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For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal (100) surfaces mediated by edge
atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN ∼ N−β with
β = 3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile
diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N =
Np = L2 or L(L + 1), for L = 3,4, . . . having unique ground-state shapes, for moderate sizes 9 � N � O(102);
the same also applies for N = Np + 3, Np + 4, . . . (iii) facile diffusion but with large β > 2 for N = Np + 1
and Np + 2 also for moderate sizes 9 � N � O(102); (iv) merging of the above distinct branches and subsequent
anomalous scaling with 1 � β < 3/2, reflecting the quasifacetted structure of clusters, for larger N = O(102) to
N = O(103); (v) classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges
apply for typical model parameters. We focus on the moderate size regime where we show that diffusivity cycles
quasiperiodically from the slowest branch for Np + 3 (not Np) to the fastest branch for Np + 1. Behavior is
quantified by kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise
analysis must account for a strong enhancement of diffusivity for short time increments due to back correlation
in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of
the merging of various branches, is facilitated by combinatorial analysis of the number of the ground-state and
low-lying excited state cluster configurations, and also of kink populations.
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I. INTRODUCTION

Significant long-range diffusion of large two-dimensional
(2D) homoepitaxial adatom clusters on single-crystal metal
(100) surfaces with sizes on the order of hundreds or even thou-
sands of atoms was studied by scanning tunneling microscopy
(STM) as early as the mid-1990’s [1,2] and also more recently
[3]. It is generally accepted that cluster diffusion is mediated
by periphery diffusion (PD), also described as edge diffusion,
of adatoms along the steps at the periphery of the cluster.
The STM studies prompted extensive atomistic lattice-gas
modeling starting in the 1990’s of epitaxial cluster diffusion
[4–11] and of related reshaping phenomena [12–19]. This
work supplemented limited earlier studies [20–22]. Mesoscale
continuum Langevin theory for PD-mediated cluster diffusion
has also been applied, and predicts that the diffusion coefficient
for clusters of N atoms satisfies DN ∼ σPDN−β with β = 3/2,
where σPD denotes the mesoscale mobility for atoms at step
edges [23,24]. Simple mean-field type atomistic-level theory
for compact clusters also predicts the same size dependence
as the continuum theory [25,26]. However, significantly, the
experimentally observed size scaling exponent β for moderate
cluster sizes, N = O(102) to O(103), is below the prediction
of the continuum and mean-field theories [2,3].

Diffusion of smaller 2D clusters with less than ∼10 atoms
on metal (100) surfaces was also observed but instead by
field ion microscopy [27–29], and has been interpreted with
appropriate theoretical analyses [30–33]. However, diffusion
of small sized clusters exhibits a distinctive irregular size
dependence and Arrhenius energetics, which is readily un-
derstood, e.g., given the innate stability of 2×2 atom square
clusters relative to two-atom dimers and three-atom trimers.

We also mention that there have been multiple studies of 2D
cluster diffusion for metal (111) and metal (110) homoepitaxial
systems, and also for heteroepitaxial metal systems [34–37].
Theoretical studies, particularly for metal (111) systems, have
explored concerted many-atom and off-lattice nonepitaxial
mechanisms [38–41]. These latter systems are of less relevance
for the current study, so we do not discuss them further.

For 2D cluster diffusion on metal (100) surfaces, there
is naturally interest in the effective or overall activation
barrier Eeff for the process where DN ∼ exp[−Eeff/(kBT )].
Here, kB denotes the Boltzmann constant, and T denotes the
surface temperature. Eeff is related to the kinetic parameters
in atomistic-level models including the barrier Ee to diffuse
along close-packed 〈110〉 cluster step edges, and any additional
barrier δ to round corners or kinks. Eeff also reflects ther-
modynamic parameters determined by adatom interactions,
particularly the formation energy Eform to create a step edge
atom from a kink atom. It was previously suggested that
long-range cluster diffusion is limited by creation of edge
atoms through their extraction from the core of the cluster
or “core breakup” [1,20], so that Eeff = Ee + δ + Eform [19].
This perspective is consistent with the predictions of the
mesoscale continuum Langevin theory where the activation
energy for cluster diffusion corresponds to that for mobility
of edge atoms EPD, where σPD ∼ exp[−EPD/(kBT )] with
EPD = Ee + δ + Eform [23,24]. The latter result for EPD has
been rigorously demonstrated in the absence of a corner or
kink rounding barrier [42], but it is expected to apply more
generally [43].

However, Mills et al. [10] noted that if cluster edges are
effectively facetted, then cluster diffusion can be limited by
nucleation of new edge layers on these facetted step edges.
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This picture leads to higher values of Eeff than predicted
above (see Sec. III), and also to a weaker dependence of
DN on N reminiscent of experimental observations. This
facetted regime occurs for linear cluster sizes, L ∼ N1/2 (in
units of surface lattice constant, a = 1), which are below
the characteristic separation, Lk ≈ 1/2 exp[εk/(kBT )], of kinks
on close-packed 〈110〉 edges [44]. Here, εk denotes the
kink creation energy. Another perspective on anomalous size
scaling for diffusivity was provided by Pierre-Louis [45] who
modified the continuum Langevin theory by introducing an
additional diffusion field for edge atoms. This approach also
recovered weaker size scaling.

Jensen et al. [15] adopted an analogous nucleation-
mediated picture to describe the effective barrier and anoma-
lous size scaling for the relaxation to equilibrium of convex
nonequilibrium cluster shapes. Regarding the relationship
between this shape relaxation process and the long-range
diffusion of clusters, it should be noted that both require nucle-
ation of new edge layers. Furthermore, a simple relationship
was proposed between the size scaling exponents for cluster
diffusion and relaxation of convex shapes [46]. It was later
shown that further refinement to anomalous scaling could
be induced in the presence of an additional kink or corner
rounding barrier [14,17].

However, we show in this contribution that the above
observations, while providing key insight into deviations from
standard macroscale and mean-field theories, fall far short of
providing a complete characterization of the full diversity of
cluster diffusion behavior on the nanoscale. A comprehensive
and precise characterization of the dependence of the cluster
diffusion coefficient DN on size N can be provided by analysis
utilizing kinetic Monte Carlo (KMC) simulation of a stochastic
atomistic-level lattice-gas model for cluster diffusion which
incorporates an appropriate description of PD kinetics. Indeed,
this approach is a key component of the current study, and
reveals various size regimes with distinct behavior: (i) facile
diffusion for small sizes N < 9; (ii) slow nucleation-mediated
diffusion with weak size scaling β < 1 for “perfect” sizes
N = Np = L2 or L(L + 1) with L = 3,4, . . . having unique
square or near-square ground-state shapes, and also for sizes
Np + 3, Np + 4, . . . , versus facile diffusion with strong size
scaling β > 2 for sizes Np + 1 and Np + 2 for moderate sizes
9 � N � O(102); (iii) merging of these distinct branches and
subsequent anomalous scaling with 1 � β < 3/2, the latter
reflecting the quasifacetted structure of clusters for larger
N = O(102) to N = O(103); and (iv) classic scaling with
β = 3/2 consistent with macroscopic or mean-field theories
for very large N = O(103) and above. We mainly focus
elucidation of behavior in regime (ii), and to some extent
regime (iii). To this end, in addition to KMC analysis, we
also develop and utilize results from combinatorial analysis of
cluster configurations to provide deeper insight.

In Sec. II, we describe our stochastic lattice-gas model
for PD-mediated cluster diffusion, and also various strategies
for model analysis. In Sec. III, we discuss different possible
types or branches of cluster diffusion, and Sec. IV present
KMC results providing an overview of the variation of DN

versus N . A brief report of such behavior was recently
provided for just one choice of adatom interactions and no

kink rounding barrier, δ = 0 [47]. Here, we consider different
interactions, and finite δ > 0 as well as δ = 0. We also present
a comprehensive analysis and interpretation of diverse aspects
of this behavior, as detailed in the following sections. In Sec. V,
we describe the variation of the effective diffusivity, DN (δt),
for short time increments, δt, where DN = limδt→∞DN (δt).
Characterization of the variation of DN (δt) with δt, which
reflects a strong back correlation in cluster motion, is necessary
for a reliable extraction of DN . Additional elucidation of
diverse size scaling and cyclic variation of diffusivity in regime
(ii), and of intermingling and merging of diffusion branches
by regime (iii), is provided in Sec. VI based on counting the
number of ground- state and first-excited-state configurations
of key classes of clusters. Conclusions are provided in Sec. VII.

