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Signature of tilted Dirac cones in Weiss oscillations of 8-Pmmn borophene
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Polymorph of 8-Pmmn borophene exhibits anisotropic tilted Dirac cones. In this work, we explore the
consequences of the tilted Dirac cones in magnetotransport properties of a periodically modulated borophene.
We evaluate modulation-induced diffusive conductivity by using linear response theory in low temperature regime.
The application of weak spatial modulation (electric, magnetic or both) gives rise to the magnetic-field-dependent
nonzero oscillatory drift velocity which causes Weiss oscillation in the longitudinal conductivity at low magnetic
field. The Weiss oscillation is studied in the presence of a weak spatial electric, magnetic, and both modulations
individually. The tilting of the Dirac cones gives rise to an additional contribution to the Weiss oscillation
in longitudinal conductivity. Moreover, it also enhances the frequency of the Weiss oscillation and modifies
its amplitude too. Most remarkably, it is found that the presence of both out-of-phase electric and magnetic
modulations can cause a sizable valley polarization in diffusive conductivity. The origin of valley polarization
lies in the opposite tilting of the two Dirac cones at two valleys.
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I. INTRODUCTION

In recent times, Dirac materials have attracted intense
research interests after the most celebrated discovery of
atomically thin two-dimensional (2D) hexagonal carbon al-
lotrope graphene [1,2], owing to their peculiar band structure
and applications in next generation of nanoelectronics. The
polymorph of borophene with tilted anisotropic Dirac cones
(named as 8-Pmmn borophene) [3] is the latest 2D material
to the family of Dirac systems. Very recently, experimental
confirmation of such material has been reported [4], followed
by a detailed analysis of its ab initio properties [5]. Similar
to the strained graphene [6], a pseudomagnetic field has
been recently predicted in 8-Pmmn borophene by using a
tight-binding model [7]. An effective low-energy Hamiltonian
in the vicinity of Dirac points has been proposed based on
symmetry consideration [7], which has recently been used to
investigate collective excitations (plasmons) [8] and optical
properties [9] theoretically.

Magnetotransport properties have always been appreciated
for providing a powerful and experimentally reliable tool to
probe a 2D fermionic system. The presence of a magnetic field,
normal to the plane of the 2D sheet of an electronic system,
discretizes the energy spectrum by forming Landau levels
(LLs) which manifests itself via oscillatory longitudinal con-
ductivity with an inverse magnetic field known as Shubnikov–
de Hass (SdH) oscillation [10,11]. In addition to the SdH
oscillation, another type of quantum oscillations appears in
the low magnetic field regime when the 2D fermionic system
is subjected to a weak spatial electric/magnetic modulation.
This oscillation is known as Weiss oscillation, which was
first observed in magnetoresistance measurements in the
electrically modulated usual two-dimensional electron gas
(2DEG) [12–14]. The Weiss oscillation is also known as
commensurability oscillation as it is caused by the commen-
surability of the two length scales, i.e., cyclotron orbit’s radius
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near the Fermi energy and the modulation period [15–17]. An
alternative explanation was also given by Beenakker [18] by
using the concept of guiding-center-drift resonance between
the periodic cyclotron orbit motion and the oscillating drift of
the orbit center induced by the potential grating.

Apart from the electric modulation case, magnetic mod-
ulation has also been considered theoretically [19–25] as
well as experimentally [26–28]. Weiss oscillation has been
studied in Rashba spin-orbit-coupled electrically/magnetically
modulated 2DEG and a beating pattern was predicted [29,30].
The higher Fermi velocity associated with the linear band
dispersion significantly enhances the Weiss oscillation in an
electrically modulated graphene [31,32]. Concurrently, the
same has been studied in a magnetically modulated graphene,
too, and enhancement of the amplitude and opposite phase
in comparison to the case of electrically modulated graphene
was observed [33]. Similar investigations have been carried
out in electrically modulated bilayer graphene [34], silicene
[35,36], α-T3 lattice [37], and phosphorene [38]. However,
magnetotransport properties of modulated borophene are yet
to be explored.

In this work, we investigate the modulation-induced longi-
tudinal conductivity of borophene in low temperature regime
by using the linear response theory. First, we obtain exact
LLs and corresponding density of states (DOS) in 8-Pmmn

borophene. Numerically, we notice that the tilting of the
Dirac cones lowers the Fermi level. We observe modulation-
induced Weiss oscillation in the longitudinal conductivity in
low magnetic field regime. Interestingly, we find that the
opposite tilting of the Dirac cones at two valleys can cause
sizable valley polarization in the longitudinal conductivity
at low magnetic field regime under the combined effects
of out-of-phase electric and magnetic modulation, which is
in contrast to the nontilted isotropic Dirac cones graphene.
Moreover, the tilting of the Dirac cones also enhances the
frequency of Weiss oscillation.

