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Electric measurement and magnetic control of spin transport in InSb-based lateral spin devices
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Electric injection and detection of spin-polarized electrons in InSb semiconductors have been realized in
nonlocal experimental geometry using an InSb-based “lateral spin valve.” The valve of the InSb/MgO/Co0.9Fe0.1

composition has semiconductor/insulator/ferromagnet nanoheterojunctions in which the thickness of the InSb
layer considerably exceeded the spin diffusion length of conduction electrons. The spin direction in spin diffusion
current has been manipulated by a magnetic field under the Hanle effect conditions. The spin polarization of
the electron gas has been registered using ferromagnetic Co0.9Fe0.1 probes by measuring electrical potentials
arising in the probes in accordance with the Johnson-Silsbee concept of the spin-charge coupling. The developed
theory is valid at any degree of degeneracy of electron gas in a semiconductor. The spin relaxation time and spin
diffusion length of conduction electrons in InSb have been determined, and the electron-spin polarization in InSb
has been evaluated for electrons injected from Co0.9Fe0.1 through an MgO tunnel barrier.
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I. INTRODUCTION

The goal of many years of research in semiconductor
spintronics is to realize electrically injecting and detecting
spin-polarized electrons in a single device [1,2]. The use of
semiconductors as a medium for spin transport is extremely
attractive because of their broad functionality, not realized
in metallic systems. The equilibrium carrier densities can
be varied over a wide range by doping. Furthermore, as
the typical carrier densities in semiconductors are low as
compared to those of metals, the electronic properties of the
former are easily adjusted by gate potentials [3]. However,
a lower concentration of electrons in semiconductors is the
cause of the conductivity mismatch problem, i.e., the efficiency
of spin injection into a semiconductor from a ferromagnetic
metal dramatically reduces due to a significant difference in
conductivity of metals and semiconductors [4]. Theoretically,
the mismatch problem can be balanced by creating a tunnel
barrier between a metal injector and a semiconductor, as
the spin-dependent barrier resistance is comparable to the
spin-independent resistance of a normal metal [5,6]. In this
case, the spin injection efficiency increases, and the spin
polarization of conduction electrons in the semiconductor may
be commensurable with the magnitude of the spin polarization
of electrons in the ferromagnetic injector [7].

Electrical detection of spin-polarized electrons injected
into a semiconductor is a quite difficult task. Recently, it
has become possible to detect the spin polarization of the
electron gas in a thin film of a nonferromagnetic metal or
a semiconductor using metal ferromagnetic probes located on
the film surface. This method has gained a great popularity, and
the appropriate devices are referred to as lateral spin valves.
The electric potential that arises on the ferromagnetic contact
in such a device when spin nonequilibrium electrons appear
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in the semiconductor is determined by the nonequilibrium
magnetization of the electron gas in the nonferromagnet under
the contact and by the electron magnetization of the contacts
themselves. The theory that explains the sensitivity of the
ferromagnetic probes to the electron gas magnetization in
the nonferromagnet near these electrodes was proposed by
Johnson and Silsbee [8,9] and developed in [7,10,11].

Over the past few years, several semiconductor spintronic
devices with electrical detection of spin-polarized electrons
have been designed. Injection and detection were brought
about in:

(i) GaAs thin film with a Fe injector [11] and an injector
of a magnetic semiconductor (Ga, Mn)As [12];

(ii) Si thin film with permalloy (Ni80Fe20) contacts and
tunnel barriers of SiO2 and graphene [13];

(iii) InSb plate with Fe ferromagnetic electrodes and an
MgO tunnel barrier between the electrodes and the semicon-
ductor [14].

In this work we investigate the spin injection into an
InSb plate but in contrast to Ref. [14], we exploit Co0.9Fe0.1

ferromagnetic alloy rather than Fe as a material for the injector
and detector because Co0.9Fe0.1 with MgO tunnel barrier can
produce higher spin polarization than Fe [15].

The theoretical expressions published in [7–9] are applica-
ble for the degenerate gas only. Our devices, however, contain
an n-InSb plate in which electron gas is nondegenerate. For
this reason, in the next section we derive formulas that are valid
at an arbitrary degree of degeneracy. Also we try to take into
account the fact that electrons are injected into a rather thick
plate, i.e., in fact bulk material, which results in the weakening
of the detected spin polarization as compared with the case of
the very thin semiconductor films.