II. ATOMISTIC MODEL FOR CLUSTER DIFFUSION

A. Tailored stochastic lattice-gas model

We adopt a tailored model for PD-mediated epitaxial
cluster diffusion on metal (100) surfaces, which captures
the key features of these systems [16]. In our stochastic
lattice-gas model, clusters of adatoms reside on a square
lattice of adsorption sites with lattice constant ‘a’ typically
set to unity. Adatoms interact with just nearest-neighbor (NN)
attractive lateral interactions of strength φ > 0. They can hop
to NN sites, and also to 2nd NN (2NN) sites, provided that
hopping retains at least one NN adatom in the cluster. Thus
this hopping dynamics preserves NN connectivity (and size)
of the cluster. All hop rates have the Arrhenius form h =
ν exp[−Eact/(kBT )], where ν is a common attempt frequency
for both NN and 2NN hops. Let nNN denote the number of
in-plane NN adatoms of the hopping adatom in its initial
configuration. Then, the activation barrier Eact, selected to
be consistent with detailed-balance, satisfies

Eact = Ee + (nNN − 1)φ for NN hops and

Eact = Ee + (nNN − 1)φ + δ for 2NN hops. (1)

In this model, the edge atom formation energy equals
Eform = φ. It also follows that one has activation barriers
of Ee for hopping of isolated adatoms along close-packed
〈110〉 edges via NN hops, Er = Ee + δ for hopping around
corners or kinks via 2NN hops, Ek = Ee + φ for kink escape
via NN hops, and Ec = Ee + φ + δ for “core breakup”
via 2NN hops (cf. Sec. 1, see Fig. 1). The corresponding
rates are denoted he,hr ,hk , and hc, respectively. The char-
acteristic times associated with these various hop rates are
denoted τe = 1/he, τk = 1/hk , etc. An atom can also be
extracted from a straight close-packed step edge with barrier

FIG. 1. Schematic of different hopping processes in our stochas-
tic lattice-gas model. Atoms correspond to filled red squares and
available adsorption sites to empty squares.
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FIG. 2. Trajectory of CM of a diffusing cluster with N = 36 for
φ = 0.20 eV with δ = 0 at 300 K. Start: red square. End: pink square.

Eextract = Ee + 2φ + δ, but this process is not prominent, and
thus is not shown in Fig. 1.

B. Model analysis

Our focus is on analysis of the diffusion coefficient DN

for clusters of various sizes N (in atoms). To this end, it is
appropriate to first define an effective time-dependent diffusion
coefficient, DN (δt) = 〈[δr(δt)]2〉/(4δt), where δr(δt) is the
displacement in the cluster center of mass (CM) in a time
interval δt , and 〈 〉 is an average of data over a long trajectory.
Also we set [δr]2 = δr · δr. Comprehensive characterization
of model behavior is naturally extracted from KMC simulation.
(See Fig. 2 for a typical cluster CM trajectory extracted from
such a simulation.) The algorithm used is a standard rejection-
free Bortz type algorithm. Note that in contrast to a “pure”
random walk, DN (δt) is not in general constant, but can vary
for shorter δt due to correlations in the walk of the cluster
CM [1,10,22,32]. However, DN (δt) plateaus for larger δt, and
the conventional diffusion coefficient is obtained from DN =
limδt→∞DN (δt) = DN (∞). Thus appropriate analysis of DN

must account for this transient behavior. For our model where
DN (δt) ∝ a2he, one has that DN (δt)/DN versus he δt , and
DN/(a2he) are independent of our choice of Ee and ν, and thus
he. For reference, choosing Ee = 0.29 eV and ν = 1012.5s−1

mimicking Ag/Ag(100) yields he = 107.6s−1 at 300 K.
We expect DN (δt) to have converged to its plateau value of

DN for δt > δtc, where 〈[δr(δtc)]2〉 ∼ a2, i.e., when the cluster
of CM has moved about one lattice constant. To obtain precise
DN , we need the total length of the trajectory ttot of at least
O(103 δtc). Then, 〈[δr(δtc)]2〉 can be estimated from O(103)
statistically independent values obtained from nonoverlapping
time increments of length δtc along the trajectory. Overlapping
time increments can be used, although then the values
of [δr(δtc)]2 are not completely independent. We choose
ttot ∼ 35000 δtc.

It is appropriate to note that DN can in principle be
determined exactly for any cluster size N by analysis of the
linear master equations for the stochastic lattice-gas model
[30,32]. These master equations track the evolution of the
probability of various cluster configurations for the infinite
possible number of CM positions. Let 	N denote the total
number of distinct configurations for a cluster of size N . Then,

applying a discrete spatial Fourier transform to these master
equations with respect to cluster position converts them into
a finite-dimensional 	N×	N matrix evolution equation in
transform space. One then extracts DN from analysis of the
“acoustic” eigenmode of this evolution matrix, and specifically
from its quadratic variation for small wavenumbers. It should
also be noted that the transformed 	N×	N matrix encodes
connectivity between cluster configurations, i.e., indicating
which configurations can be directly reached from other
configurations by hopping of a single edge atom. Thus the
behavior of DN also reflects this connectivity, although in a
nontrivial indirect way. Finally, we emphasize that an exact
analysis utilizing this approach is only viable for relatively
small clusters since 	N increases quickly with N . Nonetheless,
it is useful to elucidate behavior in the small cluster size regime
(i) (see Appendix A).

The relevance of the total number of cluster configurations
	N is already clear from the above discussion of exact analysis.
However, one anticipates that not all configurations are equally
relevant for the cluster diffusion processes, particularly at
lower T . Thus, it is natural to separately analyze the number
of ground-state configurations 	N (0), the number of first
excited state configurations 	N (1), etc. This analysis involves
nontrivial combinatorics exploiting results related to partitions
of integers in number theory. Additional useful analysis will
involve estimation of the number of kinks in ground state,
etc., configurations. Details are provided in Appendices B–D.
These results will be utilized to elucidate short-time transient
behavior, anomalous scaling observed for moderate sizes, and
intermingling and merging of different diffusion branches.

III. DISTINCT BRANCHES OF CLUSTER DIFFUSIVITY
FOR MODERATE SIZES

First, we characterize of various branches or classes of
cluster sizes for which distinct diffusion behavior is observed
in regime (ii) of moderate clusters sizes N = 9 to O(102).
We close with comments on behavior for small clusters with
N < 9.

A. Nucleation-mediated (NM) diffusion for “perfect” sizes

“Perfect” sizes N = Np = L2 or L(L + 1), with L =
3,4, . . . , have unique nondegenerate ground-state shapes
corresponding to perfect squares and near-square rectangles,
respectively. This uniqueness does not apply for sizes N =
L(L + n) with n � 2 where the L × (L + n) rectangular
configuration is either one of multiple ground states, or corre-
sponds to an excited state. If φ/(kBT ) is not too small, clusters
with N = Np primarily exist in their unique ground-state
shapes, and are subject to “nucleation-mediated” diffusion. In
this process, the first step is extraction of one of the four corner
atoms onto a straight close-packed 〈110〉 step edge, which
raises the total energy by 
E = +φ. However, typically, this
atom will soon return to the more highly coordinated corner
site. Thus, to initiate significant cluster restructuring leading
to long-range diffusion, it is necessary that a second atom
detaches from a corner and aggregates with the first atom
before the first atom can return to the corner [9,14,16]. In this
way, a step edge dimer is formed, thus potentially nucleating
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FIG. 3. Nucleation-mediated cluster diffusion for perfect sizes Np = L2: (a) direct and (b) indirect pathways. (c) Direct pathway for perfect
sizes Np = L(L + 1).

a new edge layer. Once this dimer is formed on one edge,
subsequent atoms can migrate from kink or corner sites to
complete that new edge layer.

The most direct pathway to facilitate translation of the
unique ground state for Np = L2 to a different location, a
key component of long-range diffusion, is shown in Fig. 3(a).
In this case, two atoms are shifted from one side of the cluster
to nucleate a dimer on the opposite side. Thereafter, atoms
continue to be shifted from that same side to the opposite side.
After each individual atom transfer is completed, the cluster
is in a different first excited state configuration with energy

E = +φ above the ground state. Only when the last atom
is transferred does the energy decrease again by 
E = −φ.
However, we note that there are indirect pathways leading to
long-range diffusion as shown in Fig. 3(b). Here, atoms shifted
from multiple corners of the cluster whose configuration
(after each atom transfer) wanders through a large number
of first-excited state configurations. However, to achieve the
translated ground state, multiple eroded corners must be
largely reconstructed, so that, ultimately, atoms are only
removed from a single side of the cluster. Significantly, we note
that while long-range diffusion accesses many configurations
isoenergetic with the first excited state, it requires repeatedly
returning to the unique ground-state shape. Figure 3(c) shows
the direct pathway for Np = L(L + 1), which is analogous to
that for Np = L2.

