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Polarizability extraction of complementary metamaterial elements
in waveguides for aperture modeling
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We consider the design and modeling of metasurfaces that couple energy from guided waves to propagating
wave fronts. To this purpose, we develop a comprehensive, multiscale dipolar interpretation for large arrays of
complementary metamaterial elements embedded in a waveguide structure. Within this modeling technique, the
detailed electromagnetic response of each metamaterial element is replaced by a polarizable dipole, described by
means of an effective polarizability. In this paper, we present two methods to extract this effective polarizability.
The first method invokes surface equivalence principles, averaging over the effective surface currents and charges
induced in the element’s surface in order to obtain the effective dipole moments, from which the effective
polarizability can be inferred. The second method is based in the coupled-mode theory, from which a direct
relationship between the effective polarizability and the amplitude coefficients of the scattered waves can be
deduced. We demonstrate these methods on several variants of waveguide-fed metasurface elements (both one-
and two-dimensional waveguides), finding excellent agreement between the two, as well as with the analytical
expressions derived for circular and elliptical irises. With the effective polarizabilities of the metamaterial
elements accurately determined, the radiated fields generated by a waveguide-fed metasurface can be found
self-consistently by including the interactions between polarizable dipoles. The dipole description provides an
effective perspective and computational framework for engineering metasurface structures such as holograms,
lenses, and beam-forming arrays, among others.
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I. INTRODUCTION

The metamaterial paradigm, in which an artificial medium
with desired scattering characteristics is assembled, has had
a profound impact across numerous scientific fields, includ-
ing electromagnetic [1–4], acoustic wave phenomena [5–8],
materials science [9], chemistry, and nanoscience [10–12].
In particular, electromagnetic metamaterials research has
provided a venue to tailor material properties in ways not
feasible with conventional materials [13–15], opening the door
to unique and often exotic wave phenomena such as negative
and near-zero refractive index materials [16–19], as well as un-
precedented devices, such as transformation optical structures
and invisibility cloaks [20] as well as superlenses [21–23].

The underlying philosophy of the metamaterial paradigm
is that the behavior of waves propagating within a large
(many wavelengths) metamaterial composite medium can be
understood from the properties of constituent elements—each
subwavelength in dimensions—and their mutual interactions.
The advantage of this perspective is that the properties of each
of the constituent elements can be determined exactly using a
full-wave simulation over a relatively small and subwavelength
domain. From these simulations, effective constitutive param-
eters can be retrieved, replacing the detailed current and field
distributions within the small domain by just a few parameters
such as the electric permittivity and magnetic permeability
[24]. The wave propagation properties of the composite
structure can then be modeled by solving Maxwell’s equations
directly, with effective constitutive parameters replacing the
actual metamaterial structures. While the effective constitutive
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parameters obtained by numerical retrieval methods must be
applied with considerable caution, retrieval methods have
nevertheless been used with success in the design of many
metamaterial structures [25–27]. Replacing the details of
an artificial medium with effective constitutive parameters
facilitates device simulations and optimization cycles, vastly
reducing the computational requirements since the individual
elements are replaced by homogenized constitutive parameters
[28]. Complex metamaterial devices have been designed and
demonstrated by this technique, including the transformation
optical structures that rely on precise variations in material
properties throughout a volume [29–32].

Despite the compelling features of volumetric metamate-
rials and their unique material properties, their applications
have been limited. This limitation stems from the fact that
most intriguing properties of metamaterials occur near the el-
ement’s resonance, which often impose bandwidth limitations
and produce large resistive losses. Thus, waves propagating
through any significant volume (even just a few wavelengths)
of a volumetric metamaterial can be heavily attenuated. In
addition, fabricating metamaterial elements to control electric
and magnetic fields polarized in arbitrary directions, and
assembling such elements throughout a volume, remains a
major implementation challenge; typically, the properties of
volumetric metamaterials have been demonstrated in highly
constrained formats and proof-of-concept prototypes.

The difficulties associated with volumetric metamaterials
are considerably reduced for structures consisting of just
a single layer or a few layers of elements—also known
as metasurfaces [33–35]. Being easier to design, model
and implement [36–38], metasurfaces have rapidly gained
traction as a major subfield in metamaterials research [39].
As quasioptical devices [38], metasurfaces provide control of
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reflection and transmission across the spectrum [40], paving
the way for advanced components such as flat lenses [38,41],
thin polarizers [42,43], spatial or frequency filters [44], and
holographic and diffractive elements [30,45,46]. Used as coat-
ings, metasurfaces can control the absorbance and emissivity
of a surface, and thus have relevance to thermophotovoltaics
[47], detectors, and sources [48–54]. Given the capabilities
of metasurfaces to control waves, but without many of the
limitations of volumetric metamaterials, metasurfaces have
proven a good match for commercialization efforts, with
many serious applications now being pursued, including
satellite communications [55,56], security screening [57–60],
microwave imaging techniques [61–63], and radar [64,65].

Following the same line of thought as volumetric metama-
terials, the scattering properties of a metasurface are usually
characterized by a set of effective surface constitutive proper-
ties, which homogenize—or average over—the properties of
many identical, discrete, and periodic metamaterial elements
[34,66]. These effective-medium properties are related to
the discontinuity of the fields across the metasurface—
approximated as having infinitesimal thickness—and are
encapsulated in a set of generalized boundary conditions
[41,67–72], often composed of a periodic arrangement of
metamaterial elements. However, there are many contexts
where a homogenization description is not the most convenient
or the most accurate description of metasurfaces.

For infinitely large metasurfaces in free space, a weakness
associated with homogenization techniques is that the element
size and periodic spacing between metamaterial elements must
be significantly subwavelength—a condition not necessarily
satisfied in many situations. An element size of one-tenth to
one-fifth of a wavelength is typical for many metamaterial
structures, which implies that the phase of the wave will have
significant variation over the volume containing the element.
Such metamaterials are said to exhibit spatial dispersion,
adding complication to the homogenization description. While
numerical retrieval methods include spatial dispersion in the
effective constitutive parameters, the effective constitutive
parameters are valid only in the exact arrangement simu-
lated. For example, if these parameters are retrieved from a
simulation of a cubic cell with periodic boundary conditions,
they will only be specifically valid for that medium, and not
necessarily applicable when the same element is placed in a
different context—for example, in a random or nonperiodic
arrangement [73].