The paper is organized as follows. In Sec. II, we introduce
the low-energy effective Hamiltonian and derive LLs. The
effect of tilting of Dirac cones on the Fermi level and DOS
are also included in this section. Section III is devoted to
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calculating the modulation-induced Weiss oscillation in the
longitudinal conductivity. Finally, we summarize and conclude
in Sec. IV.

II. MODEL HAMILTONIAN AND LANDAU
LEVEL FORMATION

We start with the single-particle low-energy effective model
Hamiltonian of the tilted anisotropic Dirac cones as [7,8]

H = ξ (vxpxσx + vypyσy + vtpyσ0), (1)

where the first two terms correspond to the kinetic energy
term and the last term describes the tilted nature of Dirac
cones. The two Dirac points are at k = ±kD, described by the
valley index ξ = ±. Hereafter, we shall denote two valleys as
K and K ′, corresponding to ξ = + and ξ = −, respectively.
Three velocities are given by {vx,vy,vt } = {0.86,0.69,0.32}
in units of v0 = 106 m/s. The velocity vt arises due to the
tilting of the Dirac cones. Also, (σx,σy) are the Pauli matrices
and σ0 is identity matrix. The energy dispersion of the above
Hamiltonian can be readily obtained as

E
ξ

λ,k = ξ h̄vtky + λh̄

√
v2

xk
2
x + v2

yk
2
y, (2)

where λ = ± is the band index and the 2D momentum vector
is given by k = {kx,ky}. The energy dispersion for the K valley
is shown in Fig. 1, which is tilted along ky due to the presence
of the vt term. In the K ′ valley, dispersion will be identical
except the tilting is in the opposite direction. In addition to this,
Dirac cones are anisotropic, which is in contrast to graphene.
Note that because of the tilted feature of the Dirac cones,
particle-hole symmetry is broken in borophene.

A. Inclusion of magnetic field

The perpendicular magnetic field (B = Bẑ) is incorporated
via the Landau-Peierls substitution as p → p + eA in the low-
energy single-electron effective Hamiltonian of borophene,
lying in the x-y plane, as

H = ξ [vxpxσx + vy(py + eBx)σy + vt (py + eBx)σ0], (3)

FIG. 1. The energy-band dispersion in k space representing
Eq. (2). The momentum vectors are normalized by k0 = 107/m.

under the Landau gauge A = (0,xB,0). Here, A is the mag-
netic vector potential. The commutator relation [H,py] = 0
guarantees the free particle nature of electrons along the y

direction. Using this fact, the above Hamiltonian reduces to

H = ξ

{
h̄vt

lc
Xσ0 + h̄vc

lc

[√
vx

vy

σxP +
√

vy

vx

σyX

]}
, (4)

where lc = √
h̄/eB is the magnetic length, P = −i∂/∂(x/lc),

vc = √
vxvy , and X = (x + x0)/lc with the center of cyclotron

orbit at x = −x0 = −kyl
2
c . The above Hamiltonian is now

similar to the case of monolayer graphene under a crossed
electric and magnetic field [39] except the velocity anisotropy
inside the third bracket. The first term is analogous to a pseudo
in-plane effective electric field Eeff = ξ h̄vt/(el2

c ). The typical
values of the pseudoelectric field are (320 × B) kV. Now
Eq. (4) can be rewritten as

H = eEeff(x + x0)σ0 + ξ h̄ωc

[
0 −ia

ia† 0

]
, (5)

where ωc(= vc/ lc) is the cyclotron frequency and ladder
operators are defined as a = (X̃ + iP̃ )/

√
2 and a† = (X̃ −

iP̃ )/
√

2. Here, X̃ =
√

vy

vx
X and P̃ =

√
vx

vy
P , which satisfy the

commutator relation [X̃,P̃ ] = i. In the absence of Eeff, the
above Hamiltonian can be diagonalized to obtain graphenelike
LLs

Eζ = λh̄ωc

√
2n (6)

and eigenfunctions as

ψζ (r) = eikyy√
2Ly

[
λφn(X)

−iξφn−1(X)

]
, (7)

where ζ = {n,ky} and φn(X) is the well-known simple
harmonic oscillator wave function. In the presence of Eeff,
direct diagonalization of the above Hamiltonian is difficult.
However, there is a standard way, given by Lukose et al. in Ref.
[39], to solve this problem exactly. An alternative approach to
solving this problem in graphene was also given by Peres
and Castro [40]. Following Ref. [39], we transform the above
Hamiltonian into a moving frame along the y direction with
velocity V = Eeff/B = vt , where the transformed electric field
vanishes and the magnetic field reduces to B ′ = B

√
1 − β2

b .
Here, βb = vt/

√
vxvy(= 0.4154) is termed as “tilt parameter.”