Finally, we comment on the effective barrier for nucleation-
mediated diffusion of perfect clusters. An isolated edge atom
extracted from the corner of a perfect core exists with low
quasiequilibrium density, neq = exp[−φ/(kBT )]. Mills et al.
[10] argued that DN should reflect the nucleation rate knuc ∼
neqhc to create a dimer on an outer edge. knuc is the product of
the density neq times the rate hc of extracting a second atom at
the core, as the extracted atom must meet the preexisting edge

atom to nucleate a new step edge. Consequently, the effective
barrier for cluster diffusion is given by Eeff = Ee + 2φ + δ

[10,15,17].

B. Facile (FA) cluster diffusion

For clusters of size N = Np + 1 and N = Np + 2, with
either Np = L2 or L(L + 1), the edge dimer nucleation
process described above for perfect clusters is not necessary
for long-range cluster diffusion. For N = Np + 1, we note the
existence of a “special” ground-state configuration with an
isolated adatom on the edge of a perfect square or rectangular
core of Np atoms. For these special configurations, the
isolated edge adatom can readily diffuse around the entire
cluster perimeter. For N = Np + 2, “special” ground-state
configurations involve an NN pair of edge atoms or edge dimer
on a perfect core, where this edge dimer can dissociate and
readily reform on another edge. Either process results in no
net change of energy. After transferring the isolated edge atom
or dimer to new edge of the core, atoms can be transferred
from another edge to complete the new edge of the core. This
again leaves an isolated atom or dimer on the edge of a perfect
core with shifted location.

The above scenario for N = Np + 1 with atoms transferred
from a single edge corresponds to a direct pathway to
facilitate translation of the special ground-state configuration
to a different location. This direct pathway is shown in
Fig. 4(a). However, there are indirect pathways leading to
the same outcome. Analogous to the above case of perfect
sizes, these indirect pathways involve shifting of atoms from
multiple corners of the cluster as shown in Fig. 4(b) so
the cluster wanders through a large number of ground-state
configurations. However, to achieve the translated ground
state, most of these eroded corners must be reconstructed so
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FIG. 4. Facile cluster diffusion for sizes N = L2 + 1: (a) direct and (b) indirect pathways. (c) Direct pathway for sizes N = L2 + 2.

that atoms are only shifted from a single side of the cluster.
Shifting atoms from one kink to another does not change
the energy after reattachment, so as a result for either direct
or indirect pathways, after each atom transfer, the system
evolves through a set of configurations isoenergetic with the
special ground-state configurations. The direct pathway for
N = Np + 2 is shown in Fig. 4(c).

Finally, we emphasize that while the diffusing cluster can
wander through many isoenergetic configurations, long-range
diffusion (if restricted to these configurations) requires that
the cluster repeatedly passes through a special configuration
with an isolated atom or dimer at an edge of a perfect core.
This is the only way to create a new complete edge on the
original perfect core. Also, we note that since diffusion of
facile clusters just involves breaking atoms out of kink sites
and subsequent edge diffusion, the effective cluster diffusion
barrier Eeff is simply given by Eeff = Ee + φ + δ.

C. Other cases of nucleation-mediated cluster diffusion

Clusters of size N = Np + n with 3 � n � L, for either
Np = L2 or L(L + 1), also exhibit nucleation-limited diffu-
sion. The ground states for these sizes include the subclass of
configurations with a linear triple or longer string of atoms
at the edge of a perfect square or rectangular core. For these
configurations, adatoms can readily transfer from the opposite
complete edge to that on which the string of n adatoms reside
(without raising the energy after transfer), thereby completing
that edge. However, this leaves behind a triple or longer string
of atoms which cannot readily be transferred to another edge.
Certainly, the ground states are degenerate, as starting with the
above subclass of configurations, atoms can be removed from
multiple corners, and added to the above mentioned string with
no net change in energy. However, in any case, nucleation of a
dimer on a new outer edge (i.e., on an edge outside the rectangle
inscribing the ground-state configurations) is always required

to facilitate long-range diffusion of the cluster CM. The same
argument as used for perfect clusters indicates that the effective
barrier for cluster diffusion equals Eeff = Ee + 2φ + δ.

D. Facile behavior for small sizes N < 9

Diffusion for all small clusters with N < 9 is always
facile (i.e., not nucleation-mediated). For N = 2 or 3, cluster
diffusion does not even require breaking atoms out of kink
sites, so the effective barrier is even lower than described above
for facile diffusion of larger clusters. A dimer CM undergoes
a pure random walk on a square grid rotated at 45◦ to the
adsorption sites with lattice constant a/

√
2 hopping at rate

hr . Thus, one has D2 = D2(δt) = 1/2 a2hr and Eeff = Ee + δ.
For a trimer, D3(δt) generally decreases with increasing δt
to its asymptotic value, and diffusion is controlled by corner
rounding so that again Eeff = Ee + δ [32]. Cases N = 5 =
2 × 2 + 1 and N = 7 = 2 × 3 + 1 fit within the category
Np + 1. Cases N = 4 = 2 × 1 + 2, N = 6 = 2 × 2 + 2, and
N = 8 = 2 × 3 + 2 fit within the category Np + 2. Thus all
these cases with 4 � N � 8 have Eeff = Ee + φ + δ, and they
all exhibit nonconstant DN (δt). (See Appendix A for an exact
master equation based analysis for some of these cases.)

IV. CLUSTER DIFFUSIVITY VERSUS SIZE:
KMC RESULTS

A. Cluster diffusivity with no kink rounding barrier (δ = 0)

We first present an overview of KMC results illustrating
various size regimes and branches of DN behavior focusing
on the case φ = 0.20 eV and δ = 0 at 300 K. See Fig. 5.
For small sizes N = 4 to 8, high facile values of DN are
evident. Even higher values for N = 1 to 3 are not shown. For
moderate sizes, N = 9 to O(102), we just show for clarity only
four distinctive branches: facile Np + 1, facile Np + 2, perfect
Np, and slow Np + 3. The following key features are present:
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FIG. 5. KMC results for DN vs N with δ = 0 and φ = 0.20 eV
(φ = 0.24 eV in the inset) at 300 K.

(a) initially high values and rapid decay of DN ∼ N−βf for
facile Np + 1 clusters up to N ∼ 82 with large βf ≈ 2.3;
similarly high DN , but less regular decay for facile Np + 2
clusters; (b) the lowest values and slow decay of DN ∼ N−βs

for sizes Np + 3 for N ∼ 39 − 103 with small βs ≈ 0.83; (c)
very weak size dependence of DN for perfect Np clusters
up to N ≈ 81; perfect Np and slow Np + 3 branches merge
for small N = 12 (and N = 9); (d) intermingling of DN

for perfect Np with facile branches for Nmingle ≈ 43, and
subsequent transition to a rapid decrease of DN for perfect
clusters; (e) near-merging of all branches for N ≈ Nmerge ≈
150. For larger sizes N > Nmerge, if we write DN ∼ N−βeff ,
the effective exponent varies slowly from βeff ≈ 1.09 for N

just above Nmerge, to βeff ≈ 1.33 for N from 500–1000, to
β = 1.50 (the asymptotic value for compact clusters) for N

from 2000–3600 (see Fig. 6). This latter result is consistent
with a kink separation Lk = 1/2 exp[1/2 φ/(kBT )] ≈ 24 for
φ = 0.20 eV, given that the asymptotic regime should apply
for N � (Lk)2 ≈ 570.

It is instructive to contrast behavior for φ = 0.20 eV with
that for φ = 0.24 eV retaining δ = 0 at 300 K (see the insets
for Figs. 5 and 6). All of the features described above
are preserved qualitatively for φ = 0.24 eV. However, now
the deviations between the different branches for moderate
sizes are enhanced, which is a natural consequence of larger

FIG. 6. Post-merging effective scaling behavior of DN with N for
φ = 0.20 eV (φ = 0.24 eV in the inset) and δ = 0 at 300 K.