It should be noted that indium antimonide has an extremely
small effective mass and records high electron mobility
(μ ∼ 106 cm2/(Vs) in n-InSb with an electron density of
about 1014 cm−3 [16]). Such materials are quite interesting for
studying phenomena related to spin transport. In this context,
the publication [17] should be mentioned, the authors of which

2469-9950/2017/96(23)/235303(10) 235303-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.235303


N. A. VIGLIN et al. PHYSICAL REVIEW B 96, 235303 (2017)

FIG. 1. Scheme of a device for injection and detection of spin-
polarized electrons with the ferromagnetic contacts F1–F4 in a
paramagnetic semiconductor S. Contacts F1 and F2 are current and
contacts F3 and F4 are potential ones located outside the current
circuit (“nonlocal” experimental geometry).

demonstrate the possibility of creating a spin injection maser
that generates terahertz radiation with a frequency tunable by
a magnetic field.

II. THEORETICAL BACKGROUND

The spin polarization to be detected in the device requires
a built-in miniature detector the dimensions of which must
be smaller than the spin diffusion lengths LS. The distance d

between the injector and the spin detector must be of the same
order d � LS. This circumstance imposes rigid restrictions on
the scales of such devices. It should be noted that for most
pure nonferromagnetic metals, the spin diffusion length LS

even at a temperature of T = 4.2 K amounts to fractions of
micrometers [18], except probably only for Al, the LS of which
exceeds tens of micrometers [8]. In semiconductors, due to a
significantly lower electron density and greater mobility of
electrons as compared to metals, the spin diffusion length
can reach unities and tens of micrometers. For example, in
GaAs, the spin diffusion length at T = 50 K was determined
as LS = 6 μm [11]. Thus, the requirements for the maximum
dimensions of the devices for electrical detection of polarized
electrons in semiconductors remain quite stern.

The simplest device for electrically observing spin transport
phenomena consists of four ferromagnetic narrow strip-shaped
electrodes arranged parallel to each other on the surface of
a nonferromagnetic semiconductor (Fig. 1). The conduction
electrons of the ferromagnet are assumed to have nonzero spin
polarization, for example, due to internal exchange interaction
with the magnetically ordered system of localized electrons.
Also, the width of the strips is suggested to be less than the
spin diffusion length LS.

The contacts are magnetized and have a residual magneti-
zation Mi ,i = 1–4. Electric current I flows from the contact
F1 to the contact F2 through the semiconductor S. The contact
F2 plays here the role of the injector of electrons that carry
a charge of (–e). In the semiconductor under F2 there arises
a cloud of polarized electrons with the polarization degree of
less than (or, ideally, equal to) the polarization of the injector
electrons. It is generally agreed that the spin accumulation
is observed in the contact region [3]. As the distance from
the contact injector in any direction increases, the degree of
polarization of the electron gas subsides, and the parameter

LS characterizes this decrease. The detector (contact F3) is
located outside the circuit of current I at a distance d from
the injector F2. The distance d is commensurate with LS. This
experimental geometry is called “nonlocal” due to registering
the nonequilibrium spin density of electrons diffusing outside
the electric current circuit. According to the Johnson-Silsbee
concept [8,9], the nonequilibrium spin density of electrons in
S induces a change of the contact potential difference in the
ferromagnetic-semiconductor system. The contact potential
difference of the S-F3 pair differs from that of the S-F4
pair distanced from the injector by a space considerable
exceeding LS. Consequently, a voltage VD determined by
the spin accumulation near the detector F3 arises between F3
and F4.

The spin accumulation is described as a deviation of the
spin-dependent conduction electron densities of a ferromagnet
and a nonferromagnet from equilibrium values. This deviation
causes local changes in the chemical potential of the spin
subsystems of the contact pairs, and, as a result, the local
changes of the contact potential difference in the “ferromag-
net/nonferromagnet” system. In calculations of the Vd voltage,
the electron density deviation in the spin subsystems from
equilibrium for both the ferromagnet and the nonferromagnet
must be estimated, and the deviations of the spin densities
must be related to the deviation from equilibrium of chemical
potentials of the spin subsystems. In doing so, the law of charge
carrier dispersion in these materials should be set out. Until
now, the estimates were performed for spin valves in which a
ferromagnetic detector and a nonferromagnet were materials
with degenerate electron gas [10–12]. The most detailed
calculation of the voltage induced by spin accumulation in
a degenerate semiconductor was done in Ref. [7].

For further consideration, we give main relations of
the Johnson-Silsbee spin-charge coupling; their form allows
describing the spin valves made of materials with arbitrary
dispersion of charge carriers and an arbitrary degree of
degeneracy of the electron gas in a nonferromagnet.

