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Thermoelectric response of a periodic composite medium in the presence
of a magnetic field: Angular anisotropy
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A calculational method based on Fourier expansion is developed and applied to the study of the strong-field
galvanomagnetic thermoelectric properties of a free-electron metal, inside of which is embedded a simple cubic
array of identical spheres or cylinders, which have different thermoelectric and conductivity tensors. When the
magnetic field is strong enough, the effective galvanomagnetic thermoelectric properties of such composites
exhibit very strong variations with the direction of the applied magnetic field with respect to the symmetry
axes of the composite microstructure. This is qualitatively similar to the predicted magnetoinduced angular
magnetoresistance anisotropy [D. J. Bergman and Y. M. Strelniker, Phys. Rev. B 49, 16256 (1994)] which
was verified experimentally [M. Tornow et al., Phys. Rev. Lett. 77, 147 (1996)]. This is a purely classical
effect, even though it is qualitatively similar to what is observed in some metallic crystals which have a
noncompact Fermi surface. The current results can be useful for studying the possibility of increasing the
thermoelectric figure of merit in periodic composites by application of a strong magnetic field. As follows from
our very preliminary results, the figure of merit can be increased by application of a strong magnetic field to the
composite.
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I. INTRODUCTION

The effects of an externally applied magnetic field B on
the thermoelectric response of a uniform electronic conductor
were first studied in Ref. [1]. Later studies, starting in 1955,
were mostly aimed at gaining a better understanding of the
microscopic transport processes in metals and semiconductors
[2–6]. It was also found that in single crystals of bismuth the
Nernst-Ettingshausen magnetothermoelectric effect exhibits
a strong dependence on the direction of B with respect to
the crystal axes [2,7]. An important driving factor in many
subsequent studies was the quest for ways to enhance the so-
called thermoelectric quality factor or thermoelectric figure of
merit [8–10] ZT , which is a dimensionless quantity [11–13]:

ZT ≡ σS2T

κ
= �

1 − �
, � ≡ T χ2

σλE

. (1)

Here T is the absolute temperature, χ = σS, with S being
the Seebeck coefficient and σ being the electrical conductivity
at the vanishing temperature gradient, κ = λE − T S2σ is the
usual thermal conductivity at zero electric current, and λE is
the thermal conductivity at vanishing electric field. Such an
enhancement would lead to more efficient thermoelectric heat
pumps and electric power generators and could revolutionize
those practical applications [14]. Efficient electric power
generation based upon a thermoelectric generator would
enable waste heat to be utilized rather than discarded [15,16].
This would not only produce more electric power from the
same available heat but would also lessen the heat pollution
resulting from discarded heat.

Studies of thermoelectricity in a composite medium were
often also motivated by the quest for an enhanced value of
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ZT and �. However, one of the current authors proved that
this is impossible if all the constituents have the usual kind
of Seebeck coupling between the local electric field and the
local temperature gradient [11,17]. The effects of a magnetic
field on thermoelectric response were considered only for a
superlattice and a heterojunction of GaAs and GaAlAs, which
are not particularly good thermoelectric materials [18]. Some
exact relations are obeyed by the macroscopic moduli of a
thermoelectric composite in the absence of any magnetic field.
Those were first published in Refs. [19–21]. The same relations
were also obtained in Ref. [11], where they were used to prove
the above-mentioned rigorous result that � cannot be enhanced
in a composite medium.

Nevertheless, a proposal for a practical improvement of
the thermoelectric properties of polycrystalline Bi by the
application of a B field was made in 2003 [14]. More recently,
it has been shown experimentally that � of polycrystalline
(and therefore isotropic) bismuth can be enhanced by the
application of a B field or by the embedding of nanometer-sized
inclusions [22]. In view of the theorem proved in Refs. [11,17],
the enhancement due to the nanostructure in the absence of a
B field can only be the result of changes in the microscopic
transport properties.

When a magnetic field H is applied to a composite medium
(Fig. 1 shows the slab media depicted separately in Fig. 2), the
scalar effective macroscopic moduli σe, Se, and κe in Eq. (1)
become tensors, and the expression for the figure of merit [for
each branch (l) or (r); see Fig. 1 and Refs. [23,24]] takes the
form

ZT = S
(e)2
XX T

ρ
(e)
XXκ

(e)
XX

. (2)

This is the so-called longitudinal operating mode, and we have
used here the uppercase subscripts X, Y , and Z in order to
distinguish the coordinate system X,Y,Z, connected to the
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FIG. 1. Schematic drawing of the thermomagnetic device when
two device arms (denoted l and r) are clamped between heat reservoirs
at temperatures T0 and TL. The longitudinal operating mode is defined
(see Refs. [23,24]) when both heat and electric current I flow along
the X axis. The magnetic field B is aligned with the Z axis. When the
external circuit element is a load resistor R, then this device represents
a generator (in this case TL < T0). If the external circuit element is
a battery, then the device is made to operate as a refrigerator (when
TL > T0). (a) Situation when the slabs are perpendicular to the current
I and X axis of the thermoelectric device. (b) Situation when the
slabs are parallel to the current I and X axis of the thermoelectric
device. The coordinate system indicated by the uppercase letters
X,Y,Z is connected to thermoelectric devices and is directed as in
Refs. [23,24], while everywhere else (see Figs. 2, 4) the coordinate
system indicated by lower case letters x,y,z is connected to the
composite microstructure (in accordance with Fig. 2 for slabs and
Fig. 4 for a periodical array of spherical and/or cylindrical inclusions).

thermoelectric device (shown in Fig. 1 and in Refs. [23,24]),
from the coordinate system connected to the composite
microstructure shown in Fig. 4 below and characterized by
the lowercase coordinate axes x,y,z.