FIG. 7. Cyclical behavior of DN vs N between minima (NP + 3)
and maxima (NP + 1) for φ = 0.20 eV and δ = 0 at 300 K. Inset:
φ = 0.24 eV.

values of φ/(kBT ) producing a larger difference between
Eeff for facile and nucleation-mediated branches. Also, the
approach to asymptotic behavior is significantly delayed
for larger φ/(kBT ), as expected given the larger values of
Lk . Specifically, for φ = 0.24 eV, we find that βf ≈ 2.6 up
to N ∼ 101, βs ≈ 0.53 for N ∼ 67–200, Nmingle ≈ 81, and
Nmerge ≈ 200–250. With regard to scaling for larger sizes,
we find that βeff ≈ 0.75 just above Nmerge, and βeff ≈ 1.12
for N from 500–1000. Now Lk = 52 for φ = 0.24 eV, so
we do not access the asymptotic scaling for N � (Lk)2 ≈
2700. Naturally, choosing φ < 0.20 eV would minimize the
difference between different branches for moderate sizes and
accelerate the approach to asymptotic behavior. However,
if φ/(kBT ) is too small, the cluster connectivity constraint
becomes artificial. In the limit as φ/(kBT ) → 0, the clusters
become “random animals” with perimeter length proportional
to size. This also results in deviations from β = 1.5 [22].

Next, we consider in more detail diffusion behavior in
the moderate size regime. Figure 7 reveals a quasiperiodic
variation of DN with N = Np + n within each cycle n = 1 to
nmax, where nmax = L for Np = L2 or (L–1)L. Specifically,
DN has a local maximum for n = 1, drops significantly for
n = 2, and again for n = 3, where the latter corresponds to the
lowest value within each cycle. DN then increases within each
cycle N = Np + n for increasing n = 3,4,5, . . . ,nmax, where
N = Np + nmax recovers the next perfect size above Np. For
example, for Np=30 (36), nmax=6, and Np + nmax=36 (42).
Note that the length of these cycles increases for larger N , and
that N = 15,24,35, . . . is the smallest value of N for which
one can realize Np + 3, Np + 4, Np + 5, . . ..

Interestingly, DN values for perfect sizes for n = nmax

within each cycle can be comparable to those for facile clusters
for n = nmax + 2. On the other hand, they are often well above
DN for n = 3 (the slowest clusters). This contrasts a possible
perception that perfect sizes should be the slowest. Thus
one might question the assignment of nucleation-mediated
diffusion for n = nmax versus facile diffusion for n = nmax +
1. However, an Arrhenius plot for DN versus φ/(kBT )
does show clearly the distinction between Eact for these
classes. Typically, such Arrhenius plots plot ln[DN ] versus
1/(kBT ) for fixed φ, the slope corresponding to Eeff . Here,
instead we plot ln[DN/(a2he)] versus φ for fixed T = 300 K
yielding a slope of −n/(kBT ) with n = 1 (n = 2) for facile
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FIG. 8. Arrhenius analysis of DN for facile (Np + 1, Np + 2) and
nucleation-mediated (Np + n for n = 3,4, . . . ,np) sizes with Np =
30 and np = 6. T = 300 K is fixed and φ is varied.

(nucleation-mediated) diffusion (see Fig. 8). This format is
instructive for showing the extent of variation of DN for
the expected range of φ values for metal (100) homoepi-
taxial systems, and for a typical experimental temperature
(T = 300 K).

B. Cluster diffusivity with a finite kink rounding
barrier (δ = 0.1)

The introduction of a significant kink rounding barrier,
δ > 0, reduces the magnitude of DN as a result of the increased
Eeff described in Sec. III. However, the qualitative features of
the different diffusion branches for moderate sizes, and the
variation of DN versus N are the same as for δ = 0. These
features are shown in Fig. 9 for φ = 0.20 eV and δ = 0.1 eV
at 300 K (and in the inset for φ = 0.24 eV). A detailed
characterization of the cyclical behavior of DN versus N in
the moderate size regime is shown in Fig. 10 where again
the local maxima (minima) in DN occur for N = Np + 1
(N = Np + 3). As for δ = 0, DN for N = Np + n for the
case of perfect sizes with n = nmax is not so far below that for
facile sizes with n = nmax + 2, but well above that for n = 3.
Again, we have performed an Arrhenius analysis to reveal that
Eeff for n = 3,4, . . ., and nmax (nucleation-mediated cases) are
all similar, and are clearly above those for n = nmax + 1 and
n = nmax + 2 (facile cases).

FIG. 9. KMC results for DN vs N with δ = 0.10 and φ = 0.20 eV
(φ = 0.24 eV in the inset) at 300 K.

FIG. 10. Cyclical behavior of DN vs N between maxima (NP +1)
and minima (NP + 3) for φ = 0.20 eV and δ = 0.1 eV at 300 K.
(Inset) φ = 0.24 eV and δ = 0.1 eV.

A previous study [17] indicated that introduction of a
kink rounding barrier reduces the values of effective scaling
exponents βeff . Specifically, this should apply for regime
(iii) where facile and nucleation-mediated branches have
merged, but prior to the true asymptotic regime of large
sizes. For φ = 0.20 eV at 300 K, we find that just after
merging, βeff ≈ 0.86 for 144 � N � 325 when δ = 0.1 eV
(versus βeff ≈ 1.09 for 121 � N � 327 when δ = 0). We also
find that βeff ≈ 1.09 for 361 � N � 677 when δ = 0.1 eV
(versus βeff ≈ 1.32 for 364 � N � 2028 when δ = 0). For
φ = 0.24 eV, data are more limited for δ = 0.1 eV as the
simulation is more computationally demanding [48]. However,
we estimate that just after merging, βeff ≈ 0.71 when δ =
0.1 eV (versus βeff ≈ 0.75 when δ = 0). These results confirm
the proposal that increasing δ decreases βeff .

V. TIME-DEPENDENT DIFFUSIVITY
AND BACK-CORRELATION

The time-dependent diffusion coefficient, DN (δt) =
〈[δr(δt)]2〉/4δt , was introduced in Sec. IIB, where δr(δt) is the
CM displacement in a time interval δt . The plateau value of
DN (δt) corresponds to the conventional diffusion coefficient,
DN = limδt→∞DN (δt) = DN (∞). Thus it is important to
understand the transient behavior in order to reliably assess
DN . In fact, this was essential to obtain the smooth cyclical
variation of DN shown in Sec. IV. Here, we consider behavior
only in the absence of a kink rounding barrier, δ = 0, although
the basic observations and strategies of analysis apply more
generally. In Fig. 11, we show KMC simulation results for
δ = 0 for the behavior of DN (δt)/DN (∞) versus heδt for
sizes within a single cycle N = Np + 1 to N = Np + nmax

(cf. Sec. IV). As noted in Sec. IIA, the form of these curves
is independent of the choice of he. There is a strong decrease
in DN (δt) to its plateau value DN = DN (∞). In Sec. VA,
we estimate the short time-increment values, DN (δt → 0), for
special cases of perfect and facile sizes. Then, in Sec. VB, we
provide further insight into the underlying back correlation in
cluster motion.
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FIG. 11. Time-dependent diffusion coefficients reflecting back-
ward correlation in the CM motion for various cluster sizes within a
cycle (see text) with φ = 0.20 eV (and φ = 0.24 eV in the inset) for
δ = 0 at 300 K. Here DN (∞) = limδ→∞DN (δt) = DN .

A. Short-time behavior of DN (δ t)

Our estimate of the value of DN (δt → 0) assumes inde-
pendent contributions to the mean-square displacement of
the cluster CM from the short-time motion of all isolated
(singly coordinated) edge atoms and all doubly coordinated
kink atoms. Thus, we sum over these contributions to obtain
DN (δt → 0). For short-time increments, δt , the mean-square
displacement of isolated edge atoms (called “monomers”
below) from their initial position satisfies 〈δre(δt)2〉 ≈ 2heδt ,
3heδt , and 4heδt for atoms on straight close-packed steps
that can make two NN hops, atoms at corners that can make
one NN and one 2NN hop, and atoms that can make two
2NN hops, respectively. The latter case is rare for larger
clusters, so effectively one has 2heδt � 〈δre(δt)2〉 � 3heδt .
The mean-squared displacement of kink atoms (just called
“kinks” below) from their initial position satisfies 〈δrk(δt)2〉 ≈
3hkδt for atoms that can make one NN and one 2NN hop,
and 〈δrk(δt)2〉 ≈ 4hkδt for corner atoms that can make two
2NN hops. Thus one has that 3hkδt � 〈δrk(δt)2〉 � 4hkδt . To
simplify the analysis below, we will not discriminate between
the different categories of monomers and kink atoms, and
will interpret 〈δre(δt)2〉 and 〈δrk(δt)2〉 as suitable averages
over all categories. Subsequently, we will just obtain upper
and lower bounds for DN (δt → 0) using the above upper and
lower bounds on 〈δre,k(δt)2〉.