Note that the role of the velocity of light is played by vc

in borophene, whereas in graphene it is vF . In the moving
frame, LLs can be obtained as Ẽn,k̃y = h̄ωc

√
2n(1 − β2

b )1/4.
However, required LLs and eigenstates in the rest frame can
be obtained by Lorentz boost back transformation as [39,41]

Eζ = λh̄ωc

√
2n

(
1 − β2

b

)3/4
, (8)

where the argument of the wave functions becomes

X′ =
(
1 − β2

b

)1/4

lc

[
x + kyl

2
c + λ

√
2nlcβb(

1 − β2
b

)1/4

]
(9)
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after using the Lorentz back transformation of momentum,
giving the wave function in rest frame as

�ζ (r) = eikyy√
2Lyγ

[(
cosh(θ/2)

−i sinh(θ/2)

)
λφn(X′)

−iξ

(
i sinh(θ/2)

cosh(θ/2)

)
φn−1(X′)

]
(10)

with tanh θ = βb and cosh θ = γ . Here, we have used the form
of hyperbolic rotation matrix as

e−(θ/2)σy =
[

cosh(θ/2) i sinh(θ/2)

−i sinh(θ/2) cosh(θ/2)

]
. (11)

On the other hand, the LLs of graphene under the in-plane real
electric field (Er ) is given by [39]

E
g

ζ = λh̄ωc

√
2n

(
1 − β2

g

)3/4 − h̄ky

Er

B
, (12)

where βg = Er/B

vF
with vF the Fermi velocity. Note that in

cyclotron frequency, vc should be replaced by vF in graphene.
In Eq. (8), βb is a constant and acting like a system parameter,
whereas βg is tunable and governed by the strength of the
in-plane electric field in graphene. As the tilt parameter (βb)
is constant, the LLs are protected from being collapsed in
borophene, which is in contrast to graphene where LLs may
get collapsed under the suitable strength of the electric field
(i.e., when βg becomes 1). Note that the LLs in borophene,
derived in Eq. (8), exhibit ky degeneracy, whereas in graphene
[see Eq. (12)] this degeneracy is removed under the influence of
an in-plane electric field. This is because the in-plane electric
field in graphene gives rise to the potential energy as eEx,
whereas in borophene for pseudoelectric field it is eEeff(x +
x0). The idea of relativistic Lorentz boost transformation was
also used in an organic compound α-(BEDT-TTF)2I3 [42],
exhibiting quite similar band structure.

The LLs, derived in Eq. (8), show that the tilt parameter
(βb) renormalizes each LL, which should be reflected in
the longitudinal conductivity oscillations. Before going into
conductivity, we now discuss how Fermi energy and DOS are
affected by the tilting of the Dirac cones.

B. Fermi energy and density of states

In this section, we compute the Fermi energy (EF ) and
DOS in terms of the tilt parameter and the magnetic field. In
the presence of the magnetic field, the Fermi energy can be
obtained by solving the following equation self-consistently:

ne =
∫ ∞

−∞
D(E)f (E)dE, (13)

where

D(E) = gsgv

�

∑
ζ

δ(E − Eζ ) (14)

is the DOS per unit energy and per unit area. Here, gs and gv

are the spin and valley degeneracy, respectively. Carrier density
and the area of the system are denoted by ne and �(= LxLy),
respectively. The Fermi distribution function is given by
f (E) = (1 + exp[(E − EF )/kBT ])−1. The summation over
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t
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FIG. 2. The behavior of the Fermi energy and the LLs with
magnetic field. For the plot of EF versus B, we use T = 1 K and
carrier density ne = 1015m−2. Green and gray solid lines denote the
first 20 LLs with and without vt , respectively.

ky can be computed by using the fact that the center of cy-
clotron orbit is always restricted by the system dimension, i.e.,
0 � |x0 + Gn| � Lx or 0 � ky � Lx/l2

c . Then we can replace∑
ky

→ Ly

2π

∫ Lx/l2
c

0 dky = �/(2πl2
c ), known as ky degeneracy.