This problem is more pronounced in the case of waveguide-
fed metasurface antennas, since the metasurface interacts with
a guided wave in ways not easily captured with a simple
homogenized description, therefore, a modeling tool that
accounts for the individual response of each metamaterial
element in the waveguide—instead of an averaged surface
property—is needed [74]. Abandoning homogenized periodic
structures and approaching the metamaterial design—in the
more general sense of an array of perturbations with arbitrary
spacing and shaping—has also gained traction, partially due
to the extra degrees of freedom aperiodic structures offer. In
such structures, interpreting a metasurface as an array of indi-
vidual elements of metamaterials, instead of homogenization
techniques, can be more effective [75–79].

To arrive at a more generally valid description of a
metamaterial while still avoiding a full-wave simulation of
the composite structure, we consider directly the properties
of each metamaterial scattering element. The response of
such a metamaterial element can generally be expressed in
a series of induced electric and magnetic multipoles, typically
dominated by the dipole term. The strength of the dipolar
contribution is connected to an effective polarizability, which
represents the coupling between the total dipole moment
and the incident field on the element. To the extent that
the higher-order multipoles beyond the dipolar term can be
neglected, the scattering from a collection of equivalent dipoles
provides a near exact and computationally efficient model of
the metamaterial structure [74,80].

Our aim here is to extend the dipole model as an analytical
tool for waveguide-fed metasurfaces. Unlike the free-standing
metasurface or volumetric metamaterial—for which each
metamaterial element can be reduced to a free space dipole—
an individual metamaterial element patterned in a waveguide
also interacts with the waveguide structure. By assigning
an effective polarizability to a metamaterial element rather
than treating the metamaterial or metasurface as a continuous
medium with constitutive parameters, it is possible to predict
the overall response of the structure without any limitation on
the element’s periodicity or arrangement. The combination of
polarizability extraction and the dipole representation forms
an alternative, powerful modeling platform for metasurfaces
and metamaterials.

It is worth noting that a complementary metamaterial
element, excited by a waveguide, leaks a portion of the incident
wave as radiation to free space. This leakage is reminiscent
of leaky-wave antennas (LWAs) [81–83]. However, unlike
LWAs, a metasurface antenna does not necessarily rely on
forming a specific leaky mode, since their design does not
rely on a gradual change of the metamaterials’ geometry
nor their periodic arrangement. Indeed, this generalization
for metasurface antennas provides nearly total control over
the wave front in a manner similar to phased arrays [84] and
other aperture antennas [85–87], but often with advantages not
available in other formats [88–92]. From another perspective,
one may see waveguide-fed metasurface apertures as leaky-
wave antennas with an array of perturbations with arbitrary
shape and spacing. However, this notion for leaky-wave
antennas is not usually used in the literature. As a result,
we believe distinguishing between leaky-wave antennas and
waveguide-fed metasurfaces is necessary. Nonetheless, the
framework developed in this paper can be used to model and
design LWAs with periodic or arbitrary perturbations [93,94].

Previous works on the polarizability extraction of ar-
bitrary metamaterial elements have developed a technique
that assumes the element is part of an infinitely periodic
medium [95–97] and there is a plane-wave incident on this
medium. The details of the periodic structure can then be
replaced by periodic boundary conditions, so that the full-wave
simulation domain extends only over a single cell of the
structure. An effective polarizability of the element, which
includes the contributions from all other elements in the
infinite array, can then be extracted from the computed field or
charge/current distributions. Finally, the intrinsic polarizability
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can be determined using the Lorentz formula that relates the
intrinsic and effective polarizabilities [97].

In this paper, we provide two methodologies to perform
the polarizability extraction when the element is embedded
in different waveguide structures. In Sec. II we introduce
the polarizability interpretation for a metamaterial element
embedded in a waveguide and summarize the self-consistent
dipole model for metasurfaces. In Sec. III we apply the
equivalence principle to the waveguide-fed metamaterial, and
derive integrals relating the equivalent current densities to the
effective dipole moments. The results of the direct integration
method are used as the basis for comparison with the second
method we present in Sec. IV, in which the polarizability is
obtained using the scattering (S) parameters of the element
when placed in a waveguide. Both methods have been used
in the context of numerical retrieval of effective constitutive
parameters for volumetric metamaterials, with the former
method related to field averaging [98], while the latter method
is related to the well-known S-parameters retrieval method
[25,26]. In Sec. V we perform polarizability extractions for
different waveguide-fed metasurface geometries: circular iris
[99], elliptical iris [100,101], iris-coupled patch antenna [102],
and the complementary electric inductive-capacitive metama-
terial resonator (cELC) [35,103–105]. We extend the polariz-
ability extraction method to two-dimensional (2D) waveguide
structures in Sec. VI, where the S parameters cannot be used to
retrieve polarizability. To address this problem, we outline an
alternative method based on the mode expansion of cylindrical
waves propagating through the waveguide. This framework is
particularly advantageous for modeling and designing planar
structures [59,62,106,107]. As a means of confirming the
accuracy of the dipole approximation, we express the induced
fields from a metamaterial element as a multipole expansion,
comparing the relative strengths of the expansion coefficients.
The result of this analysis shows that, indeed, the dipole
term dominates the response, justifying the dipolar description
and use of the dipole model. We conclude by examining
the potential application of the polarizability extraction for
different metasurface-based devices. It is important to note that
we will present our technique in the context of electromagnetic
metamaterials. However, concepts presented in this paper can
be easily extended to other types of wave.

II. SELF-CONSISTENT DIPOLE MODEL FOR
METASURFACES

Our conceptual picture of a waveguide-fed metasurface is
that of a collection of complementary metamaterial elements
etched on a waveguide structure, that can be modeled as
a collection of polarizable dipoles, each of which accounts
for the scattering associated with the characteristics of the
metamaterial element. In other words, each metamaterial
element is reduced to an effective electric dipole moment
and an effective magnetic dipole moment, p and m, which
are proportional to the local electric or magnetic field at the
center of the element multiplied by a coupling coefficient,
termed the dynamic polarizability [108]. It is referred to as
“dynamic” since it describes the element’s response due to
a time-varying incident field. A time-dependent electric field
can induce solenoidal currents and thus can give rise to a

magnetic polarization in addition to the electric polarization.
To properly take into account the co- and cross-coupling of
the electromagnetic fields excited within the metamaterial
element, the dynamic polarizability should be represented as
a tensor, i.e., p = ¯̄αeeEloc and m = ¯̄αmmHloc, where Hloc and
Eloc are the local electric and magnetic fields at the center of
the element.