As follows from Eq. (2), ZT depends in particular on the
value of the magnetoresistivity ρ

(e)
XX(H ). The current authors

studied the magnetoresistivity of a conducting composite
where the microstructure is spatially periodic. It was found
that, when the Hall to transverse Ohmic resistivity ratio, de-
noted by H , is greater than 1 in at least one of the constituents,
then all the elements of the macroscopic resistivity tensor
become strongly dependent on the precise direction of B with
respect to the symmetry axes [25–29]. Those predictions were
later verified, quantitatively, in experiments [30,31].

FIG. 2. Parallel-slab microstructure where the slabs are perpen-
dicular to the z axis and a uniform magnetic field B is applied parallel
to the slabs along the y axis.

It seems that no one has studied the behavior of a composite
structure where at least one of the constituents has a strong
thermoelectric response and another constituent has a strong
Hall effect, i.e., |H | > 1.

The remainder of this paper is organized as follows. In
Sec. II we write down the system of coupled equations for the
local electric potential φ(r) and the local temperature T (r),
which follow from the conservation laws of the entropic and
electric currents. We write the simple B-dependent expressions
for the local 6 × 6 “conductivity” tensor and the general
expressions for the elements of the 6 × 6 macroscopic or
bulk effective conductivity tensor. Using these expressions,
in Sec. III we evaluate analytically the effective moduli of
the 6 × 6 “resistivity” tensor for the microstructure of parallel
slabs in the presence of an externally applied uniform magnetic
field B which is parallel to those slabs. These predictions are
verified numerically using a numerical approach developed by
us and described in detail in Sec. IV. The general solution in
this approach is based on a Fourier expansion in the case of
composites with periodic microstructure. Numerical results for
the case of a periodic array of spheres or cylinders are presented
in Sec. V. These results include the magnetic-field-induced
angular anisotropy of the 6 × 6 conductivity and resistivity
effective moduli (i.e., their dependences on the direction of
the applied magnetic field B). In Sec. VI we present some
preliminary calculations on the effect of an applied magnetic
field on the thermoelectric figure of merit in the case of
parallel slabs and in the case of composites with a periodic
microstructure. In the case of a square array of parallel circular-
cylinder inclusions made of (Bi2Te3)0.2(Sb2Te3)0.8 situated in
a copper host, we find that ZT increases dramatically with
increasing magnetic field (see Fig. 11 below). Section VII
provides a summary and discussion of the main results. For
convenience, some simple evaluations are presented in the
Appendix.

II. GENERAL EQUATIONS

The basic galvanothermomagnetic phenomena can be
described by the following concise 6 × 6 matrix relation
between the local six-component current density �J and the
local six-component field ∇	:

�J (r) = Ŝ(r) · ∇	(r) or ∇	(r) = R̂(r) · �J (r), (3)

where

�J ≡
( −J

−JS

)
, 	 ≡

(
φ

T

)
, (4)

Ŝ ≡
(

σ̂ χ̂

ζ̂ λ̂

)
, R̂ ≡ Ŝ−1 =

(
ρ̂ α̂

β̂ γ̂

)
. (5)

Here J(r) and JS(r) are the electric and entropic current
densities, respectively, while ∇φ and ∇T are the electric and
temperature fields, respectively. The 6 × 6 conductivity Ŝ and
6 × 6 resistivity R̂ matrices have been partitioned into four
blocks, each of which contains, in general, nine entries. We
will call ρ̂, α̂, β̂, and γ̂ the 6 × 6 resistivity tensor components,
while σ̂ , χ̂ , ζ̂ , and λ̂ will be called the 6 × 6 conductivity tensor
components.
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Note again that in Eq. (5) χ̂ = σ̂ Ŝ, where S is the Seebeck
coefficient. It is worth noting also that the equation for JS

in Eqs. (3)–(5) differs from the one usually used by other
authors, −JS = ζ̂∇φ + (χ̂2σ̂−1 + κ̂/T )∇T . That is because
we have linearized it by treating λ̂ ≡ χ̂2σ̂−1 + κ̂/T as a
constant [11,32,33] (here κ̂ is the thermal conductivity).

In order to understand the physical meaning of the transport
coefficients which appear in Ŝ (or R̂) and compare our results
with other publications, we need to rewrite Eqs. (3)–(5) in the
form of Refs. [16,23,34]:( −JS

−∇φ

)
=

(
κ̂/T −�̂/T

Ŝ σ̂−1

)(∇T

J

)
(6)

=
(

λ̂ − ζ̂ σ̂−1χ̂ −ζ̂ σ̂−1

σ̂−1χ̂ σ̂−1

)(∇T

J

)
(7)

=
(

γ̂ −1 γ̂ −1β̂

−α̂γ̂ −1 ρ̂ − α̂γ̂ −1β̂

)(∇T

J

)
, (8)

where κ̂ = T (λ̂ − ζ̂ σ̂−1χ̂ ) = T γ̂ −1 is the thermal conduc-
tivity tensor at zero electric current, λ̂ = λ̂E/T , where
λ̂E is the thermal conductivity tensor at zero elec-
tric field, �̂ = T ζ̂ σ̂−1 = −T γ̂ −1β̂ is the Peltier tensor,
Ŝ = σ̂−1χ̂ = −α̂γ̂ −1 is the Seebeck tensor, and σ̂−1 =
ρ̂ − α̂γ̂ −1β̂ is the resistivity tensor at zero temperature
gradient.