The factor Ly/(2π ) preserves the periodic boundary condition.
Using these, finally Eq. (13) simplifies to

πnel
2
c = 2

∑
n

f (En), (15)

which is solved numerically to plot the Fermi energy as a
function of the magnetic field in Fig. 2. Here we have also
substituted spin and valley degeneracy as gs = 2 and gv =
2, respectively. In the same plot, the first 20 LLs are also
shown. The Fermi level is found to be fluctuating between
two successive LLs with the variation of the magnetic field.
The amplitude of fluctuation increases with the increase of
the magnetic field, because of the increasing LLs spacing. To
understand how the tilting feature of the Dirac cones affects
the Fermi energy, we consider the two cases, i.e., when vt = 0
and vt = 0.32 units. It can be seen that for the same carrier
density, the tilt factor (vt ) actually lowers the Fermi level. On
the other hand, it causes a shift in the LLs as can be seen from
Eq. (8). Note that the position of the jumping of Fermi level
between two successive Landau levels remains unchanged in
both cases.

Now we will examine the effects of the tilting of the Dirac
cones on the behavior of the DOS in borophene. To plot the
behavior of the DOS, we assume impurity- induced Gaussian
broadening of the LLs and hence Eq. (14) reduces to

D(E) = D0

∑
n

exp

[
− (E − En)2

2�2
0

]
, (16)

where

D0 = gsgv

2πl2
c

1

�0

√
2π

. (17)
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FIG. 3. DOS versus magnetic field. The Fermi energy EF =
0.035 and 0.041 eV for vt = 0.32 and 0 in units of v0, respectively,
as noted from Fig. 2.

The DOS is plotted in Fig. 3 by using Eq. (16). It is
an established fact [43,44] that the impurity-induced LLs
broadening in 2D Dirac material is directly proportional to√

B. To plot dimensionless DOS, we consider LLs broadening
width �0 = 0.1h̄ωc. To explore the effects of the tilted Dirac
cone, we consider both cases, i.e., with and without vt . The
DOS shows oscillation with the magnetic field, known as SdH
oscillation. The presence of vt is causing a significant impact
on the frequency of the SdH oscillations. It is also observed that
below a certain magnetic field, the SdH oscillation vanishes
because of the reduction in the LLs spacing and overlapping of
the LLs to each other due to the impurity-induced broadening.

III. MAGNETOCONDUCTIVITY

In this section, we evaluate magnetoconductivity in the
presence of a periodic electric/magnetic modulation at low
magnetic field regime. In the presence of a spatial elec-
tric/magnetic modulation along the x direction, the electron
gains a finite drift velocity along the y direction for which an
additional contribution to the y component of the longitudinal
conductivity appears, known as diffusive conductivity [17],
i.e., σyy = σ dif

yy + σ col
xx . Here, σ col

xx is the collisional conductivity
which arises due to LL-induced oscillatory DOS without any
external modulation, whereas σ dif

yy is the diffusive conductivity
that arises because of the modulation. On the other hand, the
longitudinal conductivity along the x direction is σxx = σ col

xx

because σ dif
xx = 0. However, in this work our major focus will

be modulation-induced diffusive conductivity which can be
evaluated by [17,45]

σ dif
μν = βe2

�

∑
ζ

fζ (1 − fζ )τ (Eζ )VμVν (18)

provided the scattering processes are elastic or quasielas-
tic. Here, fζ = [1 + exp{β(Eζ − EF )}]−1 is the Fermi-Dirac
distribution function with β = (kBT )−1 where kB is the
Boltzmann constant. In the above formula, τ (Eζ ) denotes
the energy-dependent collision time and the group velocity
Vμ(ν) = (1/h̄)∂Eζ /∂kμ(ν). In general, the electron does not

possess any nonzero drift velocity inside the bulk, i.e., Vx =
Vy = 0. However, the application of a spatial electric/magnetic
modulation can induce a nonzero finite drift velocity and con-
currently gives rise to the diffusive conductivity as discussed
below.

A. Electric modulation

The application of a weak electric modulation to the
borophene sheet is described by the total Hamiltonian He

T =
H + Ve sin(�x), where Ve is the modulation strength and
� = 2π/a with a is the period. Using perturbation theory,
we evaluate the first-order energy correction as

�Ee
ζ =

∫ Ly

0
dy

∫ ∞

−∞
�

†
ζ (r)Ve sin(�x)�ζ (r)dx

= Ve

2
[ξβbRn(u) cos(�x̄0) − Fn(u) sin(�x̄0)]. (19)