First, we find a change in the contact potential difference
on the ferromagnetic detector F due to the deviation of the
spin system from equilibrium in the contact pair S-F. Suppose
the equilibrium spin polarization P

(F)
S of the conduction

electrons in the ferromagnet F to be nonzero. Its value in
the contact depth (a distance from the interface exceeds the
Debye screening length) is defined as

P
(F)
S = n

(F)
+ − n

(F)
−

n
(F)
+ + n

(F)
−

, (1)

where n
(F)
λ is the equilibrium electron density in the depth of

the ferromagnetic contact F with spin λ, and index λ takes
two values: λ = + for the spin-up electrons and λ = − for
the spin-down electrons. In this case, the spin quantization
axis is chosen along the y axis. The quantity S(F) = n

(F)
+ −

n
(F)
− is the y component of the vector of the electron spin

density measured in units of h̄/2 , where � is Planck’s constant.
The quantity nF = n

(F)
+ + n

(F)
− is the equilibrium density of

electrons in ferromagnet F.
At the thermodynamic equilibrium, the value of the electron

density n
(F)
λ in the ferromagnet is related to the value of
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the chemical potential ζ in the nonferromagnet/ferromagnet
system as

n
(F)
λ =

∑
p

F
(
ε

(F)
pλ − eφ − ζ

)
, (2)

where ε
(F)
pλ is the energy spectrum of charge carriers in

the ferromagnet with the quasimomentum p and spin λ,
φ is the contact potential difference of the nonferromag-
net/ferromagnet system, –e is the electron charge, and F (E) =
1/[exp(E/kBT ) + 1] is the Fermi function, kB is Boltzmann’s
constant, and T is temperature.

Let the spin subsystems of the ferromagnet be disturbed
from a mutual thermodynamic spin equilibrium by an external
influence. The unbalance gives rise to a change in the contact
potential difference of the nonferromagnet/ferromagnet sys-
tem by the magnitude of δφ. However, each of the spin sub-
systems comes to a quasimomentum equilibrium characterized
by local-equilibrium values of the chemical potential. Let us
designate these local-equilibrium quantities as ζλ = ζ + δζλ.
The quantity ζλ often called the quasichemical potential [7] is
responsible for the deviation of the chemical potential of the
electron spin system with λ from the equilibrium value. The
deviation δζλ, the change δφ, and the nonequilibrium addition
δn

(F)
λ to the electron density are related together by

n
(F)
λ + δn

(F)
λ =

∑
p

F
(
ε

(F)
pλ − eφ − eδφ − ζ − δζλ

)
. (3)

For small deviations from the local equilibrium, the
nonequilibrium addition appears as

δn
(F)
λ = ∂n

(F)
λ

∂ζ
(δζλ + eδφ). (4)

In the balanced nonferromagnet, the spectrum of the charge
carries is spin independent and can be defined by the single
function εp. The densities of the spin-up and spin-down
electrons are equal, n+ = n− = n/2, and n is the equilibrium
charge-carrier density in the nonferromagnet:

n = 2
∑

p

F (εp − ζ ). (5)

As well as for the ferromagnet, the small deviations δnλ

of the electron densities from their equilibrium in the spin
subsystems of the nonferromagnet can be written as

δnλ = 1

2

∂n

∂ζ
δζλ. (6)

Let S = δn+ − δn− be the nonequilibrium spin density of
the nonferromagnet. Assuming that the electrical neutrality
condition δn

(F)
+ + δn

(F)
− = 0 is fulfilled outside the contact

region, we can derive the following relation from the system
of equations (6):

δζ+ = −δζ− = S

(
∂n

∂ζ

)−1

. (7)

Utilizing this condition as well as relation (7), we can
solve the system of Eq. (4) and calculate the dependence
of the magnitude of the change in the contact potential

difference δφ on the nonequilibrium electron spin density of
the nonferromagnet S:

δφ = −1

e
AF

(
∂n

∂ζ

)−1

S. (8)

In (8) we have introduced the spin asymmetry parameter
AF of the ferromagnet, defined by the expression

AF =
∂n

(F)
+

∂ζ
− ∂n

(F)
−

∂ζ

∂n
(F)
+

∂ζ
+ ∂n

(F)
−

∂ζ

. (9)

The value of the spin asymmetry parameter AF of the
ferromagnet can be calculated by setting the energy spectrum
of electrons ε