Before presenting our approximation for DN (δt → 0), we
also note that when a periphery atom is shifted by one lattice
constant in a certain direction, the CM of the cluster is shifted
by 1/N in that direction. This will produce an additional
factor of 1/N2 = 1/L4 in our analysis of mean-squared cluster
displacement. Thus our expression for DN (δt → 0) becomes

DN (δt → 0)

≈ 1

4N2

∑
i

(
nN,e(i)

〈δre(δt)2〉
δt

+ nN,k(i)
〈δrk(δt)2〉

δt

)

× exp[−Ei/(kBT )]

Z
, (2)

where nN,e(i) and nN,k(i) are the number of monomers
and kinks in ith state with energy Ei , and Z =∑

i exp[−Ei/(kBT )] is the relevant partition function. We use
this result to estimate DN (δt → 0) focusing on two special
cases. Further details are provided in Ref. [49].

Perfect sizes Np = L2. The ground state is unique, i.e.,
	L2 (0) = 1, and has a square shape with no monomers and
four kinks. Thus the total contribution to DN (δt → 0) from
the ground state is of order hk/N

2, denoted O(hk/N
2). There

are 4×(4L − 2) first excited states where an atom is shifted
from one of the four corners of the ground state and placed
as a monomer on an edge, and 2×4L first excited states with
a monomer on an edge of a (L − 1)×(L + 1) rectangle. Thus
the total number of first excited states with a monomer is
	′

L2 (1) = (24L − 8). The total contribution to DN (δt → 0)
from these states is dominated by monomer hopping and
is O(	′

L2 (1) he exp[−φ/(kBT )]/N2) = O(Lhk/N
2), which

exceeds the contribution from the ground state.
The great majority of the 	L2 (1) first excited states

have no monomers, but many kinks. If nL2,k(1) denotes
the number of kinks in such states, then one has that
3 � nL2,k(1) � 2(1 + √

2L + 1) (see Appendix B). Despite
the penalty of a Boltzmann factor of exp [−φ/(kBT )],
the total contribution of kinks in first excited states,
O(nL2,k(1)	L2 (1)hkexp[−φ/(kBT )]/N2), becomes compara-
ble to those above for moderate N due to the large number
of first excited states 	L2 (1). Specifically, the contribution
becomes comparable when 	L2 (1)exp[−φ/(kBT )] ∼ O(1),
which occurs when N ∼ 49 (81) for φ = 0.20 eV (0.24 eV)
(see Appendix C).

Finally, we find that it is also necessary to consider
contributions from the subclass of second excited states,
which include a monomer. We note that the number of
such states, 	′

L2 (2) ∼ 4L 	L2−1(1) (see Appendix D for a
more precise analysis) is somewhat larger than 	L2 (1) for
N ∼ O(102). The total contribution of such states is of order
O(	′

L2 (2)heexp[−2φ/(kBT )]/N2), which is of the same order
as the above contributions for moderate cluster sizes if one
accounts for this large 	′

L2 (2) and for the high monomer hop
rate he. Combining these four types of contributions (of which
the last one dominates for moderate N ) yields estimates for
DN (δt → 0) close to simulation values as shown in Fig. 12
for heδt = 1, φ = 0.20 eV.

It is appropriate to note that the contributions explicitly
included above correspond to exactly the configurations that
arise in our picture of nucleation-mediated cluster diffusion for
moderate sizes. The cluster primarily exists in the ground state,
but must access first excited states in order to initiate motion.
However, transitions between the numerous monomer-free
first excited states involve second excited states with a
monomer. We note that contributions from second excited
states without a monomer and higher excited states are of
lower order than those above since the number of relevant
configurations is not substantially greater than 	L2 (1) or
	′

L2 (2).
Facile clusters of sizes N = L2 + 1. Here, we mimic the

above analysis for perfect clusters. For N=L2 + 1, there are
4L ground states with a monomer, i.e., 	′

L2+1(0) = 4L,
each of which provide a contribution O(he	

′
L2+1(0)) ∼

O(he) dominated by monomer hopping. All ground states
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FIG. 12. Estimated upper and lower bounds of DN (δt → 0) vs
simulation results for heδt = 1 (black dots) for N = L2 (inset N =
L2 + 1) for φ = 0.20 eV and δ = 0 at 300 K.

contribute by kink hopping with total contribution of order
O(nL2+1,k(0)hk	L2+1(0)) ∼ O(he) for N � 65(101) with φ =
0.20 eV (0.24 eV), using the feature that 	L2+1(0) grows far
more quickly than 	′

L2+1(0). Note also that nL2+1,k(0) �
2(1 + √

2L − 1) (see Appendix B). The third contribu-
tion comes from the first excited states with a monomer,
where the number of such states satisfies 	′

L2+1(1) ∼
4L 	L2 (1) (see Appendix D for a more precise analy-
sis). Thus the total contribution of first excited states is
O(he	

′
L2+1(1)exp[−φ/(kBT )]) ∼ O(he), due to the large

number of states considered, O(	′
L2+1(1)exp[−φ/(kBT )]) ∼

O(1) for N � 65(101) with φ = 0.20 eV (0.24 eV). Combin-
ing these three contributions yields estimates for DN (δt → 0)
close to simulation values [see Fig. 12 (inset) for heδt = 1,
φ = 0.20 eV]. Note that the states explicitly included above
are exactly those in our picture of facile diffusion for moderate
sized clusters, and other states have a lower order contribution.

Other cases and further comparison. The above analysis
readily extends to other cases. For the nucleation-mediated
cases, N = Np + n with n = 3,4, . . . ,nmax, we claim that
DN (δt → 0) will decrease from a local maximum for N =
Np + 3 to a local minimum for N = Np + np (corresponding
to perfect clusters). Clusters within this class for N = Np + 3
have the highest ground-state degeneracy and importantly also
the highest number of kinks. Consequently, the contribution
from the ground states O(nL2+3,k(0)hk	L2+3(0)) for N =
Np + 3 will exceed that for perfect clusters due to the sub-
stantial number of kink sites, nL2+3,k(0) � 2(1 + √

2L − 5).
The larger factor 	L2+3(0) versus 	L2+np

(0) = 1 does not
in itself boost DN (δt → 0), as this factor also appears in
the partition function denominator of (2). For N = Np + n,
as n increases from 3 towards np, the degeneracy of the
ground-state and importantly the typical number of kinks
decreases. Correspondingly, DN (δt → 0) also decreases with
increasing n = 3,4, . . .. Finally, comparing the above analysis
for perfect and facile clusters shows that DN (δt → 0) for

perfect clusters is smaller roughly by a Boltzmann factor of
exp[−φ/(kBT )] than for facile clusters.

B. Further analysis of back correlation

The substantial characteristic time δtc, associated with
the transient short-time diffusion behavior of DN (δt), is
evident from Fig. 11. These data suggest he δtc ∼ 105–106

(106–107) for φ = 0.20 (0.24) eV at 300 K, at least for
nucleation-mediated (NM) cluster diffusion, where the branch
with N = Np + 3 appears to have a larger δtc than for
N = Np + n with n > 3. This latter feature is confirmed by
a suitably rescaled version of Fig. 11, which is shown in
Ref. [49]. It is reasonable to expect that for NM diffusion,
δtc should reflect the characteristic time δtnuc = 1/knuc to
nucleate a dimer on an outer edge. This implies that he δtc ∼
he δtnuc ∼ exp[+2φ/(kBT )] ∼ 106.4 (108.0) for φ = 0.20 eV
(φ = 0.24 eV) at 300 K with δ = 0. These crude estimates at
least roughly reflect those from Fig. 11, and also the feature that
δtc increases with φ. The larger δtc for N = Np + 3 plausibly
reflects the larger degeneracy of the ground state and the larger
typical number of kinks for that cluster size (see Sec. VII),
which can inhibit nucleation of new outer edges.

For facile clusters with N = Np + 1 or N = Np + 2,
Fig. 11 perhaps suggests a somewhat shorter δtc although
this is not evident in the further rescaled plots in Ref. [49].
One might expect a shorter δtc based upon the feature that
nucleation is not needed so correspondingly Eeff is lower,
and the long-time diffusion coefficient is higher. However,
other factors, such as the high degeneracy of the ground state
(see Sec. VII), no doubt play a role in determining δtc.

