the influence of the elastic
scattering on the EELS is not straightforward. This can be
observed in Fig. 2, considering a maximum in the EEL
spectrum at ∼15.7 eV, where reflectance has a minimum.

Similar observations can be made from the EELS in the
transmission geometry in comparison with the coefficient
of transmission, as presented in Fig. 3. We conclude that
the elastic scattering affects the EEL spectra dramatically,
especially so in the region of the π + σ plasmon and at
higher energies. Different parts of the spectra are strongly
enhanced and suppressed in the reflection and transmission
regimes, which is mainly due to the presence of the diffraction
resonances. The same conclusions are supported by the spectra
of the bilayer graphene (see Appendix C).

HREEL experimental spectra of the freestanding graphene
are not, to the best of our knowledge, available in the literature
so far. Although measurements on graphene supported on
substrates have been reported [25–27], a substrate may affect
both the diffraction resonances and the electronic response,
making impossible the quantitative comparison with the theory
of the freestanding graphene. On the other hand, inclusion
of a substrate in the ab initio theory is a very challenging
task, remaining a matter of the future. For the discussion in
conjunction with experiment we, therefore, turn to the EELS
in the transmission electron microscope (TEM) [28].

EELS measurements on freestanding 2D materials are
conducted in TEM using energetic (∼40–120 keV) incident
electron beams [28–31]. For energies that high, it is practically
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FIG. 4. Calculated EEL spectrum of monolayer graphene (solid
lines) and the experimental EELS in TEM (circles). Experimental
data are digitized from Ref. [30].

impossible to obtain |p±〉 of Eq. (3) from the band-structure
calculation, but, fortunately, this is also unnecessary, since,
in this case, the first Born approximation should already
provide an accurate solution to the elastic scattering problem.
We therefore use Eq. (5) again, but with the coefficients
a±

p,G(z) found to the first order in the magnitude of V c(r)
(see Appendix D).

Diffraction resonances do not exist or are negligible in the
keV energy range, and the influence of the elastic scattering
on the inelastic one differs for EELS in TEM from that for
HREELS, while, as we will show, it still remains important.
The results of our calculations presented in Fig. 4 correspond
to the setup and are compared to the experiment of Ref. [30].
The geometry of this experiment suggests that the transferred
in-plane momentum 	p‖ belongs to the first Brillouin zone.
As a consequence (in the absence of diffraction resonances),
the full calculation with the use of Eq. (5) results in a
spectrum indistinguishable from that obtained with Eq. (4)
for the energy-loss function (not shown). On the other hand,
in Fig. 5 we plot results corresponding to the celebrated EELS
in TEM experiment of Ref. [29]. Analysis of the geometry
in this case shows that |	p‖| ≈ 3.08 Å −1, which is outside
the first Brillouin zone of graphene. The calculated spectrum
ignoring the influence of the elastic scattering [obtained by
Eq. (4)] is plotted in the inset of Fig. 5, and it clearly bears
no resemblance to the experimental spectrum. This can be
understood considering that, if the elastic channel is switched
off, the whole (huge) momentum 	p‖ must be absorbed by the
electronic subsystem, resulting in excitations in higher bands.
Although such processes do take place, their contribution
to the spectrum is negligible when the elastic scattering is
taken into account, which restores a reasonable agreement
with experiment, as can be seen in the main panel of Fig. 5.
The elastic channel accepts the reciprocal-lattice-vector part
of the momentum, with the rest absorbed by the electronic
subsystem. We emphasize that the above being a reasoning
in physical terms, our Eq. (5) includes all the processes in
question, producing correct results automatically, without any
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FIG. 5. Calculated EEL spectrum of monolayer graphene (solid
line) and the experimental EELS in TEM (circles). Experimental data
are of Ref. [29] (digitized from Ref. [32]). Inset shows the spectrum
calculated using the loss function of Eq. (4) (neglect of the elastic
scattering).

by-hand operations (cf. Ref. [32], where the reciprocal lattice
vector is subtracted implicitly).