When a dipole is placed in an environment, it emits a field
that interacts with the environment, as well as the dipole itself.
This phenomenon of self-interaction—or radiation reaction—
occurs even when a dipole radiates in free space, where it
exerts a force on itself that opposes the oscillation of the
dipole such that its amplitude decays in time. This is the
mechanism by which the dipole loses energy in accordance
with its radiation losses. The self-interaction of a dipole is
commonly represented by the Green’s function at the location
of the dipole, where special care is taken due to singularity
of Green’s functions [97,109]. If a dipole is placed in free
space, then a Taylor series expansion of the Green’s function
shows that Im{G(r0,r0)} = k3/6π [110,111], and this yields
the radiation reaction to the polarizability of a dipole in free
space,

αmm = α̃mm

1 + iα̃mmk3/6π
, (1)

where α̃m is the intrinsic polarizability of the element—
which depends on its geometry only—αm is the effective
polarizability—which accounts for the fact that the element is
embedded in a particular environment, and k is the free-space
wave number. The expression in Eq. (1) is often known
in the literature as the radiation reaction correction or the
Sipe-Kranendonk relation [110,112,113].

In the particular scenario that a dipole is placed in the
surface of a rectangular or planar waveguide (as it is the case for
our dipolar model for complementary metamaterial elements),
the dipole fields interact with the walls of the waveguide, and
then return to exert a force that interacts with the dipole. By
means of the method of images, the element embedded in a
waveguide structure can be seen as a dipole embedded in a
lattice of dipoles due to its self-images formed by the walls of
the waveguide. In this manner, the self-interaction of a dipole
in a waveguide environment can again be represented by the
Green’s function of the array, at the location of the dipole
[114–116].

The fact that the dipole is embedded in such a lattice
is the physical phenomenon that differentiates intrinsic po-
larizability α̃ (if the dipole did not have any images) and
the effective polarizability α (accounting for the multiple
self-images of the dipole). In these scenarios, the image dipoles
induced due to the metallic walls of waveguide structure
and their mutual interaction with the dipole itself must be
taken into account. This idea has been the basis of previous
works where the effective polarizability of an element in an
array is calculated based on the intrinsic polarizability of a
metamaterial element in free space [100], and the detailed
algebraic and mathematical computation of the interaction
constant in the array [95–97]. Rather than working through this
complication, we can instead apply a numerical polarizability
extraction procedure using the waveguide modes, arriving at
an effective polarizability that also captures the waveguide
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interactions. Toward this goal, we note that an effective
polarizability might be ascribed to any arrangement of dipoles
where there is sufficient symmetry in the system and the
incident field exciting all the dipole moments is equal. Under
these assumptions the total field incident on the ith dipole
(arranged in ai locations) can be written as the incident field
plus the sum of the fields radiated by all the dipoles in the
space as

Hloc(ai) = ¯̃̄α−1
mmm(ai)

= H0(ai) +
∑

j

¯̄G(ai − aj )m(aj ), (2)

where ¯̃̄αmm is the intrinsic polarizability in its tensor form,
¯̄G(ai − aj ) represents the Green’s function, and the j = i

terms in the sum represents the self-interaction of the dipole.
All the m(ai) terms may be collected leading to

( ¯̃̄α−1
mm − ¯̄G(0)

)
m(ai) = H0(ai) +

∑
j �=i

¯̄G(ai − aj )m(aj ). (3)

Moreover, if it is known by the symmetry of the problem
that m(aj ) = m(ai) for all j , then the previous equation may
be written in the form

⎛
⎝ ¯̃̄α−1

mmδi,j −
∑

j

¯̄G(ai − aj )

⎞
⎠m(aj ) = H0(ai). (4)

The quantity in parentheses becomes the effective polar-
izability ¯̄α (in its tensor form), and the infinite sum per the
Green’s function is defined as the interaction constant, which
changes according to the dipole array, i.e., such definition of
effective polarizability is nonlocal. However, it is important to
note that, while the effective polarizability changes depending
on the environment in which the metamaterial element is
embedded, it does not change with the incident field. For
example, when a single metamaterial element is embedded in
a planar waveguide—located at x0—its effective polarizability
can be found as α = m(x0)/H0(x0) and this polarizability is
equal to the extracted polarizability when the element is placed
at any arbitrary location x1 in the planar waveguide, despite
that the incident field exciting the element is different, α =
m(x1)/H0(x1). However, this extracted polarizability would
be different if the same metamaterial element is placed in a
rectangular waveguide, since in this case, the environment is
different, and thus the effective polarizability. Such definition
for effective polarizability is in fact very useful for the mod-
eling and designing of metasurface structures. The effective
polarizability [as in Eq. (4)] captures the interaction of the
metamaterial element with the environment. In this framework,
we only need the incident field to find the dipole representing
the element.

The polarizability extraction technique proposed in this
work should be performed for a single metamaterial ele-
ment in the absence of any other element. However, when
the entire metasurface is modeled—composed of numerous
metamaterial elements placed across the propagation axis of
the waveguide—the total dipole moment (representing each

element) will be given by solving the matrix system⎛
⎝ ¯̄α−1

mmδi,j −
∑
j �=i

¯̄G(xi − xj )

⎞
⎠m(xj ) = H0(xi), (5)

where the xi and xj locations are not necessarily in a periodic
arrangement. An equivalent expression can be derived for the
electric field. Examining the expression in Eq. (5), it can be
seen that these coupled equations capture the interaction of the
incident wave with each of the metamaterial elements (through
the j = 0 terms) as well as interaction between different
elements (the summation term). The latter terms account for
distance couplings between the metamaterial elements. In this
work, we have assumed the elements are far enough from each
other such that their coupling is only through the fundamental
mode of the waveguide. However, in cases where the elements
are close to each other, they may also couple to each other
through higher-order modes (evanescent modes). We would
like to emphasize that the framework proposed in this work
can also capture such interactions. More specifically, since
the Green’s function can be expressed as the modal sum of
the tensor product of eigenmodes, the equation above can
be recast to take into account evanescent guided modes for
the mutual interactions. These mutual interactions and their
role in performance of metasurfaces will be studied in future
works.

III. POLARIZABILITY EXTRACTION IN A
RECTANGULAR WAVEGUIDE: DIRECT INTEGRATION

We start by considering an arbitrarily shaped iris etched
into the upper conducting surface of a rectangular waveguide,
as shown in Fig. 1. The coordinate system is chosen so that the
propagation direction is in the z direction; a corresponds to the
width of the waveguide along the x axis, and b corresponds to
the height along the y axis. The guided wave couples to the
metamaterial element, which radiates a portion of the incident
wave into the free space region. A common methodology
to solve the radiated field by such a structure is the surface
equivalence principle. This principle states that the electric
field on the boundary of a domain can be represented as a
magnetic surface current Km = E × n̂, while the magnetic
field on the boundary can be represented as an electric surface
current Ke = n̂ × H, where E and H are the total fields on
the surface of the domain, and n̂ is the normal to the surface.