Here x̄0 = x0 + Gn with Gn = √
2nγ lcβb. Also,

Fn(u) = e−u/2[Ln−1(u) + Ln(u)] (20)

and

Rn(u) =
√

8n

u
e−u/2[Ln−1(u) − Ln(u)], (21)

where Ln(u) is the Laguerre polynomial of order n and u =
γ�2l2

c /2 with γ = (1 − β2
b )−1/2. The total energy is now Ee

ζ =
Eζ + �Ee

ζ where ky degeneracy is now lifted. The presence of
modulation broadens the LLs width by contributing additional
energy �Ee

ζ . The width of the LLs broadening, i.e., bandwidth

(in units of Ve) is given by �e =
√

|βbRn(u)|2 + |Fn(u)|2,
which is oscillatory [17] with the inverse magnetic field, as
the Laguerre polynomial exhibits an oscillatory feature. Note
that the first term in Eq. (19) is purely due to the tilting of the
Dirac cones which simply vanishes with the tilting parameter
βb = 0. On the other hand, the second term in the first-order
energy correction is analogous to the monolayer graphene
case [31].

Now the drift velocity Vμ(ν) is obtained as

Vy = − Ve

h̄�

u

γ
[ξβbRn(u) sin(�x̄0) + Fn(u) cos(�x̄0)] (22)

and Vx = 0, which suggests that the diffusive conductivity
arises along the transverse direction to the applied modulation.
Now, after inserting Vy into Eq. (18), we obtain diffusive
conductivity as

σ e
yy = e2

h

V 2
e

4�0

u

γ

∑
n

[
−∂fn

∂E

]
{[Fn(u)]2 + [βbRn(u)]2}, (23)

where �0 is the impurity-induced broadening. Here, we assume
that the collisional time τ (Eζ ) is very insensitive to the energy,
i.e., τ (Eζ ) � τ0 , which is a good approximation under low
magnetic field regime. We have also substituted �0 ≈ h̄/τ0 .
The major effects of modulation arise via nonzero drift
velocity. On the other hand, the modulation effect on Fermi
distribution function is very small, and hence we ignore it.
The diffusive conductivity in the above Eq. (23) is oscillatory
with magnetic field because of the oscillatory nature of the
bandwidth (�e). This oscillation is known as Weiss oscillation.
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For the numerical plots, we use the following physical
parameters: modulation period a = 350 nm, charge density
ne = 1015m−2, and temperature T = 3 K. The diffusive
conductivity for the electric modulation is plotted with inverse
magnetic field in Fig. 4(a). To explore the effects of the
tilted Dirac cones, we consider both situations, i.e., vt = 0
and vt = 0.32 units. The diffusive conductivity exhibits the
Weiss oscillation at low magnetic field regime with the inverse
magnetic field. However, with the increase of the magnetic
field, SdH oscillations start to superimpose over the Weiss
oscillation. The SdH oscillations appear as small oscillations
over the envelope of the Weiss oscillation. The tilted Dirac
cones cause a significant change in the frequency of the
Weiss oscillation too. To understand the effect of tilting
Dirac cones more explicitly, we shall obtain an approximate
analytical expression of the diffusive conductivity. Following
Refs. [31,33], the diffusive conductivity for electric modula-
tion can be simplified to an analytical form by using the higher
Landau-level approximation

e−u/2Ln(u) → 1√
π

√
nu

cos

(
2
√

nu − π

4

)
(24)

as

σ e
yy � e2

h

βW

8π2�0γ

{
Ue

0 − Ue
1 RW

(
T

TW

)
+ 2RWUe

1

(
T

TW

)

× cos2

[
2π

(
f

B
− 1

8

)]}
. (25)

Here, Ue
0 = (Ve)2(1 + 2β2

b ) and Ue
1 = V 2

e (2β2
b − 1). The am-

plitude of the conductivity is governed by Ue
0 , which indicates

that it enhances with the tilting of Dirac cones. On the other
hand, the Weiss oscillation amplitude is determined by the
factor Ue

1 which is suppressed by the tilting feature of the
Dirac cones. The frequency of the Weiss oscillation is given
by f = EF γ 2/(evca). It is clearly seen that the frequency
is enhanced by a tilt-dependent term γ 2 = 1.20. Note that
in comparison to graphene, it is not only the tilt parameter
which enhances the frequency of the Weiss oscillation, but also
the Fermi velocity (vc = 0.77 × 106 m/sec) which is smaller
than its counterpart in graphene (vF = 3 × 106 m/s). Also,
βW = (kBTW )−1 with the characteristic temperature TW =
eavcB/[4(πγ )2kB] which is lowered by the tilt parameter. The
temperature also induces a damping to the Weiss oscillation
amplitude, which is described by

RW

(
T

TW

)
= T/TW

sinh(T/TW )
. (26)

B. Magnetic modulation

Now we consider the case when the perpendicular magnetic
field is weakly modulated without any electrical modulation.
The underlying physics of the charge carriers in the presence of
a modulated magnetic field is believed to be closely related to
composite fermions in the fractional quantum Hall regime [46].
Under the weak magnetic field and low temperature regime,
extensive theoretical works of the Weiss oscillation exist
from usual 2DEG to monolayer graphene (as mentioned in

Sec. I). Along the same line, we investigate Weiss oscillation
in a magnetically modulated borophene.