(F)
pλ . The spin-up and spin-down electron densities

n
(F)
+ and n

(F)
− appearing in (9) determine the total density of

the charge carriers in the ferromagnet nF = n
(F)
+ + n

(F)
− , as

well as the electron polarization PF. Substituting the above
expressions for the densities n

(F)
± = nF(1 ± P

(F)
S )/2 into (9),

we arrive at the formula for AF in terms of spin polarization
P

(F)
S of the ferromagnet:

AF = P
(F)
S

[
1 + nF

∂

∂nF
ln

∣∣P (F)
S

∣∣]. (10)

The logarithm of the polarization in expression (10) is
weakly dependent on the electron density nF. Then the
expression in the square brackets of Eq. (10) is close to unity
and AF ≈ P

(F)
S , and in further consideration this approximation

is used.
Let us define the electron polarization in the nonferromag-

net as PS(x) = S(x)/n. Then Eq. (8) takes the simple form

δφ(x) = −1

e
P

(F)
S PS(x)

n
∂n
∂ζ

. (11)

The dependence of δφ on the parameters of the semicon-
ductor electronic system is determined by the factor (n/ ∂n

∂ζ
).

Equation (11) can be utilized for analyzing spin injection from
a ferromagnetic metal into a semiconductor with any degree
of degeneracy of the electron gas of the latter. For a degenerate
electron gas, the value of (n/ ∂n

∂ζ
) coincides with the Fermi

energy up to a numerical factor of the order of unity. For a
nondegenerate gas, this value is equal to kBT .

From the spin diffusion equation, it follows that the spin
density S(x) and the polarization PS(x) in the nonferromagnet
fall off exponentially with distance from the injector. If the
distance x = d23 between the injector F2 and the detector F3
(Fig. 1) is comparable to the electron spin-diffusion length
LS in the nonferromagnet, then PS(d23) is nonzero and the
electric potential at the contact F3 is �3 = φ + δφ(d23). Its
value differs from the equilibrium contact potential difference
φ. The contact F4 in the detector circuit is far away from F2 by
a distance d24 � LS. The spin polarization magnitude PS(d24)
at such a distance is exponentially small and the electric
potential at the contact F4 is equal to the equilibrium one
�4 ≈ φ. Then the potential difference V34 measured between
the F3 and F4 contacts amounts to V34 = �3 − �4 = δφ(d23).

Expression (11) was derived under the assumption that the
spin quantization axis is directed along the y axis. We denote
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FIG. 2. Scheme of spin injection under the Hanle effect in a lateral
spin valve. S(0) is the spin density of electrons injected from contact
F2. S(d) is the spin density of electrons diffused from injector F2 to
detector F3.

the voltage on the detector as VD(d), where d is the distance
between the center axes of the injector and detector. To describe
the experiments for measuring VD(d) with different mutual
orientations of the injector and detector magnetization vectors,
it is convenient to employ local quantization axes associated
with the direction of these vectors. With a choice of the local
quantization axis along the direction of the equilibrium spin
density in the ferromagnetic contact at hand, the polarization
P

(F)
S becomes a positive quantity, and the expression for VD(d)

acquires the form

VD(d) = ∓1

e
P

(F)
S

(
∂n

∂ζ

)−1

Sy(d), (12)

where Sy(d) is the y component of the spin density vector S(x)
at the point x = d. The choice of the sign ∓ in expression (12)
depends on the mutual directions of the injector and detector
magnetizations. A negative voltage arises on the detector
as the injector and the detector are parallel magnetized. If
the magnetization directions of the detector and injector are
opposite, the voltage sign is positive.

Formula (12) explicitly demonstrates the possibility of
electrical detection of a spin signal due to a change in the
mutual orientation of the injector and the detector magne-
tizations. When electrically detecting the spin diffusion, the
nonlocal voltage V (d) needs to be measured under parallel
and antiparallel magnetization of the injector and detector.
For this purpose, the contacts lying in the plane of the device
should be reversed magnetized by a magnetic field. However,
if the magnetization reversal causes the domain structure
with different directions of magnetization in the domains, the
measurements of VD(d) provide ambiguous results using such
a detection method.

The spin-induced electrical signal can be more reliably and
unambiguously registered by changing the direction of the
vector of the electron spin density S(x). At the same time,
the magnetization directions of the injector and detector are
preassigned and unvaried. The direction of the vector of the
electron spin density S(x) can be changed by a transverse
magnetic field. The impact applied should be perpendicular to
the magnetization of the injector and act on the magnetization
of the polarized electron gas injected into the nonferromagnet.
This is the so-called Hanle effect (Fig. 2).