FIG. 1. Metamaterial element etched on a rectangular waveguide.
The waveguide is excited by the fundamental mode T E10 and the
metamaterial element induces electric and magnetic currents.
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Using Km and Ke and the corresponding Green’s functions,
one can determine the field within the domain. Applying
this principle to the geometry of Fig. 1, we observe that the
tangential electric field is zero everywhere on the waveguide
surface except over the void regions defining the metamaterial
element or iris; if the iris is deeply subwavelength, then the
field scattered into the far field may be approximated merely
by the first term of the multipole expansions of Ke and
Km. Hence, the dipole moments representing the iris can be
calculated as [117]

p = ε0n̂
∫

r · Etanda, (6a)

m = 1

iμω

∫
n̂ × Etanda. (6b)

The integration is performed over the surface of the iris, n̂ =
ŷ is the vector normal to the top surface, and Etan corresponds
to the tangential field at the surface of the iris. It is worth
noting that the tangential magnetic field is not zero over the
surface of waveguide; however, the tangential magnetic field
corresponds to an electric current density parallel to a metallic
wall, and by image theory its effect can be ignored.

Since the effective dipole moments are proportional to the
incident fields E0,H0, we can define the effective polarizabil-
ities as

p = ε0 ¯̄αeeE0 m = ¯̄αmmH0. (7)

In the most general case, each iris can be described by an
electric polarizability tensor ¯̄αee and a magnetic polarizability
tensor ¯̄αmm. These tensors are symmetric and would thus
normally have six unknown parameters, each of which would
need to be extracted from a full-wave simulation. In free
space, these components can be found by computing the
scattered fields in all directions. In the waveguide geometry
considered here, such simulations are not possible. Instead, we
take advantage of the geometry of the iris and the symmetry
of the excitation field into account. For example, when the
symmetry axes of iris are coincident with the symmetry axes
of the waveguide, we can assume that the polarizability tensor
is diagonal. Further, the boundary conditions of the waveguide
require that the incident tangential electric field E0

x and E0
z and

the normal component of the magnetic field H 0
y be equal to

zero on the surface of the waveguide. Therefore, the tensor
components αex , αez, and αmy can never be excited, and hence
we can assume them to be zero. The polarizability tensors then
reduce to ¯̄αee = diag(0,αey,0) and ¯̄αmm = diag(αmx,0,αmz).
Hence, the polarizability extraction is simplified to finding
three unknowns (αey , αmx , αmz). One further unknown can
be removed if the iris is placed where the magnetic field
of the incident mode has a null in the z component. In that
case, only αey and αmx are relevant to the problem. By using
Eqs. (6) and (7) and the previously described assumptions, the
characteristic polarizabilities are

αey =
∫∫

(xEx + zEz)dxdz

E0
y

, (8a)

αmx = 1

iμωH 0
x

∫ ∫
Ezdxdz. (8b)

Equations (8) provide a simple method to calculate the
polarizability of an element from a full-wave simulation of the
fields of the element embedded in a waveguide structure.

IV. POLARIZABILITY EXTRACTION IN A
RECTANGULAR WAVEGUIDE: SCATTERING

PARAMETERS

While calculating the polarizability of a metamaterial
element by means of Eq. (8) provides a physically accurate
characterization, the integration over the surface of the element
can be cumbersome to perform for all desired frequency
points and for arbitrary geometries. In many instances, this
integration may also be subject to numerical inaccuracies
due to singularities near edges or coarse meshing, as it
is especially the case for resonant elements such as those
examined in Sec. V. Instead of the direct integration, in this
section we consider the extraction of the polarizabilities from
the fields scattered by the element into the waveguide. For
this calculation, we apply coupled-mode theory to determine
the coupling of the element embedded in a waveguide to the
forward and backward scattered fields within the waveguide.
The fields inside the waveguide at any plane of constant z

(along the propagation direction) can be expanded as a discrete
sum of orthogonal modes. These modes are defined as [117]

E+
n = [Ent (x,y) + Enz(x,y)]e−iβnz, (9a)

H+
n = [Hnt (x,y) + Hnz(x,y)]e−iβnz, (9b)

E−
n = [Ent (x,y) − Enz(x,y)]eiβnz, (9c)

H−
n = [−Hnt (x,y) + Hnz(x,y)]eiβnz, (9d)

where E−
n and E+

n are respectively the waveguide modes
traveling in the backward and forwards direction. The subscript
“t” refers to the component of the fields that are transverse
to the direction of propagation, and βn is the propagation
constant of the nth mode. The mode normalization used in
Eq. (9) is defined from the integral over the cross section of
the waveguide, such that∫

En · Emda = δmn, (10)

where δmn is 1 for n = m and 0 otherwise. Furthermore, the
magnetic fields are normalized as∫

Hn · Hmda = δmn/Z
2
n, (11)

where the wave impedance Zn is defined as a normalization
constant for each mode as

Zn = 1∫
En × Hn · n̂da

. (12)

In Eq. (12) the integration is over the cross sectional surface
of the waveguide, i.e., the surface representing port 1 in Fig. 2.

Consider a metamaterial element placed at the center of the
top plate of the waveguide. We assume that the incident field
is the forward-propagating fundamental mode—coming from
port 1 and de-embedded a distance �—with unit amplitude
E0+, as shown in Fig. 2. When the metamaterial element is
present, it couples and scatters to all modes. In addition, We
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FIG. 2. Metamaterial element effectively acts as a electric and
magnetic dipole that scatters inside the waveguide.

have incorporated an infinitely large plane on the top wall
of the waveguide in order to avoid border effects. While the
element has a finite size, for points inside the waveguide that
are few wavelengths away, the element is well approximated
as a point scatterer placed at z = 0 (location of the element).
In the absence of the metamaterial element, the total field is
simply the incident field, which is identical in both the forward
and backward directions. As a result, we express the modal
decomposition of the total (both incident and scattered) fields
into backwards propagating modes at port 1 (z = −�) as

E− = E+
0 +

∑
n

A−
n E−

n , (13)

where A−
n are the amplitudes of the modes scattered by the

element in the backwards direction, and n is the mode number.
Similarly, a modal decomposition of the fields in the plane of
z = +� into forward propagating modes yields

E+ = E+
0 +

∑
n

A+
n E+

n , (14)

where A+
n are likewise the mode amplitude coefficients of the

scattered field by the element in the forward direction, and the
incident field E+

0 has been written as a separate term. In these
calculations, � can be any distance as long as it is larger than
the size of metamaterial element.