First, we evaluate the first-order energy correction due to
magnetic modulation. Let the perpendicular magnetic field
be modulated very weakly as B = [B + Bm cos(�x)]ẑ, where
Bm � B describes the vector potential under the Landau
gauge A = [0,Bx + (Bm/�) sin(�x)]. Similar to the case of
electric modulation, the total Hamiltonian can now be split
into two parts as Hm

T = H + Hm, where H is the unperturbed
Hamiltonian and Hm is the modulation-induced perturbation
which can be written as

Hm = ξ
eBm sin(�x)

�
(σ0vt + σyvc). (27)

Using the unperturbed wave function, the first-order energy
correction due to the magnetic modulation Hm is evaluated as

�Em
ζ = 1

2

[
ξV ct

m Fn(u) sin(�x̄0) + V tc
m Rn(u) cos(�x̄0)

]
.

(28)

Here, V ct
m = (βbV

c
m − V t

m) and V tc
m = (βbV

t
m − V c

m) with V t
m =

eBmvt/� and V c
m = eBmvc/�. In the above energy correction,

in Eq. (28), the terms involving V t
m and βb are purely due to the

tilting feature of the Dirac cones. The above equation can be
reduced to the case of magnetically modulated graphene [33]
by setting βb = V t

m = 0. The width of the LLs broadening is
�m = √

[V ct
m Fn(u)]2 + [V tc

m Rn(u)]2. Now the group velocity
is found to be

Vy = u

h̄γ�

[
ξV ct

m Fn(u) cos(�x̄0) − V tc
m Rn(u) sin(�x̄0)

]
(29)

and Vx = 0. Following the same procedure, as in the electric
modulation case, we obtain the diffusive conductivity as

σm
yy = e2

h

u

4γ�0

∑
n

[
−∂fn

∂E

]{[
V ct

m Fn(u)
]2 + [

V tc
m Rn(u)

]2}
.

(30)

Note that the diffusive conductivities for electrically [Eq. (23)]
and magnetically modulated [Eq. (30)] borophene are inde-
pendent of the valley index. The first term inside the third set
of brackets in the above equation arises due to the tilting of
the Dirac cones, and gives extra contribution to the diffusive
conductivity. Following s similar approach as in the electric
modulation case, we obtain the analytical expression of
diffusive conductivity as

σm
yy � e2

h

βWU0

8π2γ�0

{
1 −

(
U1

U0

)
RW

(
T

TW

)

+ 2

(
U1

U0

)
RW

(
T

TW

)
sin2

[
2π

(
f

B
− 1

8

)]}
(31)

with U0 = (V ct
m )2 + (

√
2V tc

m )2 and U1 = (
√

2V tc
m )2 − (V ct

m )2.
The amplitude of the Weiss oscillations is governed by the
factor U1 and it is suppressed in the presence of the tilt-
induced term V t

m. The tilt-induced additional contribution to
the diffusive conductivity does not appear in nontilted Dirac
material graphene.

The diffusive conductivity for magnetic modulation is
plotted numerically in Fig. 4(b), where Weiss oscillation is
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FIG. 4. Diffusive conductivity (in units of e2/h) versus inverse magnetic field for (a) electric and (b) magnetic modulation. The Fermi
energy is taken as 0.041 and 0.035 eV for vt = 0 and 0.32 in units of v0, respectively. The modulation period is a = 350 nm and temperature
T = 3 K. The strength of modulation is Ve = 0.5 meV. The strength of the magnetic modulation is taken as Bm = 0.028 T, such that V t

m = Ve.

found to be weakly suppressed. The origin of this suppression
can be understood from the analytical expression of diffusive
conductivity given in Eq. (31). The presence of the tilt-induced
term V t

m reduces the amplitude of the oscillation, governed
by U1. Note that we have taken the strength of magnetic
modulation Bm = 0.028 T, such that Ve = V t

m = 0.5 meV
and V c

m = 1.2 meV. Note that, in comparison to the case of
electrical modulation, the amplitude of Weiss oscillation is
enhanced.