As noted above, this work uses the LDA to the DFT
for the ground state and RPA for the dynamic response
calculations, respectively. This is done consciously for the sake
of simplicity and considering that our goal is highlighting the
coupling between the inelastic and elastic processes, rather
than studying the many-body effects in Q2D materials, the
latter problem having been addressed in a large body of
literature (see, e.g., Ref. [33], and references therein). The basis
of our approach, Eq. (5), remains, however, valid at any level of
(TD)DFT, allowing future inclusion of the many-body effects
in the framework of this theory. At the same time, it must be
noted that the supercell method might encounter difficulties
in the presence of the long-range xc [34], in which case the
“native” approaches [35] (considering a single Q2D crystal
from the very beginning) will be necessary. The well-known
shortcomings of LDA and RPA [36] are the likely source of
the remaining discrepancies between our calculations and the
experiment in the energy range of the π + σ plasmon (see
Appendix E for further discussion).

IV. CONCLUSIONS

We have identified fundamental limitations in the con-
ventional picture of the inelastic scattering of electrons at
quasi-two-dimensional crystalline systems. That is the neglect
of the simultaneous potential scattering at the lattice, which
turns out to be critically important in the energy range of
incident electrons of ∼10–100 eV, corresponding to the setup
of the high-resolution EELS. We have overcome this problem
by constructing the theory of the one-step combined inelastic
and elastic electron scattering at Q2D crystals. These results
open a path to the theoretically interpretable use of HREELS
for studying Q2D materials with the meV resolution, the latter
unachievable with EELS in TEM.

In illustrative calculations, a strong coupling between the
inelastic and elastic channels has been found in graphene
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in the HREELS regime. In particular, the excitation of the
π + σ plasmon is dramatically affected by the scattering in
the elastic channel. These theoretical findings constitute a
strong motivation for performing HREELS experiments on
freestanding Q2D crystals, especially so in view of the recent
advances in the HREELS technique [37]. For EELS in TEM,
our theory elucidates the absorbed momenta distribution be-
tween plasmon excitation and diffraction. By this, a reasonable
agreement between the theory and the experimental EELS in
TEM has been observed for graphene.

We, finally, argue that, overcoming the limitations of the
energy-loss functions formalism, our approach can be expected
to replace it as a standard theoretical tool in the EELS of
mesoscopic crystals.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Ming-Wen Chu for providing
the digital EELS experimental data of Ref. [31]. This work was
supported by the Ministry of Science and Technology, Taiwan
(Projects No. 105–2112–M–001–010 and No. 106–2112–
M–001–021) and by the Spanish Ministry of Economy and
Competitiveness MINECO (Project No. FIS2016-76617-P).

APPENDIX A: CONNECTION TO THE
DIPOLE-SCATTERING REGIME

Here for simplicity, we consider the flat in-plane potential
and, therefore, we can rewrite Eq. (5) with all the reciprocal
lattice vectors equated to zero:

1

A

dσ

dωd�
(p′ ← p)

= −64π5p′

pq2
Im

∫
χ (z1,z

′
1,q,ω)e−q|z1−z|e−q|z′

1−z′|a+∗
p

× (z)a−
p′ (z)a+

p (z′)a−∗
p′ (z′)dzdz′dz1dz′

1. (A1)

The dipole-scattering regime is the one when the target is
excited through the long-range Coulomb interaction with a
probe, without the probe charge entering the electron density
of the target. Assuming that the electron density of the target
and the incident and reflected probe are separated by the z = 0
plane, we can consider that χ (z1,z

′
1,q,ω) is nonzero only when

both z1 and z′
1 are negative, but a±

p (z) are nonzero only if z is
positive. Then Eq. (A1) can be rewritten as

1

A

dσ

dωd�
(p′ ← p)

= −64π5p′

pq2
Im

∫
χ (z1,z

′
1,q,ω)e−q(z−z1)e−q(z′−z′

1)