We first consider a volume within the waveguide that
encompasses the metamaterial element (bounded by the two
ports). The incident field impinging on the element will
induce a set of fields that we denote as E and H. Within the
coupled-mode formulation, these fields can be related to the
waveguide modes through Poynting’s theorem, or

∇ · (E × H(±)
n − E(±)

n × H) = Je · E(±)
n − Jm · H(±)

n . (15)

We integrate Eq. (15) over the volume V , the portion of the
waveguide between the two ports, and applying the divergence
theorem, Eq. (15) becomes∫

S

(E × H(±)
n − E(±)

n × H) · n̂da =
∫

V

Je · E±
n − Jm · H±

n dV,

(16)

where S is the closed surface that encloses V and n̂ is
an outwardly directed normal. Since the waveguide walls
are assumed to be perfectly conducting, the only nonzero
contributions to the surface integrals arise from the surfaces
representing port 1 and port 2 (depicted in Fig. 2), and the

surface of the metamaterial element. Since the field E can
be written as a fictitious magnetic surface current through
Km = E × n̂ and H can be related to a fictitious electric
surface current in the same way, then the surface integral in
Eq. (16) indicates the manner in which the effective dipoles
representing the metamaterial element couple to each of
the waveguide modes, as might be expected from Lorentz
reciprocity.

To obtain the amplitude coefficients A(±)
n , we assume there

are no current sources in the volume, implying that the volume
integral in Eq. (16) vanishes. Substituting the expansions of
the fields in Eqs. (14) and (13) into Eq. (16) and using the
orthogonality relations in Eqs. (10) and (11), we obtain the
amplitude coefficients as an overlap integral of the waveguide
mode fields with the total field taken over the surface of the
iris. More explicitly, the amplitude coefficients can be found as

A(±)
n = Zn

2

∫
element

(E × H(∓)
n − E∓

n × H) · nda. (17)

In an alternative approach, the electric field in the aperture
could be considered zero and replaced by an equivalent
electric and magnetic surface current, according to the
equivalence principle. In this case, the surface integral
vanishes everywhere except over the surfaces of the ports,
but the volume integral over the metamaterial element
becomes a surface integral of the equivalent surface currents
Km = E × n̂ and Ke = −H × n̂. Using Eqs. (13) and (14)
and invoking orthogonality, we obtain

A(±)
n = Zn

2

∫
element

(Ke · E(∓)
n − Km · H(∓)

n )da. (18)

Since the metamaterial element is deeply subwavelength, the
fields of the waveguide modes can be expanded in a Taylor
series around the center of the element. The lowest-order term
is constant over the surface of the element, yielding

A(±)
n = Zn

2

[
E(∓)

n (x0) ·
∫

element
Keda

−H(∓)
n (x0) ·

∫
element

Kmda

]
. (19)

As previously stated in Eq. (6), the two integrals in Eq. (19)
are proportional to the electric and magnetic dipole moments,
p and m. Therefore, the final expression for the amplitude
coefficients in terms of these dipole moments is given by

A+
n = iωZn

2
(E−

n · p − μ0H−
n · m), (20a)

A−
n = iωZn

2
(E+

n · p − μ0H+
n · m). (20b)

Equation (7) shows that the dipole moments are related to
the incident fields, which in turn can be expanded in terms of
eigenmodes. Since the incident field is the fundamental mode,
the polarizability is defined by

p = ε ¯̄αeeE+
0 , (21a)

m = ¯̄αmmH+
0 . (21b)

Due to the symmetry of the fields in the rectangular
waveguide, the αmz component cannot be excited by the z

235402-6



POLARIZABILITY EXTRACTION OF COMPLEMENTARY . . . PHYSICAL REVIEW B 96, 235402 (2017)

component of the magnetic field. Hence, Eq. (20) reduces to
two coupled equations with two unknowns: αey and αmx , which
can be recast as

A+
n = iωZn

2
(εαeyE

+
0yE

−
ny − μ0αmxH

+
0xH

−
nx), (22a)

A−
n = iωZn

2
(εαeyE

+
0yE

+
ny − μ0αmxH

+
0xH

+
nx). (22b)

Considering the orthogonality of the eigenmodes and
the symmetry properties of the electromagnetic fields—the
transverse components of the electric field are symmetric under
a flip of direction (i.e., E−

ny = E+
ny), while the magnetic field

is antisymmetric (i.e., H−
nx = −H+

nx)—we can solve Eq. (22)
in order to find the polarizabilities as

αey = 2

iωZn

(A+
0 + A−

0 )

ε(E+
0y)2

, (23a)

αmx = 2

iωZn

(A+
0 − A−

0 )

μ(H+
0x)2

. (23b)

For the fundamental mode (monomode propagation), the
normalized fields and impedance at the dipole location are
given by

|E+
0y |2 = 4

ab
|H+

0x |2 = 4β2
10

abZ2
0k

2
Z0 = ηk/β10, (24)

where η is the vacuum impedance. Furthermore, the amplitude
coefficients A+

0 and A−
0 correspond to the amplitude terms for

the fundamental mode of the scattered fields in the forward
and backward directions. Therefore they are directly related
to the scattering parameters with respect to each port: the
reflected field, related to A−

0 is proportional to the reflection
coefficient, i.e., S11, while the transmitted field related to A+

0
is proportional to the transmission coefficient S21 and the
incident field in the forward direction. More explicitly, these
relationships are expressed by

A−
0 = S11 A+

0 = S21 − 1. (25)

Taking into account Eq. (25) in conjunction with Eqs. (23)
and (24) it is possible to find the final expression for the
polarizabilities as

αey = −iabβ10

2k2
(A+

0 + A−
0 ) = −iabβ10

2k2
(S21 + S11 − 1),

(26a)

αmx = −iab

2β10
(A+

0 − A−
0 ) = −iab

2β10
(S21 − S11 − 1). (26b)

Equation (26) provides the polarizabilities of any metama-
terial element embedded in a rectangular waveguide in terms
of the scattering parameters, which can be obtained from direct
measurement or full-wave simulation. This is a straightforward
process well known in the literature [95]. Another important
point to note is that we have assumed ports which only
excite/represent the single mode. This condition should be
applied when simulating these structures in numerical solvers.
More importantly, since it is cumbersome in experiment to
excite purely the fundamental mode, the ports should be placed
at least one wavelength away from the metamaterial element to

ensure the nonpropagating higher-order modes have decayed.
The equations in Eq. (26) are similar to the expressions found
for the effective polarizabilities of metamaterial elements in
periodic metasurfaces [95,96]. This relationship means that
a single element in a rectangular waveguide acts as a dipole
whose response is equivalent to the response of the element in
a periodic metasurface. The details of this equivalence will be
discussed in a future work.