C. Presence of both modulations

Now we consider the situation when both types of modu-
lation, i.e., electric and magnetic, are present together. The
presence of both modulations may give rise to some new
features to the Weiss oscillation. In usual 2DEG [19], it was
found that Weiss oscillation can be pronounced or suppressed
depending on whether both modulations are in phase or out
of phase. Recently, we have observed that the presence of
both modulations can break particle-hole symmetry in Dirac
materials like graphene and α-T3 lattice [37]. First we consider
that the electric and magnetic modulations are out of phase, i.e.,
Ve sin(�x) and Bm cos(�x), respectively. The total first-order
energy correction is evaluated to be

�Eem
ζ = 1

2

[
W

ξ

1 Rn(u) cos(�x̄0) + W
ξ

2 Fn(u) sin(�x̄0)
]
, (32)

where W
ξ

1 = (ξVeβb + V tc
m ) and W

ξ

2 = (ξV ct
m − Ve). The

group velocity of charge carriers under the combined effects
of both modulations out of phase is evaluated as

Vy = u

h̄γ�

[
W

ξ

2 Fn(u) cos(�x̄0) − W
ξ

1 Rn(u) sin(�x̄0)
]

(33)

and Vx = 0. Following the same procedure as in the case of
electric/magnetic modulation, we obtain the valley-dependent
diffusive conductivity as

σ ξ
yy � e2

h

βWu

8γ�0

∑
n

[
−∂fn

∂E

]{[
W

ξ

1 Rn(u)
]2 + [

W
ξ

2 Fn(u)
]2}

.

(34)

The most remarkable point here is that now the diffusive
conductivity is very sensitive to the valley index and can
cause sizable valley polarization, which is attributed to the
presence of the tilt-induced term V t

m and βb. In nontilted Dirac
cones like graphene, valley polarization does not appear even
in the presence of both modulations because of the absence
of the terms V t

m and βb. Using a similar approach as in
the electric/magnetic modulation, the analytical form of the
diffusive conductivity can be obtained as

σ ξ
yy = e2

h

βWU
ξ

0

16π2γ�0

{
1 −

(
U

ξ

1

U
ξ

0

)
RW

(
T

TW

)

+ 2

(
U

ξ

1

U
ξ

0

)
RW

(
T

TW

)
sin2

[
2π

(
f

B
− 1

8

)]}
, (35)

where U
ξ

0 = (Wξ

1 )2 + (Wξ

2 )2 and U
ξ

1 = (Wξ

1 )2 − (Wξ

2 )2. The
amplitude of the Weiss oscillation is determined by a valley-
dependent factor U

ξ

1 . In the K valley (ξ = +), the Weiss
oscillation amplitude is much more suppressed than in the
K ′ valley (ξ = −), which is shown in the lower panel of
Fig. 5. The upper panel of this figure shows that when electric
and magnetic modulations are applied individually, the Weiss
oscillation in one valley (K or K ′) exhibits opposite phase with
an amplitude mismatch. The origin of the opposite phase is
well addressed in Ref. [33]. However, when both modulations
are applied together the two valleys respond differently. The
Weiss oscillation amplitudes are enhanced in both valleys but
the enhancement in the K ′ valley is much higher than in the
K valley, as shown in the lower panel of Fig. 5. These features
can be understood from the analytical expression of diffusive
conductivity in Eq. (35). In the K valley, the amplitude of
Weiss oscillation is determined by U+

1 , which is smaller than
its counterpart in the K ′ valley, i.e., U−

1 .
On the other hand, if we consider that both modulations are

in the same phase, i.e., electric modulation is Ve cos(�x) and
the magnetic modulation is of the form of Bm cos(�x), then

235405-6



SIGNATURE OF TILTED DIRAC CONES IN WEISS . . . PHYSICAL REVIEW B 96, 235405 (2017)

0

0.5

1

σ y
y
e
/
m

electric

magnetic

0 5 10 15 20 25
0

0.5

1

1.5

1/B (T−1)

σ y
yξ

ξ= +

ξ= −

FIG. 5. Diffusive conductivity (in units of e2/h) versus inverse
magnetic field for electric and magnetic modulation (upper panel) and
in the presence of both out-of-phase modulations (lower panel) in each
valley. The tilt velocity vt = 0.32v0 and Fermi energy is 0.035 eV.
All other parameters are the same as in Fig. 4.