× a+∗
p (z)a−

p′ (z)a+
p (z′)a−∗

p′ (z′)dzdz′dz1dz′
1, (A2)

which further reduces to

1

A

dσ

dωd�
(p′ ← p)

= −64π5p′

pq2
Im

∫
χ (z,z′,q,ω)eq(z+z′)dzdz′

×
∣∣∣∣
∫

e−qza+∗
p (z)a−

p′ (z)dz

∣∣∣∣
2

. (A3)

We see that the differential cross section factorizes in this case
into the product of two terms. The first,

−Img(q,ω) = −Im
∫

χ (z,z′,q,ω)eq(z+z′)dzdz′, (A4)

is a characteristic of the target only, and it exactly coincides
with the minus imaginary part of the g function [1,4]. The
second term in Eq. (A3) is a purely kinematic factor, depending
on the motion of the probe only.

APPENDIX B: LEED WAVE FUNCTIONS’ ASYMPTOTIC
BOUNDARY CONDITIONS IN VACUUM

The asymptotic behavior of 〈r|p±〉 and, hence, that of
a±

p,G(z), follows from Eqs. (3). Introducing the notation

kG =
√

p2
z − G2 − 2G · p‖ + i0+, Im kG > 0, (B1)

we can easily find at k2
G � 0,

a±
p,G(z) = δG0e

ipzz +
{

b±
p,Ge±ikGz, z → ∞

c±
p,Ge∓ikGz, z → −∞.

(B2)

Otherwise, if k2
G < 0,

a±
p,G(z) =

{
b±

p,Ge−|kG|z, z → ∞
c±

p,Ge|kG|z, z → −∞.
(B3)

APPENDIX C: EEL SPECTRA OF BILAYER GRAPHENE

EEL spectra of bilayer graphene in the reflection and
transmission modes are presented in Fig. 6 and 7, respectively.

APPENDIX D: LEED WAVE FUNCTIONS IN THE FIRST
BORN APPROXIMATION

From Eqs. (3) we can write to the first order in V c

|p+〉 =
[

1 + G0

(
p2

2
+ i0+

)
V c

]
|p〉. (D1)
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FIG. 6. Calculated EEL reflection spectrum of bilayer graphene
(thick black line), loss function (dashed line), and the coefficient of
reflection (blue). In contrast to the monolayer case, π plasmon is
influenced too by the inclusion of the elastic scattering.
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FIG. 7. Calculated EEL transmission spectrum of bilayer
graphene (thick black line), loss function (dashed lines), and the
coefficient of transmission (red). In contrast to the monolayer case,
π plasmon is influenced too by the inclusion of the elastic scattering.

We use the Fourier-series representation of the potential
within the interval z ∈ [−D

2 ,D
2 ], outside of which it is zero,

V c(r) = �D(z)
∑
G,g

VG,ge
i(G·r‖+gz), (D2)

where g = 2πn/D, n = 0, ± 1, . . ., and

�D(z) =
{

1, |z| � D/2
0, |z| > D/2.

(D3)

Expanding (D2) into the Fourier integral on z ∈ (−∞,∞),
we have

V c(r) =
∫

dg′

2πig′
∑
G,g

V c
G,ge

iG·r‖ei(g+g′)z[eig′D/2 − e−ig′D/2].

(D4)

Substituting Eq. (D4) into (D1) and
applying G0 explicitly, we have

〈r|p+〉 = 1

(2π )3/2

⎧⎨
⎩eip·r −

∑
G,g

V c
G,ge

i(G+p‖)·r‖
∫

dg′

πig′
ei(g+pz)z[eig′(z+D/2) − eig′(z−D/2)]

(g′ + g + pz)2 − (p2
z − G2 − 2G · p‖ + i0+)

⎫⎬
⎭. (D5)