V. SIMULATED RESULTS FOR THE
RECTANGULAR WAVEGUIDE

By using full-wave simulation, it is possible to extract
the effective polarizability of arbitrary metamaterial elements
patterned into rectangular waveguides from the two different
approaches described in Secs. III and IV. For both extraction
techniques, a single full-wave simulation in CST Microwave
Studio is performed assuming a waveguide designed to operate
over frequencies in the X band (8–12 GHz). The waveguide
dimensions are a = 21.94 mm, b = 5 mm, and L = 22.7 mm.
We perform this simulation for several different metamaterial
element geometries: circular iris, elliptical iris, iris-coupled
patch antenna, and the cELC resonator [35,103,104].

In addition to the methods described above, the dipole
moments of simple geometries, such as an elliptical iris, may
be also obtained from the static dipole moments of general
ellipsoidal dielectric and permeable magnetic bodies. Consider
an elliptically shaped aperture with the major axis along the
x direction and minor axis along the z direction. Let the major
radius be l1 and the minor radius be l2. In the static limit, the
intrinsic polarizabilities of such an elliptical iris (static case)
are given by [100]

α̃mx = 4πl3
1e

2

3[E(e) − K(e)]
, (27a)

α̃mz = 4πl3
1e

2(1 − e2)

3[E(e) − (1 − e2)K(e)]
, (27b)

α̃ey = −4πl3
1(1 − e2)

3E(e)
, (27c)

where e =
√

1 − (l2/l1)2 (assuming l1 > l2) is the eccentricity
of the ellipse, and K(e) and E(e) are the complete elliptic
integrals of the first and second kind, respectively. If e = 0
these expressions reduce to the static polarizabilities of circular
irises [117].

If instead of having a dipole in free space, the dipole is
placed just above an infinite ground plane, the dipole radiates
twice as much energy, and so the interaction constant is
Im{G(r0,r0)} = k3/3π . If the dipole is a complementary
metamaterial element embedded in a waveguide wall, then
it will radiate both into the upper half space and into the
waveguide, and so the radiation reaction correction would need
to take into account both scattered fields. Considering that this
correction must account for half of the radiation in free space,
as in Eq. (1), and half of the radiation inside the waveguide, as
derived in Appendix, the corrected polarizability has the form

αm = α̃m

1 + iα̃m(k3/3π + k/ab)
, (28)
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where a and b correspond to the rectangular waveguide
dimensions. Equation (28) has significant implications on any
polarizability extraction method that deals with waveguide
integrated metamaterial elements. For example, if the static
polarizability of an element is calculated using Bethe theory
(as discussed in Sec. V), then the radiation reaction correction
will be different depending on whether that element is placed
in a 2D waveguide or a cavity, and so the proper interaction
constant will need to be applied in each environment.

Using these static expressions for the dynamic polariz-
ability will violate conservation of energy since it lacks
the radiation damping term of dynamic polarizability. These
expressions may be corrected by the radiation term, as
described in Eq. (28), assuming the real part given in Eq. (27) in
order to map from intrinsic to effective polarizability. Figure 3
shows the polarizability of simple circular and elliptical irises
computed using the two methods described in this paper as well
as the theoretical methods, denoted by Bethe theory and given
by Eq. (27) in conjunction with Eq. (28). Equivalence principle
plots correspond to the polarizability extracted from Eq. (8)
and coupled-mode theory plots correspond to the polarizability
extracted from Eq. (26).

As shown, excellent agreement between the analytical ex-
pressions and the numerical extractions is obtained, verifying
the proposed methods. Since the circular iris considered here
does not possess a resonance, it is expected that the effective
polarizabilities extracted numerically are well approximated
by the theoretical expressions. Next, we examine the case of
an elliptical iris, as shown in Fig. 3(b). The effective polariz-
abilities computed using the two numerical extraction methods
of the previous section exhibit excellent agreement. However,
as the frequency increases, the numerical extraction methods
differ from the analytical expression from Bethe theory. This
is expected since the elliptical iris supports a resonance over
the frequency band of interest, which is not captured in the
analytical expressions derived for the static field. This case
further highlights the need for a precise numerical method to
compute the polarizability of a metamaterial element.

It is worth noting that an elliptical iris etched in a rectangular
waveguide is well known in the antenna engineering commu-
nity as the unit cell of a slotted waveguide antenna (SWA).
SWAs are particularly attractive due to their advantages in
terms of design simplicity, weight, volume, power handling,
directivity, and efficiency [81,83,87,88,118]. SWAs rely on
the gradual leakage of the guided mode through the elliptical
slots. The metasurfaces considered throughout this paper also
share this feature, since they also leak energy from the guided
wave through the metamaterial elements. In other words, the
methodology developed in this paper can also be applied to
model and design leaky wave antennas, without any limitations
on the radiation elements, in contrast to conventional LWA
designs methodologies [93,94].

While the circular and the elliptical irises may be analyzed
using analytical expressions for the polarizabilities derived in
the static limit, such closed-form expressions are not available
for most metamaterial designs. For example, an element of po-
tential interest in the design of metasurface antennas is the iris-
fed patch, shown in Fig. 4(a) [56]. The inclusion of the metallic
patch above the iris enhances the resonant response of the
element, as exemplified by the narrower and stronger resonant

FIG. 3. Effective polarizability of small apertures. (a) Circular
iris. Dimensions are R = 2 mm. (b) Elliptical iris. Dimensions are
l1 = 5 mm and l2 = 0.5 mm.

response. Another common metamaterial element is the com-
plementary electric LC resonator (cELC), shown in Fig. 4(b),
commonly used in metasurface antenna designs [61]. The res-
onant response of the cELC is highly susceptible to variations
in its geometry [61,103,119]. For both elements, we observe
excellent agreement between the two numerical methods: the
equivalence principle based on Eq. (8), and the coupled-mode
theory, based on Eq. (26), as shown in Figs. 3 and 4.

The geometry of metamaterial elements can be quite
complicated, such that the numerical integrals required in
Eq. (8) are likely to yield inaccuracies. For this reason,
the extraction based on computing the waveguide scattering
parameters is more reliable and easier to implement. Moreover,
the coupled-mode theory method can also be used in measure-
ments on fabricated samples. It is worth noting that in all of the
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FIG. 4. Effective polarizability of small apertures. (a) Iris-fed
patch. For this example, The iris dimensions are same as in Fig. 3(b),
and the square patch size is lp = 5 mm. (b) cELC resonator. Its
dimensions are l1 = 5 mm and l2 = 5 mm, and its width is w =
1 mm.

results presented in Figs. 3 and 4 the electric polarizability is
much smaller than the magnetic polarizability—in fact, three
orders of magnitude smaller. This phenomenon is expected
considering that the geometry under study corresponds to a
small opening in a metallic wall.