diffusive conductivity will be

σ em
yy = e2

h

u

4γ�0

∑
n

[
−∂fn

∂E

]
{[W3(n,u)]2 + [W4(n,u)]2},

(36)

where W3(n,u) = [VeβbRn(u) + V ct
m Fn(u)] and W4(n,u) =

[V ct
m Rn(u) − VeFn(u)]. In this case, diffusive conductivity

does not depend on the valley index. A similar analytical
expression can also be found by following the same approach.
The Weiss oscillations for the presence of both in-phase and
out-of phase modulations are presented together in Fig. 6,
which shows that the Weiss oscillations in both cases are in
opposite phase with amplitude mismatch. This feature is the
direct consequence of the total effective energy correction in
both cases. As we have seen that the diffusive conductivity

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

1/B (T−1)

σ y
y

e
m

out of phase

in phase

FIG. 6. Diffusive conductivity (in units of e2/h) versus inverse
magnetic field in the presence of both modulations. All other
parameters are kept the same as in Fig. 5.

may be sensitive to the valley index depending on the phase
relationship between electric and magnetic modulations, it is
interesting to examine the valley polarization, for which we
plot it versus inverse magnetic field in Fig. 7. Because of the
unequal suppression of Weiss oscillations in two valleys in the
presence of out of phase both modulations, a sizeable valley
polarization arises in the diffusive conductivity. To plot valley
polarization, we define it as

Pv = σ+
yy − σ−

yy

σ+
yy + σ−

yy

. (37)

The valley polarization oscillates with the inverse magnetic
field with the frequency of Weiss oscillation as shown in
Fig. 7(a). The appearance of valley polarization strongly
depends on the phase relationship between both modulations.
Valley polarization appears in Weiss oscillation only when
electric and magnetic modulations are in out of phase. It is
also interesting to examine the evolution of valley polarization
with vt . In Fig. 7(b), we also show the evolution of valley
polarization in diffusive conductivity with the smooth variation
of tilt velocity vt . It shows that valley polarization oscillates
with vt , which can be easily understood from the fact that
Weiss oscillation frequency has a strong dependency on vt too.
The valley polarization shows the emergence of regular peaks
with increasing height toward 1 with the increase of vt . We
mention here that we have taken Fermi energy (0.035 eV) as
constant while plotting Fig. 7(b) although a weak dependency
of Fermi energy on vt exists as shown in Fig. 2. The rise
of valley-polarized Weiss oscillation in diffusive conductivity
is one of our main results which differs from graphene.
Here, we mention that the valley-polarized Weiss oscillation
was predicted in electrically modulated silicene [36] too.
However, in that case a gate voltage between two planes of
sublattices is necessary in addition to the strong spin-orbit
interaction.

Finally, we discuss whether tilt parameter can be extracted
from the Weiss oscillation experiment. The frequency of the
Weiss oscillation can be easily obtained from magnetoresis-
tance measurement of borophene, which can be directly used
to extract the tilt parameter once we know the Fermi level and
Fermi velocity. The direct method of obtaining Fermi level and
velocity was recently reported in Ref. [47].

IV. SUMMARY AND CONCLUSIONS

In this work, we have studied the magnetotransport proper-
ties of a 2D sheet of the polymorph of a periodically modulated
8-Pmmn borophene which exhibits tilted anisotropic Dirac
cones. We have evaluated the modulation-induced diffusive
conductivity by using the linear response theory. The diffusive
conductivity exhibits the Weiss oscillation with the inverse
magnetic field, the frequency of which is enhanced by the
tilted feature of the Dirac cones. The amplitude of Weiss
oscillation is also enhanced or suppressed depending on the
types of modulation. Most remarkably, we have found that the
presence of out-of phase electric and magnetic modulations
can cause very high valley polarization in Weiss oscillation at
low magnetic field. The appearance of the valley polarization
in the Weiss oscillation is the direct manifestation of the tilted
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FIG. 7. Valley polarization versus (a) inverse magnetic field and (b) tilt velocity (vt ). Fermi energy is kept fixed at EF = 0.035 eV. All
parameters are kept the same as Fig. 4.

Dirac cones in borophene. It is in complete contrast to the
nontilted isotropic Dirac material graphene where such valley
polarization does not appear.

As far as the practical realization of this material is
concerned, a borophene structure can be formed on the surface
of Ag(111) as reported recently in Ref. [4]. On the other hand,
periodic modulation can be imparted to the system by several
methods. For example, an array of biased metallic strips on the
surface of a 2D electronic system has been used by Winkler
et al. [14] to achieve electric modulation. Magnetic modulation

can be generated by placing a few patterned ferromagnets or
a superconductor on the surface of the 2D material [26–28].
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