After an explicit integration, we have separately in the three regions

〈r|p+〉 = 1

(2π )3/2

⎧⎨
⎩eip·r − 2i

∑
G,g

V c
G,ge

i(G+p‖)·r‖ eikGzeigD/2 sin[(kG − pz)D/2]

(kG − g − pz)kG

⎫⎬
⎭, z > D/2, (D6)

〈r|p+〉 = 1

(2π )3/2

⎧⎨
⎩eip·r − 2i

∑
G,g

V c
G,ge

i(G+p‖)·r‖ e−ikGzeigD/2 sin[(kG + pz)D/2]

(kG + g + pz)kG

⎫⎬
⎭, z < −D/2. (D7)

〈r|p+〉 = 1

(2π )3/2

⎧⎨
⎩eip·r −

∑
G,g

V c
G,ge

i(G+p‖)·r‖

[
2ei(g+pz)z

(g + pz)2 − k2
G

+ eikGzei(kG−g−pz)D/2

(kG − g − pz)kG
+ e−ikGzei(kG+g+pz)D/2

(kG + g + pz)kG

]⎫⎬
⎭, |z| < D/2,

(D8)

where kG is defined by Eq. (B1). Therefore, with the use of Eq. (6),

a+
p,G(z) = 1

(2π )3/2

{
eipzzδG0 − 2i

∑
g

V c
G,g

eikGzeigD/2 sin[(kG − pz)D/2]

(kG − g − pz)kG

}
, z > D/2, (D9)

a+
p,G(z) = 1

(2π )3/2

{
eipzzδG0 − 2i

∑
g

V c
G,g

e−ikGzeigD/2 sin[(kG + pz)D/2]

(kG + g + pz)kG

}
, z < −D/2. (D10)

a+
p,G(z) = 1

(2π )3/2

{
eipzzδG0 −

∑
g

V c
G,g

[
2ei(g+pz)z

(g + pz)2 − k2
G

+ eikGzei(kG−g−pz)D/2

(kG − g − pz)kG
+ e−ikGzei(kG+g+pz)D/2

(kG + g + pz)kG

]}
, |z| < D/2.

(D11)

Finally, since |p−〉 = |(−p)+〉∗, a−
p,G(z) are found as

a−
p,G(z) = a+

−p,−G(z)∗. (D12)

APPENDIX E: FURTHER COMPARISON
WITH EXPERIMENT

Although theoretical spectra in Figs. 4 and 5 are in
qualitative agreement with the experimental EELS in TEM,
two differences can be noticed. First, in Fig. 4 in the energy
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range below the π -plasmon peak, the intensities of the
experimental spectra are greater than those of the theoretical
ones. We attribute this to the finite momentum resolution
(	q = 0.1 Å −1) in the experiment [30]. Indeed, the growth
of the intensity with the decreasing energy below the π peak is
characteristic for smaller wave vectors [30] (see also Fig. 8).
Because of the contribution from the smaller q’s than the
nominal one, this leads to the discrepancy between the theory
and experiment in this energy range.

Secondly, the experimental π + σ plasmon is well repro-
duced by our calculations except for the amplitude around the
maxima. This feature is persistent with respect to the change
of q and, therefore, is likely to be related to the shortcomings
of the LDA and RPA used in the calculations.

Finally, in Fig. 8 we present theoretical spectra in com-
parison with the recent experimental EELS in TEM at very
small wave vectors [31]. At so small q’s, the theoretical π

peak in pristine graphene is almost dispersionless in LDA
and RPA, which is due to the overlapping of the plasmon
with the interband transitions [1]. This finds itself in contrast
with the experimental behavior [31]. The inclusion of the
static exchange and correlations beyond the LDA and going
beyond RPA by accounting for the dynamic exchange and
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FIG. 8. Calculated EEL spectrum of graphene (smooth solid
lines) and the experimental EELS in TEM (noisy lines). Experimental
data are from Ref. [31].

correlation with the use of fxc in Eq. (7) of a sufficient degree
of sophistication, may be the way to resolve this discrepancy.
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