VI. POLARIZABILITY EXTRACTION IN A PARALLEL
PLATE WAVEGUIDE

In this section, we consider the case of a parallel plate
waveguide (2D waveguide) and examine a metamaterial
element that is etched on the top wall. While the polarizability
extraction method based on the surface equivalence principle

holds for the 2D waveguide-fed element, the nature of the
coupled-mode theory changes substantially from the formula-
tion in Sec. IV. We modify this last method to be applicable to
planar waveguide systems. As previously described in Sec. IV,
a metamaterial element scattering into a waveguide can be
described in terms of a sum of waveguide modes. Because the
element is placed in the upper surface of the waveguide, the
boundary condition dictates the tangential electric field and
the normal magnetic field to be zero and the element can only
couple to the transverse magnetic (TM) modes. Since the natu-
ral symmetry of the system is cylindrical, mode decomposition
is simpler if we use cylindrical coordinates (r,θ ).

Setting the origin of the coordinate system to the center of
the metamaterial element, the z components of the scattered
electric field—for the TM modes characterized by the (m,n)
indices—are given by

Esc
z,c = βm

k
H (2)

n (βmr) cos(nθ ), (29a)

Esc
z,s = βm

k
H (2)

n (βmr) sin(nθ ), (29b)

where the subscripts “c” and “s” refer to modes that have an-
gular dependence cos(nθ ) and sin(nθ ), respectively. The prop-
agation constant is given by βm =

√
k2 − (mπ/h)2, where

h is the height of the waveguide. Invoking the superposition
principle, the total solution for the z component of the scattered
electric field can be expressed as

Ez =
∑

n

∑
m

As
mnE

mn
z,s + Ac

mnE
mn
z,c . (30)

When h < π/k, only the m = 0 mode is propagating, and
in this case the electric field at all points where r � h/π

is dominated by the m = 0 mode. Therefore we can reduce
Eq. (30) to

Ez =
∑

n

As
nE

0n
z,s + Ac

nE
0n
z,c. (31)

The m = 0 modes are given by

E0n
z,c = H (2)

n (kr) cos(nθ ), (32a)

E0n
z,s = H (2)

n (kr) sin(nθ ). (32b)

The amplitude coefficients An can be found from the
scattered electric field Ez using the orthogonality of the
{sin(θ ), cos(θ )} basis. By integrating over a circle of radius
r centered at the origin of the metamaterial element, as shown
in Fig. 5, it is possible to define the amplitude coefficients as

As
n = lim

r→∞
1

πH 2
n (kr)

∫ 2π

0
Ez(r,θ ) sin(nθ )dθ, (33a)

Ac
n = lim

r→∞
1

π (1 + δn0)H 2
n (kr)

∫ 2π

0
Ez(r,θ ) cos(nθ )dθ. (33b)

To better illustrate the utility of Eq. (33), we consider a
lossless parallel plate waveguide, fed by a cylindrical source
oriented along the z direction, as shown in Fig. 5. The source
is placed far enough from the metamaterial element to avoid
evanescent coupling. The metamaterial element is a cELC,
with the same geometrical parameters as the one used in
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L

Dipole Source

h
x

y
z

FIG. 5. Planar waveguide with a CELC etched at the center.
The traveling wave is excited by an electric dipole oriented along
the z direction. The waveguide dimensions are L = 100 mm, h =
1.27 mm. Dipole source location 0.45L.

the previous section. Since the full-wave simulation domain
represents the total field instead of the scattered field, this
structure is simulated with and without the cELC, and the
difference of the two simulation results are taken to obtain
the scattered field due to the metamaterial element, such that
Esc

z = Etot
z − E0

z at the plane z = h/2. Once the scattered field
is computed, the integration outlined in Eq. (33) is performed
to find the amplitude coefficients. The integration radius is
selected electrically large enough so that the evanescent modes
have decayed—it is also ensured that the integration curve does
not contain the cylindrical source.

Figure 6 shows the magnitude of the amplitude coefficients
for the scattered fields computed for the metamaterial element
shown in Fig. 5. To better illustrate the physics behind these
coefficients, we apply Poynting’s theorem Eq. (15) which
directly links the amplitude coefficients to the dominant dipole
moments of the metamaterial element. In contrast to the
rectangular waveguide (1D waveguide) examined in Sec. IV,
the amplitude coefficients are not related to the scattering
parameters, but rather to the scattered fields, by means of
Eq. (33). Moreover, while the location of the metamaterial
element in the rectangular waveguide limits the calculation
of a single component of the magnetic polarizability, such
limitation disappears in the case of the planar waveguide.

0 2 4 6 8 10
10 -2

10 0

10 2

10 4

FIG. 6. Amplitude coefficients of the scattered field Ez. The
scattered fields from the metamaterial element are added to the
incident field produced by an electric current source.
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FIG. 7. Effective magnetic polarizabilities calculated for the ELC
embedded in the planar waveguide. The metamaterial element size
is enlarged in the figure to clarify its orientation with respect to the
incident field.

The cylindrical wave propagating through the waveguide
may excite the two tangential components of the magnetic
polarizability, which leads to a more complete characterization
of the polarizability tensor. The scattered fields generated by
the metamaterial element can be represented as the sum of the
moments of the surface current J n

m multiplied by the different
eigenmodes of the scattered fields shown in Eq. (32). More
explicitly, this relationship is given by

Ez = mxZ0k
2

4h
E01

z,s + myZ0k
2

4h
E01

z,c + −ipzk
2

4hε0
E00

z,c. (34)

A direct mapping between Eqs. (34) and (33) demonstrates that
the first three amplitude coefficients, {Ac

0,A
c
1,A

s
2} are directly

related to the three dominant dipole moments as [109]

mx = As
1

4h

Z0k2
, my = Ac

1
4h

Z0k2
, pz = Ac

0
i4hε0

k2
. (35)

As shown in Fig. 6, the predominant amplitude mode is As
1,

which is directly associated with mx , while the amplitude
of the modes Ac

0 and Ac
1, associated with pz and my ,

are significantly smaller—by two orders of magnitude. The
effective polarizabilities given the incident wave due to the
line source can be directly obtained from their corresponding
dipole moments given in Eq. (35) as