From the conservation law of the six-component current

∇ · �J = ∇ · Ŝ(r) · ∇	 = 0, (9)

the following coupled differential equations for the local
electric potential φ(r) and the local temperature T (r) are
obtained:

∇ · σ̂ (r) · ∇φ + ∇ · χ̂ (r) · ∇T = 0, (10)

∇ · ζ̂ (r) · ∇φ + ∇ · λ̂(r) · ∇T = 0. (11)

Here σ̂ (r), χ̂ (r), ζ̂ (r), and λ̂(r) are second-rank tensors
that have different values in the different constituents.

A. Macroscopic or bulk effective moduli

The main aim of our paper is to find a macroscopic relation
between the volume-averaged fields and currents. This defines
the macroscopic or bulk effective moduli σ̂e, χ̂e, ζ̂e, and λ̂e:

〈J〉 ≡ 〈σ̂ (r) · ∇φ〉 + 〈χ̂ (r) · ∇T 〉
= σ̂e · 〈∇φ〉 + χ̂e · 〈∇T 〉, (12)

〈JS〉 ≡ 〈ζ̂ (r) · ∇φ〉 + 〈λ̂(r) · ∇T 〉
= ζ̂e · 〈∇φ〉 + λ̂e · 〈∇T 〉, (13)

where 〈· · · 〉 denotes volume averaging.

B. Local tensors

For simplicity we will assume that α̂, β̂, and γ̂ in Eq. (5)
are diagonal scalar matrices: α̂ ≡ αÎ , β̂ ≡ βÎ , and γ̂ ≡ γ Î ,
where Î is the 3 × 3 unit matrix. By contrast, in the resistivity
matrix ρ̂ all nine components can be nonzero in general. For
arbitrary direction of the magnetic induction field B and when
β̂ = α̂, Eq. (5) takes the form

R̂ =
(

ρ̂ α̂

α̂ γ̂

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ ρHz −ρHy α 0 0

−ρHz ρ ρHx 0 α 0

ρHy −ρHx ρ 0 0 α

α 0 0 γ 0 0

0 α 0 0 γ 0

0 0 α 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

The inverse of this matrix, i.e., the 6 × 6 conductivity tensor,
then takes the form

Ŝ = R̂−1 =
(

ρ̂ α̂

α̂ γ̂

)−1

≡
(

σ̂ χ̂

ζ̂ λ̂

)
, (15)

where the four 3 × 3 matrix blocks of the 6 × 6 conductivity
tensor have the form

σ̂ = 1

ξ [ξ 2 + γ 2ρ2H 2]

⎛
⎜⎝

−γ
[
ξ 2 + γ 2ρ2H 2

x

] −γ 2ρ[ξHz + γρHxHy] γ 2ρ[ξHy − γρHxHz]

γ 2ρ[ξHz − γρHxHy] −γ
[
ξ 2 + γ 2ρ2H 2

y

] −γ 2ρ[ξHx + γρHyHz]

−γ 2ρ[ξHy + γρHxHz] γ 2ρ[ξHx − γρHyHz] −γ
[
ξ 2 + γ 2ρ2H 2

z

]
⎞
⎟⎠, (16)

χ̂ = ζ̂ = −α

γ
σ̂ , λ̂ = α2

γ 2
σ̂ + 1

γ
Î , (17)

where ξ ≡ α2 − γρ < 0 (since R̂ is a positive-definite matrix)
and Î is the unit matrix.

In the local 6 × 6 resistivity and conductivity tensors in
Eq. (15) we have assumed that β̂ = α̂ and ζ̂ = χ̂ . However,
the effective values of these tensors are not necessarily equal
in the presence of the magnetic field B. In the presence of
such a field the macroscopic Seebeck matrices will usually
acquire some off-diagonal elements that are odd functions
of the constituent Hall resistivities and therefore change sign

between the upper right block and the lower left block of the
6 × 6 matrix of macroscopic transport coefficients, as we shall
see below.

III. PARALLEL SLABS: THEORETICAL PREDICTIONS

In a simple two-constituent flat slabs microstructure (see
Fig. 2) it is possible to calculate the local electric field ∇φ

and temperature gradient ∇T , as well as the macroscopic
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response, in closed form. This is achieved using elementary
but somewhat complicated linear algebra.