The spins of electrons which diffuse from the injector
to the detector in a transverse magnetic field B directed

along the z axis rotate by an angle 	Lt for a time t . Here
	L = g μBB/h̄ is the Larmor frequency, g is the Lande
factor of conduction electrons, μB is the Bohr magneton,
and � is Planck’s constant. Under the assumption that the
detector is sensitive to the spin projection on the direction of
magnetization in it, the contribution of each electron to the
output signal is proportional to cos(	Lt). As the electrons
have different transit times, their spin precession angles differ.
Calculating the contribution from all the electrons at the point
of detection requires integrating over all the times of diffusion.

Thus, to calculate the signal V (d), we need to find the profile
of the spin density. For this purpose, we use the Bloch-Torrey
equation that takes into account the spin precession of the
electrons in the magnetic field, the diffusion nature of their
motion, and the spin relaxation of conduction electrons:

∂S
∂t

= γ [S × B] + D∇2S − 1

TS
S. (13)

In Eq. (13) γ = g μB/h̄ is the gyromagnetic ratio, D is
the diffusion coefficient, and TS is the spin relaxation time.
With further consideration, we are interested in the behavior
of only the x and y components of the spin density vector S
that precesses relative to the magnetic field vector B directed
along the z axis.

The vector S is, generally speaking, a function of all three
coordinates x, y, and z. To simplify the presentation of the
results, we use a one-dimensional model for describing spin
diffusion. In doing so, the injected spin density S is assumed to
diffuse along the x axis by the law of Eq. (13) and to decrease
over the spin diffusion length LS. Its decay is described by
a simple exponential law. We denote the spin density on the
semiconductor surface (z = 0) as S(x).

For Eq. (13) to be unambiguously solved, it is necessary
to involve the boundary conditions for spin density S(x) on
the semiaxis x � 0 for x = 0. Let w and l be the linear
dimensions of the injector contact. The electric current I

flowing through the injector has a density JC = I/wl and
causes the spin current with the density JS to pass through
the injector-semiconductor boundary. The spin current density
JS and the particle current density J = JC/(−e) are related
as JS = PJ J . Here, to characterize the injection contact
properties, we enter the parameter of the spin-current injection
efficiency PJ as PJ = JS/J . The parameter PJ introduced in
such a way can also be called the polarization of the spin
current.

The spin current JSwl injected into the semiconductor can
be divided into two parts responsible for the spin transfer
along the x axis in the x >0 and x <0 directions. For x >0,
the flux densities of the x and y components of the spin
density S along the x axis are governed only by spin diffusion:
JSx

(x) = −D∇xSx(x), JSy
(x) = −D∇xSy(x). For x < 0, the

flux density of the spin density includes both the diffusion
contribution and the conduction-electron drift contribution.
The latter depends on the magnitude of the current I . For not
too large currents, the drift contribution to the spin current
may be neglected and the spin currents flowing along the
x axis at x = +0 and x = −0 are assumed to be equal in
absolute value. Suppose that only the y component of the spin
density is injected into the semiconductor, while the flux of
the x component is zero. From the law of conservation of the
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spin moment, we obtain the following boundary conditions for
x = + 0:

∇xSx |x=+0 = 0, ∇xSy |x=+0 = − w

2LSD
PJ J. (14)

Now Eq. (13) can be solved for the Sy(x) and Sx(x)
components. Its steady-state solution meets the boundary
conditions (14) and the vanishing conditions as x → ∞. If
there is no magnetic field, the solution of Eq. (13) under
the conditions (14) has a simple exponential form, and the
expression for VD(d) can be written as

VD(d) = ∓1

e
P

(F)
S PS

n
∂n
∂ζ

exp

(
− d

LS

)
, (15)

where

PS = PJ

w TS

2nL2
S

J (16)

is the spin polarization of conduction electrons in the semi-
conductor directly under the contact injector.