As noted previously, assessment of transient behavior in
DN (δt) is essential for precise determination of DN , where
precise determination becomes more demanding for longer
δtc. Thus, accurate treatment of the case N = Np + 3 is most
demanding, failure to do so leads to a distorted representation
of the cyclical behavior of DN versus N (see Sec. VII).
Practically, we initially estimate that the plateau in DN (δt)
is achieved for δt > δt∗, where 〈[δr(δt∗)]2〉 is of the order of
a2 (where δt∗ gives a measure of δtc). The total length of the
trajectories used to determine DN is tmax ∼ 35 000 δt∗ where
data is collected only for δt � δt∗. (For reference, choosing
Ee = 0.29 eV and ν = 1012.5 s−1 for Ag/Ag(100) yields he =
107.6 s−1 at 300 K, and tmax ∼ 70 000 s for N = 59.)

Finally, we elaborate on the interpretation of the decrease
of DN (δt) to a plateau value as corresponding to a back
correlation in the walk of the cluster. Consider the canonical
model of a correlated walk with hops to NN sites on a lattice at
total rate h. If rj denotes the displacement of the jth hop,
then the displacement of the jth hop is correlated to that
of previous hops as quantified by A(k) = 〈rj · rj−k〉/〈r1 · r1〉,
where A(k) < 0 for back correlation. Here 〈rj · rj〉 = 〈r1 · r1〉
for all j . Adapting results for the time-dependent diffusion
coefficient D(δt) for this system into a continuous-time
framework for a large number of hops yields

D(δt)/D(δt → 0) = 1 + 2
∫

0�u�hδt

duA(u), so that

A(hδt) = 1

2
d/ds[D(s)/D(0)]|s=hδt . (3)
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TABLE I. Number of isoenergetic ground-state configurations
	N (0) and restricted isoenergetic configurations 	∗

N (0) for N=L2+1.

N = L2 + 1 10 17 26 37 50 65 82 101

	N(0) 28 80 210 504 1148 2480 5160 10 360
	∗

N(0) 28 80 202 464 988 1976 3748 6792

Note that the magnitude of cumulative (integrated) corre-
lation is strictly bounded by 1/2 in this formulation. Clearly,
the decrease in DN (δt) with increasing δt shown in Fig. 11
corresponds to back-correlation A(u) < 0. One could extract
an effective A(u) from the form of DN (δt) after assigning an
effective total hop rate.

VI. FURTHER ANALYSIS OF DIFFUSIVITY
VIA CONFIGURATION COUNTING

Deeper insight into the diverse aspects of cluster diffusion
behavior described in Sec. IV follows from exploiting results of
a combinatorial analysis of cluster configurations correspond-
ing to ground states and first excited states. This nontrivial
analysis utilizes results related to (number theoretic) partitions
of integers. Details are relegated to Appendix C.

A. Anomalous scaling for facile clusters

As noted in Sec. IV, for facile Np + 1 clusters, one
finds initially high values and rapid decay of DN ∼ N−βf

with large βf ≈ 2.3 (βf ≈ 2.6) up to N ∼ 82 (101) for
φ = 0.20 (0.24) eV at 300 K. These exponent values are
far larger than any reported in previous studies. To elucidate
this behavior, recall that long-range diffusion requires that the
cluster repeatedly passes through a special configuration with
one edge atom on a perfect core. We suggest that the behavior
of DN reflects the possibility to wander through a large number
of isoenergetic ground-state configurations far removed from
the special configuration, where the number 	N (0) of these
states increases rapidly with increasing N . After the system
leaves the special configuration, let tret denote the mean-time
for the system to return, where one expects that DN ∼ a2/tret.
A key result of Montroll and Weiss [50] for regular lattices is
that this return time is directly proportional to the size of the
system, independent of dimension. This in turn suggests that
DN ∼ a2hc/	N (0). The results presented in Table I indicate
that 	N (0) ∼ Nα with α ≈ 2.6 up to N ∼ 100, reasonably
consistent with the above large βf values (see Appendix C).

For another perspective, note that all isoenergetic states
have equal population. Thus the probability Pret that the system
is in a ground state, which can directly transition to (or “return
to”) the special configuration, scales like Pret ∼ 1/	N (0).
Then, we claim that DN ∼ a2hcPret, which recovers the above
result.

The exact behavior of DN actually depends not just
on the number of isoenergetic configurations, but on their
connectivity to the special configuration [30,32]. Presumably,
configurations more closely connected to the special config-
uration should play a more significant role. This motivates
analysis of the number 	N

∗(0) of restricted isoenergetic
configurations where starting from the special configuration,

TABLE II. Values of 	NP
(1) for Np = L2.

N = L2 25 36 49 64 81 100

	NP
(1) 496 1140 2472 5152 10352 20208

additional atoms are shifted to the edge with the isolated atom
from just the outermost layer of the other edges. Analysis of
	N ∗ (0) data also in Table I produces a modified exponent of
α ≈ 2.4, again reasonably consistent with the βf values.

B. Intermingling of perfect and facile branches

While DN for facile clusters decreases strongly with N

for moderate sizes, the variation of DN for perfect clusters
is extremely weak. The latter behavior reflects the feature
that diffusion of perfect clusters is largely controlled by the
nucleation step, which depends weakly on N , and not so much
on the subsequent transfer of atoms to complete the new edge.
Thus the DN in the facile branch, which are large for smaller
sizes but rapidly decreasing naturally meet and “intermingle”
with the DN of the perfect branch, which are lower for small
sizes but slowly decreasing. Since DN for the Np + 3 branch
are even lower than for perfect clusters and decrease with
increasing N , this branch remains separate from the facile and
perfect clusters at the point of intermingling.

The distinction between perfect clusters and facile (or
other) classes of clusters is predicated on the feature that the
former primarily exist in their ground states. However, perfect
NP clusters would have a significant probability of being
in the first excited state when 	NP

(1)/	NP
(0) ≈ 	NP

(1) ≈
exp[φ/(kBT )], where again 	N (n) gives the number of
isoconfigurations for the nth excited state for a cluster of
size N , and 	NP

(0) = 1. Results for 	NP
(1) determined

from combinatorial analysis in Appendix C are reported in
Table II. For φ = 0.20 eV (0.24 eV), the Boltzmann factor
exp[φ/(kBT )] = 2290 (10730), and thus intermingling per-
fect and facile branches should occur around N = Nmingle ∼
49 (81). This prediction is consistent with the behavior shown
in Fig. 13 where Nmingle is indicated by a dashed vertical
line. Note that DN for perfect (facile) clusters decreases more
quickly (slowly) after intermingling.

FIG. 13. The intermingling sizes of L2 and L2 + 1 branches
predicted with thermodynamics for φ = 0.20 eV (inset: φ = 0.24 eV)
with δ = 0 at 300 K.
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TABLE III. Values for 	NP +3(0), 	NP +3(1), and the ratio 	NP +3(1)/	NP +3(0) for N = L2 + 3.

N = L2 + 3 147 172 199 327 364 403

	NP+3(0) 10360 20216 38416 407968 706034 1.20×106

	NP+3(1) 1.53×107 3.95×107 9.86×107 2.86×109 6.25×109 1.34×1010

	NP+3(1)

	NP+3(0) 1475 1955 2565 7002 8847 11116

C. Merging of all branches of cluster diffusivity

As noted above, the feature that DN for the Np + 3 branch
are lower than those for perfect clusters and also that they
decrease slowly with N delays merging with the perfect and
facile branches. It is appropriate to note that while both Np + 1
and Np + 3 branches have a high ground-state degeneracy, this
only produces strong size dependence of DN for the former.
Why? Long-range diffusion of clusters for sizes Np + 3
does not require repeatedly passing through a single special
configuration, unlike for Np + 1. Thus the strong increase in
the number of ground states with increasing N does not induce
a strong reduction in DN for N = Np + 3.

Analogous to our assessment of intermingling and perfect
branches, here we argue that the distinctive nature of Np + 3
clusters (relative to Np + 1) is lost when the ratio of the
number of the first excited states 	Np+3(1) to the number
of ground states 	Np+3(0) satisfies 	Np+3(1)/	Np+3(0) ≈
exp[φ/(kBT )]. The method to count the number of isoenergetic
states, 	NP +3(1), 	NP +3(0) is the same as that of counting
	NP

(1). Relevant results are presented in Table III (see
Appendix C for details). The predicted sizes for merging,
N = Nmerge ≈ 199 (403) for φ = 0.20 eV (0.24 eV), are
indicated by dashed vertical lines in Fig. 14.