We assumed, for simplicity, that all the constituents exhibit
isotropic response, that the slabs are all perpendicular to
the z-axis, and that a uniform magnetic field B is applied

along the y axis (see Fig. 2). Then in Eq. (14) only two
off-diagonal terms (ρxz = −ρHy and ρzx = ρHy which we
define below as −ρH and ρH , respectively) are nonzero.
Direct volume averaging in Eqs. (12)-(13) leads then after
straightforward algebra to the following analytical expressions
for the elements of the various 3 × 3 blocks in that 6 × 6
matrix:

ρ(e)
xx = ρ(e)

yy = D−1

〈
ρ

ργ − α2

〉
, (18)

ρ(e)
zz = 〈ρ〉 +

〈
γρ2

H

ργ − α2

〉
+ D−1

[
2

〈
γρH

ργ − α2

〉〈
αρH

ργ − α2

〉〈
α

ργ − α2

〉
−

〈
αρH

ργ − α2

〉2〈
γ

ργ − α2

〉
−

〈
γρH

ργ − α2

〉2〈
ρ

ργ − α2

〉]
,

(19)

ρ(e)
zx = −ρ(e)

xz = D−1

[〈
αρH

ργ − α2

〉〈
α

ργ − α2

〉
−

〈
γρH

ργ − α2

〉〈
ρ

ργ − α2

〉]
, (20)

γ (e)
xx = γ (e)

yy = D−1

〈
γ

ργ − α2

〉
, (21)

γ (e)
zz = 〈γ 〉 (22)

α(e)
xx = α(e)

yy = β(e)
xx = β(e)

yy = D−1

〈
α

ργ − α2

〉
, α(e)

zz = β(e)
zz = 〈α〉, (23)

α(e)
zx = −β(e)

xz = D−1

[〈
αρH

ργ − α2

〉〈
γ

ργ − α2

〉
−

〈
γρH

ργ − α2

〉〈
α

ργ − α2

〉]
, (24)

D ≡
〈

ρ

ργ − α2

〉〈
γ

ργ − α2

〉
−

〈
α

ργ − α2

〉2

, (25)

where 〈. . .〉 denotes, as previously, the volume average. All
the other matrix elements vanish. Note that when we set
α1 = α2 = 0 these results reduce to what we would expect
to get when there is no interaction between the electric and
thermal transport processes. In particular, ρ̂(e) depends only
on the constituent electric resistivities while γ̂ (e) is a scalar
and depends only on the constituent thermal resistivities.

We have applied the numerical scheme described in Sec. IV
to the same parallel slabs microstructure. The two sets of
results are in excellent agreement, as is evident from Fig. 3,
where all 16 elements of the macroscopic 6 × 6 resistivity
tensor are plotted vs. the dimensionless magnetic field H2 of
constituent 2.

Some numerical results based on the closed form expres-
sions listed above are plotted in Fig. 3. In particular, the
longitudinal thermoelectric figure of merit ZT (that is when
the macroscopic electric and thermal currents flow along
parallel directions) which arises from these results is plotted
in Figs. 3(q) and 3(r). They are certainly not good for any
practical application, since in one case ZT is independent of
H and in the other case it decreases with increasing H .

IV. GENERAL SOLUTION AND NUMERICAL SCHEME

As in Sec. III, we consider a two-constituent composite
but with a general microstructure. It is convenient to represent
the coordinate dependence of the various local moduli tensors
with the help of the characteristic step function θ1(r), e.g.,

σ̂ (r) = σ̂1θ1(r) + σ̂2θ2(r) = σ̂2 − δσ̂ θ1(r), (26)

where θi(r) = 1 if r is in constituent i but vanishes elsewhere
and where δσ̂ ≡ σ̂2 − σ̂1. The local thermal conductivities
λ̂i(r) and Seebeck coefficients χ̂i(r), ζ̂i(r) can be represented
in a similar fashion with δχ̂ ≡ χ̂2 − χ̂1, δζ̂ ≡ ζ̂2 − ζ̂1, δλ̂ ≡
λ̂2 − λ̂1. Equations (10) and (11) can then be rewritten as

∇ · σ̂2 · ∇φ = −∇ · χ̂2 · ∇T + ∇ · δσ̂ θ1(r) · ∇φ

+∇ · δχ̂θ1 · ∇T , (27)

∇ · λ̂2 · ∇T = −∇ · ζ̂2 · ∇φ + ∇ · δζ̂ θ1(r) · ∇φ

+∇ · δλ̂θ1 · ∇T . (28)

The Green’s functions in Eqs. (27) and (28) are defined by

∇ · σ̂2 · ∇Gσ (r − r′) = −δ3(r − r′), (29)

∇ · λ̂2 · ∇Gλ(r − r′) = −δ3(r − r′), (30)

with Gσ = 0 and Gλ = 0 at the system boundaries. Using
these Green’s functions, Eqs. (27) and (28) can be transformed
into a pair of coupled integro-differential equations:

ψ ≡ φ − φ0 =
∫

dV ′θ ′
1∇′Gσ · δσ̂ · ∇′(ψ ′ + φ0)

+
∫

dV ′θ ′
1∇′Gσ · δχ̂ · ∇′(τ + T0)

−
∫

dV ′∇′Gσ · χ̂2 · ∇′(τ + T0), (31)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(p) (q) (r)

(m) (n) (o)

FIG. 3. (a)–(p) Macroscopic or bulk effective values of all 16
nonzero elements of the 6 × 6 resistivity tensor components of
a simple two-constituent flat-slab microstructure (see Fig. 2) vs
the dimensionless magnetic field H2 ≡ H . Green dashed lines
show the theoretical predictions (18)–(25) (see Sec. III). Solid red
lines show numerical calculations (using the numerical scheme
described in Secs. II–IV) of a periodic array of parallel slabs
with a total thickness of constituent 1 of h = 0.4a (a is the
total thickness of the composite). The following constituent pa-
rameters were used: ρ2 = 1, γ2 = 10, α2 = −2, ρ1 = 100, γ1 = 1,
α1 = −1, H1 = 0 (all in arbitrary units). The magnetic field B
is parallel to the y axis. (q) and (r) Figure of merit ZT vs H

of the same system of flat parallel slabs when the macroscopic
currents are perpendicular and parallel to the slabs, respectively.