Omitting the technical details for solving Eq. (13) in
the presence of a magnetic field B, we give the result for
the dependence of voltage VD on the distance d, as well as on
the magnetic field B:

VD(B,d) = ∓1

e
P

(F)
S PS

n
∂n
∂ζ

exp

(
− d

LS
α

)

×
α cos

(
d
LS

β
) − β sin

(
d
LS

β
)

α2 + β2
. (17)

In Eq. (17) LS = √
DTS is the spin diffusion length, and

the B-field-dependent parameters α and β characterize the
effective spin diffusion length in the magnetic field and the
effective period of the spin precession, respectively:

α =
√

[
√

1 + (	LTS)2 + 1]/2,

β =
√

[
√

1 + (	LTS)2 − 1]/2. (18)

The magnitudes of the spin polarization PS of the electrons
injected into the semiconductor and the spin-current injection
efficiency PJ are parameters of the theory and can be calculated
from the experimentally measured signal VD if the spin
diffusion length LS and the spin relaxation time TS are
already known or obtained earlier from the same experiment.
Obviously the polarization PS depends on the electric current
I that flows across the circuit of the injector from F1 into
F2 (Fig. 1). The relation (17) reflects explicitly the main
mechanisms for describing the dependence of the polarization
PS in the nonferromagnet on the current I flowing through the
injector.

To calculate the value of the polarization P
(F)
S in the

CoFe alloy under consideration, we applied the LDA + U

method [19] for describing the electronic structure within
the strong-coupling approach in the cellular potential and
atomic-sphere approximation (TB-LMTO-ASA) [20]. For

FIG. 3. SEM image of a spin valve used in the experiment. A
bright rectangle of 1.4 mm length and 50 μm width in the center is
the InSb semiconductor. The ferromagnetic electrodes F1 and F2 (of
6 μm width) and F3, F4, F5, and F6 (of 4 μm width) are made of
a Co0.9Fe0.1 alloy, and they are separated from the semiconductor by
an MgO layer of a thickness of 1.8 nm.

modeling the alloy, we considered a supercell consisting of
8 Co atoms, wherein one atom of Co substitutes for a Fe atom.
In calculating we used the crystal structure parameters for
pure Co (symmetry group Fm − 3m, a = 3.5472 Å). Thus,
the model alloy had a Co0.875Fe0.125 composition close to
experimental Co0.9Fe0.1. Calculating in a self-consistent way
gives populations of the s, p, d shells with up and down
spins for obtaining the polarization value of P

(F)
S = 0.224 by

formula (1).

III. EXPERIMENTAL SETUP

Devices for studying spin transport in InSb semiconductors
were prepared on square substrates with a side length of
10 mm and a thickness of 0.4 mm, cut from the (100) plate of
undoped n-InSb. The surface roughness was measured using
an optical profilometer and did not exceed 0.6 nm. The data
on concentration of electrons (n = 1.2×1014 cm−3) and their
mobility [(μ = 6.2×105 cm2/(Vs) at T = 77 K] were taken
from a certificate for the semiconductor plate.

Standard photolithography and lift-off techniques are used
to determine the semiconductor channel and to pattern the
six ferromagnetic electrodes (see Fig. 3), which have nominal
dimensions of 6 μm×50 μm (F1, F2) and 4 μm×50 μm (F3,
F4, F5, F6). Distances between contacts F1 and F2, F5 and
F6 are 0.59 mm. The contacts F3, F4, and F5 have a center-
to-center spacing of 10 μm, and F2 and F3 are spaced at
11 μm. The long sides of the contacts are oriented along the
〈110〉 crystal axis of the InSb substrate. A photoresist layer
of 1 μm thick on the substrate plays a role of an insulating
layer. The magnetron sputtering method was used to fabricate
the contacts F1–F6. The contact structure is as follows: an
MgO dielectric layer of a nominal thickness of 1.8 nm, a
Co0.9Fe0.1 ferromagnetic metal layer 80 nm thick, and a Ta
layer of 3 nm thickness to protect the contacts from oxidation.
Finally, the Ni/Cu/Ag vias and bonding pads were fabricated
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by magnetron sputtering (by thermal evaporation for the Ag
layer) and lift-off.

The magnitude of the electrical signal arising on the
detector depends on the distance d between the injector and the
detector. To change d, we can produce various combinations
of the contacts in our device (see Fig. 3). For example, any of
the contacts F3, F4, and F5 can be used as a voltage detector
relative to the outlying electrode F6. The contacts F2, F3, or F4
can be applied as an injector of polarized electrons. For that, a
constant current is passed between one of the contacts and the
contact F1. The magnitude and sign of the signal also depend
on the electron polarization PS in the semiconductor. In turn,
PS is related to the magnitude of the injector current I . In our
experiments, we could vary the magnitude and direction of
the current I . The experimental setup consists of a dc current
source based on alkaline batteries, a nanovoltmeter, and an
electromagnet equipped with a cryostat and a programmable
power supply. The measurements were carried out at a
temperature of 77 K.