D. Analysis of the cyclical variation of cluster diffusivity

It is clear from Fig. 5 that DN actually increases
with increasing size N = Np + n, within each cycle n =
3,4,5, . . . ,nmax, where nmax = L for Np = L2 or (L–1)L
recovers a perfect cluster. A local minimum (maximum) in
DN occurs for the n = 3 (n = nmax + 1). We suggest that the
key feature controlling this behavior is a strong decrease with
increasing n in the degeneracy of the ground state from a max-
imum for n = 3 to a minimum for n = nmax. The minimum is

FIG. 14. The intermingling sizes of L2 + 3 and L × (L + 1) +
1 branches predicted with thermodynamics for φ = 0.20 eV (inset
φ = 0.24 eV) with δ = 0 at 300 K.

1 for Np = L2, and 4 for Np = (L–1)L. A larger number of
degenerate ground states means a higher probability that the
cluster is in a configuration with multiple atoms removed from
the corners and thus many kink sites which can trap diffusing
edge atoms. This makes nucleation of a new outer edge more
difficult, as the lifetime of isolated atoms is reduced). Many
kinks also inhibit transfer atoms to complete that new outer
edge. Consequently, DNp+n increases with increasing n. We
remark that “oscillations” in DN versus N were observed in
previous simulation studies [7,9]. However, the analysis was
limited [9], e.g., perhaps giving a misimpression that perfect
clusters N = Np diffuse slowest, and not recognizing that
N = Np + 2 (as well as Np + 1) are facile.

Finally, we emphasize the substantial computational chal-
lenge in obtaining precise values for DN particularly for
N = Np + 3 or Np + 4. This is evident from Fig. 11 where
one must sample over substantially longer time intervals δt to
obtain the correct asymptotic value of DN . Lack of precision
in analysis fails to produce the correct trend in DN within each
cycle. To illustrate this issue, in Fig. 15, we present results
obtained for DN (δt) with a small heδt = 811 and with a large
heδt = 12970 for φ = 0.20 eV and δ = 0 at 300 K (both well
below heδtc = 105–106). Even the latter is insufficiently large
to recover the correct asymptotic behavior. Such analysis gives
the misimpression that the slowest diffusion occurs not for
N = Np + n with n = 3, but for somewhat larger n.

VII. CONCLUSIONS

Our precise KMC analysis of a tailored but effective
model for cluster diffusion on metal (100) surfaces has
revealed extraordinarily diverse behavior particularly for the
regime of moderates sizes 9 � N � O(102). Perhaps unex-
pectedly, the slowest diffusion does not occur for perfect sizes

FIG. 15. Illustration of analysis with diffusion coefficients not
converged for φ = 0.2 eV with δ = 0 at 300 K for 31 � N � 36.
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N = Np = L2 or L(L + 1) with unique square or near-square
ground-state shapes, but rather for N = Np + 3. However, the
slowest short-time diffusivity does occur for perfect sizes.
We are able to elucidate the distinct behavior of different
branches (facile, perfect, and slow) in this regime, exploiting
combinatorial analysis of the number of ground states, first
excited states, etc.

Also of interest is the intermingling and merging of these
branches for larger N . Combinatorial analysis was also utilized
to provide insight into the intermingling and merging points
essentially by determining at what cluster size thermal fluctu-
ations or excitations smeared the distinction between various
branches. As an aside, we note that another way to assess
merging is based on the realization that the effective Arrhenius
energy Eeff for cluster diffusion adopts a higher value, Eeff =
Ee + 2φ + δ, for nucleation-mediated diffusion for moderate
sizes than in the asymptotic regime of large sizes where Eeff =
Ee + φ + δ. We have checked that for nucleation-mediated
diffusion, the effective value of Eeff decreases with increasing
N and is reduced to about Eeff = Ee + 1.5φ + δ at the point
where merging occurs (see Ref. [49]).

We have not presented a comparison with experimental
data. However, our results are particularly valuable in revealing
the complexity of behavior for moderate sizes and the potential
shortcomings in extracting size scaling exponents from data
over a limited size range. We plan to apply our modeling
to analyze the behavior for Ag clusters on Ag(100) where
recent experimental analysis [3] has suggested somewhat
lower exponent values from those determined previously [2]
(but where in both cases the exponent is significantly below
the classic value of β = 3/2). Also, with regard to experiment,
we note that facile clusters of size N = Np + 1 should be
susceptible to dissociation of the isolated edge atom in the
special ground-state configuration with this atom and a perfect
core. However, this is only one of many isoenergetic ground
states for larger N reducing this likelihood. For N = Np + 2,
there are no isolated edge atoms in the ground state, so this
issue does not arise.

Finally, we note that basic features of results from our mod-
eling should be more general than for cluster diffusion on metal
(100) surfaces. Similar behavior is expected for metal (111)
surfaces. The surprising feature that perfect clusters do not
have the lowest diffusivity may even extend to supported 3D
clusters. However, there are certainly other fundamental issues
that remain to be addressed. For example, the degeneracy of the
ground state is important in explaining various basic features
of behavior. However, if one includes more lateral adatom
interactions, degeneracies can be broken, so how does this
change the behavior from that of our basic model?
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APPENDIX A: EXACT ANALYSIS FOR THE SMALL
CLUSTER SIZE REGIME N < 9

Exploiting the exact master equation analysis discussed in
the text, for dimers with two linear configurations (rotated by
90°), one finds that [32]

D2 = D2(δt) = (a2/2)hr so Eeff = Ee + δ. (A1)

For trimers with six distinct configurations (two linear and
four bent), D3(δt) generally decreases with increasing δt to its
asymptotic value [32]

D3 = (a2/3)hrhe/(hr + he) so 1/D3 = 3a−2(1/hr + 1/he).

(A2)

The latter expression confirms the obvious feature that both
edge diffusion and corner rounding are required for long-
range diffusion. In this case, one does not in general have
perfect Arrhenius behavior except for δ = 0, where Eeff = Ee.
However, in practice, for typical nonzero δ, one has that
Eeff = Ee + δ. For tetramers with 19 distinct configurations,
D4(δt) generally decreases with increasing δt to its asymptotic
value

D4 = hchr [6(he)3 + 38(he)2hr + 35he(hr )2 + 6(hr )3]/

{(18hc + hr )[(he)3 + 10(he)2hr + 24he(hr )2 + 9(hr )3]}.
(A3)

As expected, this result shows that core breakup is essential for
long-range cluster diffusion. For typical values of parameters
with nonzero δ, the effective barrier is given by Eeff = Ee +
φ + δ.

Previous analysis [32] also exploited the possibility of
simplified (dimensionally reduced) analysis in the limit
as he → ∞ where various configurations convert infinitely
quickly between each other and may be grouped into a
smaller set of quasiconfigurations. For the trimer, there are
two quasiconfigurations (two linear and a single quasibent
configuration), and the above result reduces to D2 = (a2/3)hr .
For tetramers, there are five quasiconfigurations, and the above
result reduces to

D4 = 6a2 hchr/(18hc + hr ), so that

1/D4 = (a−2/6)(1/hc + 18/hr ). (A4)

Results are also available for pentamers.

APPENDIX B: ESTIMATING THE NUMBER OF KINKS
nk IN CLUSTER CONFIGURATIONS

Here, we obtain bounds on the number of kinks nk for
various cluster configurations. The lower bound can readily
be determined for specific cases, and is O(1). Thus we
focus on estimating the upper bound in this section. First,
consider removing m1 atoms from a single corner of an
otherwise perfect rectangular cluster. The number of kinks
nk is maximized if the atoms are removed to create a
vacancy region as close as possible to a triangle with a 45◦

235406-12



DIFFUSION OF TWO-DIMENSIONAL EPITAXIAL . . . PHYSICAL REVIEW B 96, 235406 (2017)

diagonal (corresponding to a perfect staircase of kinks each of
height a). This can be achieved exactly if m1 = 1 + 2 + · · · +
(nk − 1) = 1

2nk(nk − 1), so that nk = (1 + √
1 + 8m1)/2.

Next, consider removing mi atoms from the ith corner of
a perfect rectangular cluster where m1 + m2 + m3 + m4 = m,
and where m is less than either side length of the rectangle.
Then, since the above expression for nk with atoms removed
from a single corner increases sublinearly with m1, it follows
that the total number of kinks can be maximized by removing
roughly equal numbers of kinks from all corners, i.e., m1 ≈
m2 ≈ m3 ≈ m4 ≈ m/4. Consequently, for an upper bound on
the total number of kinks nk , we replace m1 by m/4 in the above
expression and multiply by 4 to obtain nk � 2(1 + √

1 + 2m).
Considering the quantities relevant for the analysis of Sec. IV,
we have that m = L for nL2,k(1), m = L − 1 for nL2+1,k(0),
and m = L − 3 for nL2+3,k(0).