τ ≡ T − T0 =
∫

dV ′θ ′
1∇′Gλ · δλ̂ · ∇′(τ + T0)

+
∫

dV ′θ ′
1∇′Gλ · δζ̂ · ∇′(ψ ′ + φ0)

−
∫

dV ′∇′Gλ · ζ̂2 · ∇′(ψ ′ + φ0), (32)

where the primes denote that the argument or variable is r′,
ψ ≡ φ − φ0, and τ ≡ T − T0 are the distorted parts of φ and
T and where we have performed integration by parts.

We now assume that T0(r) and φ0(r) are linear
functions of r. Therefore ∇T0 and ∇φ0 are con-
stants, and ∇ · α̂2 · ∇T0 = ∇ · β̂2 · ∇φ0 = ∇ · σ̂2 · ∇φ0 = ∇ ·
γ̂2 · ∇T0 = 0. Equations (31) and (32) then become

ψ =
∫

dV ′θ ′
1[∇′Gσ · δσ̂ · (∇′φ′

0 + ∇′ψ ′)

+∇′Gσ · δχ̂ · (∇′T ′
0 + ∇′τ ′)]

−
∫

dV ′∇′Gσ · χ̂2 · ∇′τ ′, (33)

τ =
∫

dV ′θ ′
1[∇′Gλ · δλ̂ · (∇′T ′

0 + ∇′τ ′)

+∇′Gλ · δζ̂ · (∇′φ′
0 + ∇′ψ ′)]

−
∫

dV ′∇′Gλ · ζ̂2 · ∇′ψ ′. (34)

These are two coupled integro-differential equations for ψ(r)
and τ (r).

A. Periodic composite: Fourier expansion

When the composite medium has a periodic microstructure,
great simplifications ensue due to the fact that θ1(r) is now a
periodic function [25,26,35]. From the fact that, away from
the external boundaries, Gσ and Gλ depend on r and r′ only
through their differences r − r′, we get that ψ(r) and τ (r) are
periodic and therefore can be expanded in Fourier series:

ψ(r) =
∑

g

ψge
ig·r, τ (r) =

∑
g

τge
ig·r, (35)

where the sums are over all the vectors g of the appropriate
reciprocal lattice. The Fourier expansion coefficient of an
arbitrary periodic function f (r) is given by

fg = 1

Va

∫
Va

dV e−ig·rf (r). (36)

The Fourier transforms of Gσ and Gλ [see Eqs. (29) and
(30)] which vanish at infinity have simple forms, namely,

∫
dV e−ik·(r−r′)Gσ (r,r′) = 1

k · σ̂2 · k
, (37)

∫
dV e−ik·(r−r′)Gλ(r,r′) = 1

k · λ̂2 · k
, (38)

which depend only on the symmetric parts of σ̂2 and λ̂2.
We now expand the periodic functions τ (r), ψ(r), and θ1(r)

in Fourier series, as in Eq. (35), and express Gσ (r,r′) and
Gλ(r,r′) as Fourier integrals. We then define

ag ≡ i|g|(eg · σ̂2 · eg)ψg, bg ≡ i|g|(eg · λ̂2 · eg)τg, (39)

where eg ≡ g/|g| is the unit vector along g. Equations (33) and
(34) now translate into the following set of linear algebraic
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equations for the modified Fourier coefficients ag and bg:

ag + (eg · χ̂2 · eg)

(eg · λ̂2 · eg)
bg = θg[(eg · δσ̂ · ∇φ0) + (eg · δχ̂ · ∇T0)] +

∑
g′

θg−g′

[
(eg · δσ̂ · eg′ )

(eg′ · σ̂2 · eg′ )
ag′ + (eg · δχ̂ · eg′ )

(eg′ · λ̂2 · eg′ )
bg′

]
, (40)

bg + (eg · ζ̂2 · eg)

(eg · σ̂2 · eg)
ag = θg[(eg · δλ̂ · ∇T0) + (eg · δζ̂ · ∇φ0)] +

∑
g′

θg−g′

[
(eg · δλ̂ · eg′ )

(eg′ · λ̂2 · eg′ )
bg′ + (eg · δζ̂ · eg′ )

(eg′ · σ̂2 · eg′ )
ag′

]
. (41)

These equations will be solved for nonzero g either by direct
numerical solution of a finite subset or by a variety of
series expansion procedures as described in Ref. [26]. The
coefficients ag=0 and bg=0 both vanish. However, the Fourier
coefficients ψg=0 and τg=0 are irrelevant when calculating the
fields ∇ψ and ∇T .