αp
zz = pz/E

0
z , αm

xy = my/H
0
x , αm

xx = mx/H
0
x . (36)

For clarification, the double indices on the polarizabilities
represent the entry in the polarizability tensor; for example, αxy

represents the component of the polarizability that generates
a dipole moment oriented in y, due to the x component of
the incident field. In order to find all three components of
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FIG. 8. Real part of the scattered field Ez(V/m) at different frequencies. Top row: Full-wave simulation in CST Microwave Studio. Middle
row: Analytic expression from Eq. (31) up to the dipolar term only. The difference is shown in the bottom row.

this tensor, it is necessary to rotate the metamaterial element
by π/2, and perform the same extraction technique. The
electric polarizability and two of the components of the
magnetic polarizability tensor are thereby obtained and shown
in Fig. 7(a). As shown, excellent agreement for the magnetic
polarizabilities is obtained between the two numerical po-
larizability extraction methods. For this particular example,
note that the polarizability αm

yy has a resonant response out
of the X band, but its geometry can be modified such that
it has both resonances in the same band [119]. In the case
of the electric polarizability [Fig. 7(b)], the numerical values
obtained are significantly smaller, which makes it susceptible
to numerical inaccuracies when the integration in Eq. (33) is
performed.

It is important to highlight in this example that the term As
3

is associated with the quadrupole moment. This term has been
traditionally neglected in most metamaterial design strategies.
The example at hand provides a useful framework to examine
the contribution of the quadrupole term and the error intro-
duced by neglecting it. To study the impact of the quadrupole
term, we compared the simulated scattered field (shown in
Fig. 8, first row) with its theoretical expression Eq. (31) up
to only the dipolar contribution, as shown in the second row
of Fig. 8. We observe excellent agreement between the two
rows, confirming the assumption that the main contribution of
the scattered field is dipolar. The physical implications of this
result can be understood by calculating the difference between
the scattered fields from a full-wave simulation and from the
analytical expression in Eq. (31). As shown in the third row
of Fig. 8, the error due to assuming the dominant dipolar term
is several orders of magnitude smaller than the amplitude of
the scattered field, and the largest discrepancy is observed
within the close vicinity of the metamaterial element. This

result, in conjunction with the amplitude coefficients shown in
Fig. 6, also demonstrates that most of the radiation is associated
with the dipolar term and higher-order modes can be ignored.
However, if the elements are placed at distances where these
higher-order modes have not decayed, these modes can alter
the coupling between the two meta atoms and change the total
scattered fields inside the waveguide.

Another interesting point to highlight is that while the
geometric characteristics of the metamaterial element used
in Figs. 4(c) and 5 are the same, its resonant response as mani-
fested by the effective polarizability changes depending on the
host waveguide, as can be observed by comparing Figs. 3(d)
and 7(a). Therefore, the overall electromagnetic response of
a metamaterial element embedded in a waveguide not only
depends on its intrinsic geometrical characteristics, but it also
depends on the waveguide geometry where it is inserted.

VII. CONCLUSIONS

In this paper we have presented two comprehensive meth-
ods for extracting the effective polarizabilities of metamaterial
elements patterned in 1D rectangular and 2D parallel plate
waveguides. The first method consists of direct extraction
of the tangential components of the scattered fields to find
the effective dipole moment and therefore its polarizability,
while the second method consists in using the S parameters—
along with the knowledge of the normalized fields inside the
waveguide—to find the effective polarizabilities. Excellent
agreement between the two methods was demonstrated and
its applicability in different types of waveguide structures is
discussed. We have also shown that the dipole modes pre-
dominate the scattering from metamaterial elements, since all
higher-order multipole fields decay more rapidly with distance.
The concepts presented in this paper pave the way for a simple
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and efficient approach to the analysis of metasurface antennas.
The combination of polarizability extraction techniques with
the dipole model provides an inherently multiscale modeling
tool that interprets metasurfaces as array of dipoles with
given polarizabilities, a powerful framework to design and
characterize metasurface structures without any limitation on
the element geometry or periodicity assumptions common to
other homogenization techniques.
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APPENDIX: RADIATION REACTION INSIDE A
RECTANGULAR WAVEGUIDE

As described in Sec. II, the radiation reaction in a rect-
angular waveguide can be found by taking the real part of
the surface integral of the Poynting vector S. Let us consider
again a thought experiment where two collocated electric and
magnetic dipoles p and m are placed at position r0, in an
environment that is described by the Green’s function G(r; r0).
The surface integral of the Poynting vector is given by

∫
S · da = iω(p∗ · E − μ0m∗ · H), (A1)

where E and H correspond to the total fields inside the waveg-
uide. Evaluating such fields at the dipole’s location we get

∫
S · da = iω(p∗ · E − μ0m∗ · H)

= iω[p∗ · Gee(r0; r0) · p − μ0m∗ · Gmm(r0; r0) · m].

(A2)

Now, considering the real part of Eq. (A2) it is possible to
obtain a direct relationship between the total power radiated
and the imaginary components of the Green’s functions as

Re

{ ∫
S · da} = ω|p|2Im{Gee(r0; r0)

}

−μ0ω|m|2Im{Gmm(r0; r0)}. (A3)

On the other hand, from the modal expansion of the fields,
Eqs. (13) and (14), the same integral shown in Eq. (A1)
results in ∫

S · da = 1

Zn

(|A+
n |2 + |A−

n |2), (A4)

where Zn, A+
n , and A−

n have been previously defined in Sec. IV.
By using the equations for the amplitude coefficients shown in
Eq. (22) into Eq. (A4) we obtain

(|A+
n |2 + |A−

n |2) = ω2Z2
n

4
(|E+

n |2|p|2 − μ0|H+
n |2|m|2). (A5)

In addition, it was previously demonstrated that for the
fundamental mode, the fields E+

n and H+
n are normalized by

means of Eq. (24). Replacing the specific expressions for the
normalized fields and equating Eqs. (A2) and (A4) we obtain
a direct relationship between the amplitude of the normalized
modes and the imaginary Green’s functions, which correspond
to our ultimate goal in this derivation. More explicitly,

ω|p|2Im{Gee(r0; r0)} − μ0ω|m|2Im{Gmm(r0; r0)}

= ω2Z2
n

4
(|E+

n |2|p|2 − μ0|H+
n |2|m|2). (A6)

It can be observed that, in order to satisfy Eq. (A6), the terms
multiplying the magnitude of the dipole moments |p|2 and |m|2
must be equal. After some algebraic derivation it is possible to
conclude that

Im{Gee(r0; r0)} = k2

βab
Im{Gmm(r0; r0)} = k

ab
. (A7)
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