APPENDIX C: COUNTING OF ISOENERGETIC
CLUSTER CONFIGURATIONS

In our representation of clusters as collections of atoms,
themselves represented as contiguous red squares, the energy
of the cluster corresponds to its perimeter length. Consider
the cluster shapes that are obtained by starting with a fully
populated rectangle and then removing atoms from each corner
of the cluster to form a simple “staircase” (i.e., steps at
each corner are of one sign, not both). Then, the energy of
these configurations is determined exactly by the perimeter
length of the smallest rectangle inscribing these clusters (which
corresponds to the original rectangle from which atoms were
removed). This follows since the perimeter length of the
inscribing rectangle and the actual cluster are equal. These
observations will be useful in the following analysis.

First, we consider ground-state configurations, which have
the minimum perimeter length for the prescribed number,
N , of atoms. For ground states, the inscribing rectangle is
either a Li × Li square of occupied sites, or a near-square
Li × (Li + 1) or Li × (Li + 2) rectangle. The unique ground
state for N = L2 is inscribed by a square with Li = L. The
ground states for N = L2 + m with 1 � m � L are inscribed
by a Li × (Li + 1) rectangle with Li = L. The ground
states for N = L(L + 1) + m with 1 � m � L are inscribed
by Li × Li squares with Li = L + 1 or by Li × (Li + 2)
rectangles with Li = L. Next, we consider nth excited state
configurations where the perimeter length of the cluster is
increased relative to the ground state by an amount 2n (in
units of lattice constant a = 1). Thus the size of the inscribing
rectangle must also be increased. Specifically, the side lengths
are increased by amounts nx and ny , where nx + ny = n to
achieve the desired perimeter length.

Thus, to evaluate the number of convex isoenergetic nth
excited state configurations of a size N cluster 	N (n), first,
one determines the different possible inscribing rectangles for
the ground states. Second, one expands the side lengths of
these rectangles by amounts nx and ny , where nx + ny = n.
Third, regarding all sites in this larger inscribing rectangle as
initially populated, one considers all possible ways to remove
the appropriate number of atoms from the four corners of the

rectangle (making sure the cluster is touching all four edges of
the rectangular frame), until the final number of atoms matches
the cluster size N , which we are targeting. It is instructive
to provide a few examples: (i) determination of 	L2+3(0)
requires counting different possible ways to remove L-3 atoms
from an L × (L + 1) inscribing rectangle; (ii) determination
of 	L2 (1) requires counting different possible ways to remove
L atoms from an L × (L + 1) inscribing rectangle; and
(iii) determination of 	L2+3(1) requires counting different
possible ways to remove L-3 atoms from L × (L + 2) and
(L + 1) × (L + 1) inscribing rectangles.

Now, we describe in detail a systematic procedure to count
the number of ways of removing the appropriate number of
atoms from the inscribing rectangle. We start by considering
removal of m1 atoms from one fully populated corner. The
number of possibilities is identical to the number of Young
or Ferrers diagrams that represents integer partition of m1. In
number theory, this integer partition is traditionally denoted by
P (m1) [51]. An example for m1 = 4 where P (m1 = 4) = 5 is
shown in Fig. 16.

Next, we address the more complex challenge of counting
the total number of configurations of the cluster, where one
removes m1, m2, m3, and m4 atoms from each of the four
corners of the inscribing rectangle, respectively, for a total
of m atoms where m = m1 + m2 + m3 + m4. One constraint
with this analysis is that removal of atoms from one corner does
not interfere with removal from other corners, which requires
that m is no larger than the side lengths of the inscribing
rectangle. (We will comment further below on cases where this
condition is not satisfied.) Subject to this constraint, the total
number of configurations comes from considering the product
of the corresponding integer partions, and then summing over
all possible choices of mi consistent with the constraint on the
sum (and finally adjusting for any overcounting).

An example for 	L2 (1) is shown below where m = L

atoms are removed from an inscribing L × (L + 1) rectangle.

FIG. 16. Number P (m1 = 4) = 5 of possible ways to remove
m1 = 4 atoms from a corner illustrated by Ferrers diagrams. Partitions
of 4 into strings of integers indicate the number of atoms removed
from each row starting with the top row.
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FIG. 17. Example of an excited state with one monomer.

Here, one has

	L2 (1) = 2 ×
∑

m1+m2+m3+m4=L

P (m1)P (m2)P (m3)P (m4) − (over counting)

= 2 ×
L∑

mL=0

⎡
⎣ mL∑

ml=0

P (ml)P (mL − ml)
L−mL∑
mr=0

P (mr )P (L − mL − mr )

⎤
⎦ − (over counting). (C1)

In the second sum, mL(mR) gives the total number of atoms
removed from the left (right) side on the inscribing rectangle,
and ml(mr ) give the number of atoms removed from one
corner on the left (right) side. The factor of 2 comes from
a 90◦ rotation of the L × (L + 1) rectangle, correponding
to another set of discrete states. Note that “overcounting”
in (8) includes the ground state being counted four times
(mL = L and ml = 0 or L) or (mL = 0, mr = 0 or L). If
one wishes to consider just first excited states without any
monomers, then it is also necessary to subtract 4 × (4L − 2)
states where an atom is shifted from a corner of the L × L

ground-state configuration and placed on a side. One must
also subtract 4L configurations with a monomer on the edge
of a completely populated (L − 1) × (L + 1) rectangle.

In addition, we have analyzed 	L2+1(0) and 	L2+3(0),
where L-1 and L-3 atoms are removed from an L × (L + 1)
inscribing rectangle, respectively. In these cases, the procedure
described above is directly applicable. Finally, we have also
analyzed 	L2+3(1), where 2L-3 atoms are removed from
L × (L + 2) or (L + 1) × (L + 1) inscribing rectangles. In
this case, since the number of removed atoms significantly
exceeds side lengths of the inscribing rectangle, significant
modification is required from the formulation (8) used to obtain
	L2 (1) and other quantities mentioned above.

Results reported in the text for 	L2 (1), 	L2+1(0), and
	L2+3(0) include all states, i.e., those with monomers and those
without. (See Ref. [49] for corresponding results excluding
states with monomers.)

APPENDIX D: COUNTING OF EXCITED STATE
CONFIGURATIONS WITH ONE MONOMER

In Sec. V, we estimated number of configurations, 	′
N (n),

of clusters with N atoms corresponding to nth excited state,
which include a single monomer. In some cases, this analysis
was simple, e.g., 	′

L2+1(0) = 4L. However, analysis of other

cases including 	′
L2 (2) and 	′

L2+1(1) is nontrivial, and is thus
described in more detailed below.

To estimate 	′
N (n), we first remove the monomer, and

then count the number of states 	N−1(n − 1 or n), where the
appropriate choice is discussed below. For the latter, we utilize
the scheme introduced in Appendix C. Next, let nf denote the
number of empty edge sites nf with only one neighbor, which
could thus accommodate a monomer. Then, it follows that

	′
N (n) = nf × 	N−1(n − 1 or n). (D1)

To determine nf , we note that each kink roughly contributes
two units of perimeter; it follows that the total perimeter length
for clusters of size N − 1 in the (n − 1)th excited state is
given by the sum nf + 2nN−1,k(n − 1), where nN−1,k(n − 1)
denotes the number of kinks in these clusters (see Appendix B).

To determine 	′
L2 (2), we note that first excited states

for clusters of size N = L2 have configurations within a
L×(L+ 1) inscribing rectangle. For second excited states with
a single monomer, this monomer is located at the perimeter
of a cluster of size L2–1 with no monomers, but still with an
L × (L + 1) inscribing rectangle and which thus corresponds
to a first excited state (see Fig. 17 for an example). Thus, one
has that

	′
(L2)(2) ≈ 	(L2−1)(1)[4L + 2 − 2nL2−1,k(1)]. (D2)

To determine 	′
L2+1(1), we note that ground states for clusters

with size N = L2 + 1 have configurations within a L×(L+1)
inscribing rectangle. For first excited states with a single
monomer, this monomer is located at the perimeter of a cluster
of size L2 with no monomers, but still with an L × (L + 1)
inscribing rectangle. The latter thus also corresponds to a first
excited state. In conclusion, one has that

	′
(L2+1)(1) ≈ 	(L2)(1)[4L + 2 − 2nL2,k(1)]. (D3)
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