B. Macroscopic values of the 3 × 3 tensors σ̂e, χ̂e, ζ̂e, and λ̂e

It is convenient to solve Eqs. (40) and (41) first for the
case where ∇φ0 = eη and ∇T0 = 0 and then for the case
where ∇T0 = eη and ∇φ0 = 0. We will denote these solutions,
respectively, by ag(∇φ0), bg(∇φ0) and ag(∇T0), bg(∇T0).
From Eqs. (12) and (13) we then get

(σ̂2 − σ̂e − p1δσ̂ )ξη =
∑

g

θ−g
(eξ · δσ̂ · eg)

(eg · σ̂2 · eg)
ag(∇φ0)

+
∑

g

θ−g
(eξ · δχ̂ · eg)

(eg · λ̂2 · eg)
bg(∇φ0),

(42)

(χ̂2 − χ̂e − p1δχ̂ )ξη =
∑

g

θ−g
(eξ · δσ̂ · eg)

(eg · σ̂2 · eg)
ag(∇T0)

+
∑

g

θ−g
(eξ · δχ̂ · eg)

(eg · λ̂2 · eg)
bg(∇T0),

(43)

(ζ̂2 − ζ̂e − p1δζ̂ )ξη =
∑

g

θ−g
(eξ · δζ̂ · eg)

(eg · σ̂2 · eg)
ag(∇φ0)

+
∑

g

θ−g
(eξ · δλ̂ · eg)

(eg · λ̂2 · eg)
bg(∇φ0),

(44)

(λ̂2 − λ̂e − p1δλ̂)ξη =
∑

g

θ−g
(eξ · δζ̂ · eg)

(eg · σ̂2 · eg)
ag(∇T0)

+
∑

g

θ−g
(eξ · δλ̂ · eg)

(eg · λ̂2 · eg)
bg(∇T0).

(45)

Most of the coefficients in Eqs. (40)–(45) always remain
bounded. The exceptions are the Fourier components of the
characteristic function θ (r), namely, θg, which always decrease
to zero when |g| becomes much greater than 1/a, where a is
the typical length scale of the σ1 regions in a unit cell. For
this reason Eqs. (40) and (41) for such large g can always be
ignored in numerical calculations. A similar property holds for
Eqs. (42)–(45).

V. NUMERICAL RESULTS

We have studied numerically the magnetothermoelectric
response of a two-constituent composite with a periodic
microstructure. This has been done for a case of three-
dimensional periodicity [see Fig. 4(a)] and for the case of a
columnar microstructure with two-dimensional periodicity in
the perpendicular plane [see Fig. 4(b)]. In order to implement
this study we have used the numerical scheme discussed in
Sec. IV A. Using these computations, we have found that, like
the macroscopic magnetoresistivity tensor, the thermoelectric
response strongly depends on the direction of the magnetic
field B when |H | > 1.

We consider two microstructures: A simple cubic array of
spheres and a square array of circular cylinders. Figure 4 shows
these structures and also defines a fixed coordinate system
x,y,z and another coordinate system x ′,y,z′ that rotates with
the magnetic field B, which always lies along the z′ axis.
Figure 4 also defines the diagonal components ρ̃

(e)
⊥ , ρ

(e)
⊥ , ρ

(e)
‖ ,

α̃
(e)
⊥ , α

(e)
⊥ , α

(e)
‖ , etc., of the 6 × 6 macroscopic tensors R̂e and

Ŝe. In Figs. 5–8 we show polar plots of some of the diagonal
components of these macroscopic tensors. The constituent
parameters used in these calculations were (the index 2 denotes
the host medium, while the index 1 denotes the in-
clusions) ρ2 = 1.7 × 10−8 � m, γ2 = 0.76 mK2/W, α2 =

FIG. 4. Schematic drawing of the composite with periodic
arrangement of (a) spheres and (b) cylinders. x,y,z is the fixed
coordinate system, while x ′,y,z′ is the rotating (around the y

axis) coordinate system. The magnetic field B is directed along
z′ axes. The diagonal resistivity tensor components are defined as
follows: ρ

(e)
‖ ≡ ρ

(e)
z′z′ , ρ

(e)
⊥ ≡ ρ(e)

yy = ρ
(e)
y′y′ , ρ̃

(e)
⊥ = ρ̃

(e)
x′x′ . The diagonal

components of χ (e), ζ (e), and γ (e) are defined similarly.
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FIG. 5. Polar plots of the macroscopic or bulk effective values of
the diagonal 6 × 6 resistivity tensor components of a periodic array
of cylinders [see Fig. 4(a)] with radii R = 0.4a (where a is the period
of the composite) in the rotating coordinate system. The 6 × 6 local
tensor was taken in the form of Eqs. (16) and (17) with the following
ρ, α, β, and γ local parameters: For the host ρ2 = 1.7 × 10−8 � m,
γ2 = 0.76 mK2/W, α2 = β2 = −1.4 × 10−6� mK/V. These are the
values for copper. For the inclusions ρ1 = 5 × 10−5 � m, γ1 =
3.7 × 102mK2/W, α1 = β1 = −9.25 × 10−2 � mK/V. These are the
values for (Bi2Te3)0.2(Sb2Te3)0.8. Note that ξ = α2 − γρ < 0 in both
the host and inclusions. The magnetic field B is rotating in the x,z

plane [see Figs. 4(a) and 4(b)] with H2 = 10 and H1 = 0.

β2 = −1.4 × 10−6 �mK/V (these are characteristic values
for metallic copper) and ρ1 = 5 × 10−5 � m, γ1 = 3.7 ×
102 mK2/W, α1 = β1 = −9.25 × 10−2 �mK/V [these are
characteristic values for the thermoelectric metallic alloy
(Bi2Te3)0.2(Sb2Te3)0.8].

From Figs. 5–7 it is evident that the diagonal components of
ρ̂e, σ̂e, α̂e, β̂e, χ̂e, and ζe strongly depend on the direction of the
applied magnetic field B. However, the diagonal components
of γ̂e are almost isotropic for the assumed values of the
thermoelectric parameters of the two constituents.