The ferromagnetic contacts were initially magnetized by
a magnetic field of 1 kG directed along the y axis. Then
the field value was reduced to that close to zero, and the
entire device was rotated in the cryostat by 90° so that the
field direction should be perpendicular to the contact plane.
When registering the Hanle effect, the transverse magnetic
field B was scanned slowly in the range of ±20 G. It
should be noted that the magnitudes of these fields are much
smaller than those of the transverse anisotropy field of a flat
ferromagnetic contact, its value for the Co0.9Fe0.1 film being
about 15 kOe. Therefore, they exert no significant influence
on the longitudinal magnetization of the contacts.

IV. RESULTS AND DISCUSSION

The sign of the electrical signal on the detector VD

depends on the mutual orientation of the electron gas and
detector magnetizations. In turn, the magnetization direction
of the injected electrons is defined by the magnetization
of the injector. Thus, a correct measurement of the spin
effects requires uniformly magnetizing both the injector and
the detector and also uniquely preassigning the direction of
magnetization in each of them. In the lateral spin valve as
shown in Fig. 1, the direction of magnetization of the contacts
can be changed by means of an external magnetic field directed
along their easy-magnetization axis. The contacts having the
same length but a different width possess different anisotropy
fields and their magnetization reversal occurs in different
fields. For our devices, the contacts F1 and F2 were fabricated
with a width of w = 6 μm, and the contacts F3, F4, F5, and
F6 had a width of w = 4 μm.

For the contacts F1 and F6, the current-carrying paths were
set at both ends, which made it possible to measure anisotropic
magnetoresistance (AMR) in these contacts. The results of the
AMR measurements for the contacts of different widths w are
shown in Fig. 4. When sweeping the magnetic field By applied
in the direction of the y axis from −1 to +1 kG and back,
the magnetization reversal of the “broad” (w = 6 μm) contact
occurred in a field of the order of ±40 G, and the “narrow”
one (w = 4 μm) in the field of ±50 G.

FIG. 4. (a) AMR of the contact F6 with a width of 4 μm. (b) AMR
of the contact F1 with a width of 6 μm. A magnetic field lies in the
contact plane and is directed along their long axis. Light large circles
denote a decrease of the field from positive values through zero to
negative values. Dark shallow circles are the sweeping of the field
in the opposite direction. The vertical dotted line segments indicate
the magnetic field values at which the magnetization reversal of the
contacts occurs.

Also, the longitudinal and transverse magnetizations of the
contacts (along the y and x axes) during their magnetization
reversal by the field By were investigated by optically mea-
suring the Kerr effect. Captured with a Kerr microscope, the
images of the contacts contained alternating different-contrast
lines oriented across the long contact axes. The appearance
and intensification of the contrast of these lines are correlated
with the behavior of AMR.

The above-given data evidence of emerging a transverse
component of magnetization in the device’s contacts in
some sections of the magnetic field scale as magnetization
reversal occurs. It should be emphasized that the regions with
transverse magnetization are observed in narrow contacts at
magnetic field values close to the magnetization reversal field
of the broad contacts. Thus, the state of the magnetization
of the contacts in the region of the magnetization reversal
fields cannot be unambiguously interpreted as homogeneous.
As a consequence, the experiments to measure spin effects
during magnetization reversal of ferromagnetic contacts by
the magnetic field in the lateral spin valves at hand cannot
yield reliable results.

On the other hand, the contacts magnetized to saturation in
a magnetic field of the order of 1 kG preserve their parallel
magnetization even after reducing the field to zero. In this
case, it is convenient to control the direction of the electrons
magnetization by a transverse magnetic field, as it happens
under the Hanle effect conditions. If this field is smaller
than the transverse field of the anisotropy of the contact, its
influence on the longitudinal magnetization of the contacts
is negligible. Then, the angle between the magnetization
directions of the electron gas and detector changes due to
the Larmor precession of the electron spin.
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From expressions (15)–(17) it follows that, for the current
I < 0, the spin signal VD is negative for parallel magnetization
of the contacts and positive for the antiparallel one. When
reversing the current direction, the spin signal must also change
only the sign; its absolute value must remain unchanged. It
should be noted that this assertion holds for the low-current
approximation, i.e., when the electron diffusion rate is much
greater than the electron drift velocity and the spin current
flowing towards the detector from the injector is equal to half
the electron spin current flowing through the injector. Thus,
in the low-current regime, the experiments with a change in
the direction of the electric current through the injector are
equivalent to the experiments with a change in the direction of
magnetization of the contacts.