The angular anisotropy of the macroscopic magnetother-
moelectric tensors found in this paper looks very similar to
the galvanothermoelectric and magnetoresistance anisotropy
observed in some single crystals of metallic bismuth (see
Fig. 9 and Refs. [2,36]) and explained using quantum me-
chanics [2,36–38]. By contrast, the discussion here and in
Refs. [25–28,30,31] is entirely classical.

Off-diagonal 6 × 6 resistivity and conductivity
tensor components

In Fig. 10 we show polar plots of the macroscopic values
of the off-diagonal 6 × 6 resistivity tensor components of the
periodic array of cylinders in the rotating coordinate system.
In Fig. 10 only the absolute values are plotted. From the actual

FIG. 6. Polar plots of ρ̂e × 107, α̂e × 106, β̂e × 106, and γ̂e,
similar to Fig. 5, with the same values of the magnetic field and
the other parameters, but for the case of a periodic cubic array of
spheres (with radii R = 0.4a).

values that we calculated, the following relations seem to be
evident:

α(e)
xy (H ) = −β(e)

yx (H ), (46)

FIG. 7. Similar to Fig. 5, but for the 6 × 6 conductivity tensor
components σ̂e × 10−5, χ̂e × 10−2, ζ̂e × 10−2, and λ̂e. The physical
parameters and microstructure are the same as in Fig. 5.
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FIG. 8. Similar to Fig. 5, but for different constituent parameters:
ρ2 = 1, γ2 = 10, α2 = 2, ρ1 = 100, γ1 = 1, and α1 = 9 (all in
arbitrary units).

α(e)
yz (H ) = −β(e)

zy (H ), (47)

α(e)
xz (H ) = β(e)

zx (H ). (48)

Some of these and also other equalities are indicated in
Fig. 10 by red arrows. These equalities are consistent with
the generalized Onsager-Casimir reciprocity relations [39–41].
They will be discussed in detail in a future publication.

VI. THERMOELECTRIC FIGURE OF MERIT

The proper expressions for S
(e)
XX, ρ

(e)
XX, and κ

(e)
XX in Eq. (2)

are easily found from Eqs. (6)–(8), leading to

ZT =
(
α̂(e)γ̂ −1

e

)2
XX(

ρ̂(e) − α̂(e)γ̂ −1
e β̂(e)

)
XX

γ̂ −1
e,XX

. (49)

Let the system shown in Fig. 2 be oriented so that the
slabs are perpendicular to the macroscopic electric current I
[see Fig. 1(a)]. We found that in this case the figure of merit
ZT decreases with increasing H [see Fig. 3(q)]. In order to
increase ZT with H one should consider such a composite
where the magnetoresistance is negative (see Ref. [42]).

When the parallel slabs are oriented parallel to the
macroscopic current I ‖ X [see Fig. 1(b)], all the macroscopic
moduli that appear in the last equation do not change with H

(see Fig. 3); therefore the figure of merit ZT also does not
change with H [see Fig. 3(r)].

We have also performed some preliminary studies of the
effect of a magnetic field H on the figure of merit ZT in
the case of a periodic array of cylinders. We found that ZT

strongly depends on the type of composite microstructure
as well as on the direction of the magnetic field. In some

FIG. 9. Experimental polar plot of thermoelectric voltage (mi-
crovolts) as a function of magnet angle for a bismuth single crystal,
H = 12 600 G; the mean temperature is 5.298 K, and the temperature
difference is 0.128 K. H is perpendicular to a binary axis when the
magnet angle is 0◦. H is perpendicular to the trigonal axis throughout
the rotation. (After Ref. [2].)

FIG. 10. Polar plots of the macroscopic or bulk effective values
of the off-diagonal 6 × 6 resistivity tensor components (ρ̂e × 107,
χ̂e × 106, ζ̂e × 106, λ̂e × 104) of the same composite as in Fig. 5,
with the same physical parameters, in the rotating coordinate system.
Only the absolute values are plotted here. However, from the nu-
merically calculated results it follows that ρ(e)

xy = −ρ(e)
yx , ρ(e)

yz = −ρ(e)
zy ,

ρ(e)
xz = ρ(e)

zx , γ (e)
xy = −γ (e)

yx , γ (e)
yz = −γ (e)

zy , but γ (e)
xz = γ (e)

zx , α(e)
xy = −β (e)

yx ,
α(e)

yz = −β (e)
zy , α(e)

xz = β (e)
zx . These equalities are in accordance with the

generalized Onsager-Casimir reciprocity relations in Eqs. (46)–(48).
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FIG. 11. Longitudinal dimensionless figure of merit Z(H )T [see
Eqs. (2)–(49)] of the composite medium with a periodic square array
of cylinders (with the y axis perpendicular to the current I ‖ X; see
the top of the figure) vs the applied magnetic field H . The effective
macroscopic tensor components in Eq. (2) were obtained for the same
parameters as in Fig. 5. T = 300 K. H ‖ z. In the top left there is a
schematic drawing of the thermomagnetic device made from a sample
with cylindrical inclusions aligned along y and perpendicular to the
current I. In the top right there appears one unit cell of the composite
with the orientation of the cylindrical inclusion and direction of
the magnetic field B. The coordinate axes X,Y,Z are directed as
in Refs. [23,24], while the coordinate axes x,y,z are connected to the
composite microstructure (in accordance with Fig. 4).

cases (when the current I is perpendicular to the axes of the
cylindrical inclusions) ZT can increase with H , as shown in
Fig. 11.

VII. SUMMARY

The macroscopic response of a two-constituent composite
was studied for the case where both constituents have a nonzero
Seebeck coefficient and a nonzero Hall resistivity. This was
first done for the case of a parallel-slab microstructure where
both constituents are isotopic materials and the magnetic field
B is parallel to the slabs. More complicated microstructures
were also considered, namely, a simple-cubic periodic array
of spherical inclusions and a square array of circular-cylinder
inclusions in an otherwise uniform host.

The longitudinal thermoelectric figure of merit ZT (i.e.,
when the macroscopic electric and thermal currents flow
in parallel directions) was calculated for some of these
microstructures. In particular, we found that in the special
flat-slab case that we considered ZT does not increase with

increasing Hall resistivity. By contrast, in the square array of
parallel circular cylinders with B perpendicular to the cylinder
axes and the electric and thermal currents perpendicular to
both B and those axes ZT does increase with B.

A general theory was developed and first applied to the flat-
slab microstructure and then to two-constituent composites
with a spatially periodic microstructure. Detailed numerical
computations showed that, like the macroscopic magnetore-
sistivity tensor computed in earlier studies, the thermoelectric
response also becomes strongly dependent on the direction of
the magnetic field B when |H | > 1.

Besides obtaining the theoretical results, we have also dis-
cussed them for particular choices of the constituents in order
to motivate experimental studies of the magnetothermoelectric
response of real composites.

All of these studies were carried out for the case where
all the microstructural length scales are large enough that the
constituents can be fully characterized by the bulk values of
their electrical resistivity and thermal resistivity tensors and
Seebeck coefficients.

In a future publication we will examine the effect of a strong
magnetic field on the properties of a thermoelectric heat pump
and thermoelectric heat generator. It will be interesting and
useful if it turns out that the figure of merit can be increased
above those of the constituents by application of a strong
magnetic field to the composite.

Recently, it was shown that one can design metamaterials
where the Hall coefficient matrix can be fully controlled
[43–45]. This might be another motivation to consider more
sophisticated microstructures for a magnetothermoelectric
composite.
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APPENDIX: EXPRESSIONS FOR ZT IN THE CASE OF
PARALLEL SLABS

1. Parallel slabs oriented perpendicular to the electric current I

Let the slabs in the system shown in Fig. 2 be oriented
perpendicular to the macroscopic electric current I [see
Fig. 1(a)]. Then from Eqs. (18)–(25) it follows that in
the device coordinate system (X,Y,Z) = (z,x,y) (note that
the x,y,z coordinate axes, in general, do not coincide with the
X,Y,Z axes) the macroscopic tensor moduli are

γ̂e =

⎛
⎜⎝

γ (e)
zz 0 0

0 γ (e)
xx 0

0 0 γ (e)
yy

⎞
⎟⎠, α̂e =

⎛
⎜⎝

α(e)
zz α(e)

zx 0

0 α(e)
xx 0

0 0 α(e)
yy

⎞
⎟⎠,

β̂e =

⎛
⎜⎝

β(e)
zz 0 0

β(e)
xz β(e)

xx 0

0 0 β(e)
yy

⎞
⎟⎠, ρ̂e =

⎛
⎜⎝

ρ(e)
zz ρ(e)

zx 0

ρ(e)
xz ρ(e)

xx 0

0 0 ρ(e)
yy

⎞
⎟⎠.
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Equation (49) then takes the form

ZT = α(e)2
zz

γ
(e)
zz

[
ρ

(e)
zz −

(
α

(e)
zz β

(e)
zz

γ
(e)
zz

+ α
(e)
zx β

(e)
xz

γ
(e)
xx

)] . (A1)

Since ρ(e)
zz increases drastically with H (positive magnetore-

sistance; see Fig. 3), the figure of merit ZT decreases with
increasing H [see Fig. 3(q)].

2. Parallel slabs oriented parallel to current I ‖ X

Let the slabs in the system shown in Fig. 2 be oriented
parallel to the thermoelectric current I [see Fig. 1(b)]. Then
from Eqs. (18)–(25) it follows that in the device coordinate
system (X,Y,Z) = (x,z,y) the macroscopic moduli tensors
are

γ̂e =

⎛
⎜⎝

γ (e)
xx 0 0

0 γ (e)
zz 0

0 0 γ (e)
yy

⎞
⎟⎠, α̂e =

⎛
⎜⎝

α(e)
xx 0 0

α(e)
zx α(e)

zz 0

0 0 α(e)
yy

⎞
⎟⎠,

β̂e =

⎛
⎜⎝

β(e)
xx β(e)

xz 0

0 β(e)
zz 0

0 0 β(e)
yy

⎞
⎟⎠, ρ̂e =

⎛
⎜⎝

ρ(e)
xx ρ(e)

xz 0

ρ(e)
xz ρ(e)

zz 0

0 0 ρ(e)
yy

⎞
⎟⎠.

Equation (49) then takes the form

ZT = α(e)2
xx

γ
(e)
xx

(
ρ

(e)
xx − α

(e)
xx β

(e)
xx

γ
(e)
xx

) . (A2)

All the macroscopic moduli that appear in the last equation do
not change with H (see Fig. 3); therefore the figure of merit
ZT also does not change with H [see Fig. 3(r)].
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