The output signal VE registered directly from the contact
detector is shown in Fig. 5(a) with small circles. The signal
VE can be represented as a superposition of two contributions,
which differ significantly from each other both in amplitude
and in dependence on the magnetic field. One of these
contributions VH, with amplitudes from fractions to unities
of microvolts, may be interpreted as being associated with the
spin transport, i.e., as being due to the Hanle effect whose
dependence on the magnetic field is described by expression
(17). The second contribution is the background signal VB with
amplitude from a few to tens of microvolts and it demonstrates
a quadratic magnetic field dependence. This signal is caused by
spreading of the charge current throughout the semiconductor
[11], and its dependence on the magnetic field is governed
by the field dependence of the semiconductor resistance.
Figure 5(a) shows this signal with a dashed line.

In Fig. 5(b) the circles show the spin signal VH for the
injector current I = −16 μA, obtained by subtracting the
background signal VB from the initial VE. The triangles and
squares display the spin signals for the currents I = −4
and −8 μA. They also represent the difference between the
appropriate initial and background signals. The solid lines
are graphs of the voltage VD(B,d) calculated using expression
(17). In these calculations, we set the following parameters into
expression (15), taking into account the PS dependencies on
the current (17): the values of the ferromagnetic contact sizes,
the distances between their central axes d, the temperature
T = 77 K, the value of the injector current I , and the g

factor of electrons in InSb g = −52. The electron gas was
considered as nondegenerate. The LS, TS, and PJ were varied
parameters determined by fitting of the theoretical curve (17)
to the experimental data.

The magnitude of the spin relaxation time TS mainly
affects the width of the signal line in expression (15). The
magnitude LS can be estimated from the dependence of the
maximum value of the spin signal on the distance between
the same injector (e.g., F2) and different detectors (e.g., F3
and F4).

The Hanle spin signal measured when B = 0 yields a maxi-
mum signal. Figure 5(c) illustrates the Hanle signals for the de-
tectors F3 and F4 whose central axes are spaced from the injec-
tor F2 by 11 and 21μm, respectively. The current I is −11 µA.

As for the detector of the width of 4 μm (F4), in the current
range from −3 to −20 µA we succeeded in describing the
entire set of the experimental data with sufficient accuracy by
the same parameters such as LS = 25 μm, TS = 1.5 ns, and

FIG. 5. (a) Circles: the experimental voltage VE between F5 and
F6 as a function of B. The current I = −16 μA flows through the
injector F4 and the contact F1 (see Fig. 3). The temperature is
T = 77 K. The dashed line is the background signal VB approximated
by a second-order polynomial.(b) Symbols denote the curves for the
Hanle signal VH = VE–VB calculated as the difference between the
experimentally measured voltage VE and the background signal VB.
The solid lines were calculated using expressions (15) and (17). The
distance between F4 and F5 is equal to d = 10 μm (see Fig. 3); other
parameters are TS = 1.5 ns,LS = 25 μm,PJ = 0.06, T = 77 K. (c)
Triangles: The voltage VH registered by the detector F3 spaced 11 μm
apart from the injector F2. Circles: The voltage VH registered by
detector F4 spaced 21 μm apart from F2. The solid lines depict the
voltages V (B, d) calculated using the expressions (15) and (17) for
I = −11 μA, TS = 1.5 ns,LS = 25 μm,PJ = 0.02,T = 77 K, and
d = 11 and 21 μm, respectively.

PJ = 0.06. The data calculated are in good agreement with
the experimental ones [Fig. 5(b), solid lines].

Figure 6(a) presents the graphs of the voltage dependence
on the detector F3 on a magnetic field for the forward and
reverse current I in the injector F2. Figure 6(b) depicts the
Hanle effect signals obtained by subtracting the corresponding
background signals V 1B and V 2B from the measured ones.
The Hanle effect signals obtained for opposite directions of
the current are a mirror image of each other relative to the
level of +0.009 μV.

The resulting value TS = 1.5 ns can be compared with
the transverse spin relaxation time T2 obtained by electron
spin resonance (ESR). In InSb with the electron density
n = 2×1014 cm−3 at T = 4.2 K, the ESR linewidth of the
conduction electrons is 
H = 2Oe [21]. This corresponds
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FIG. 6. (a) Voltage VE, measured on the detector F3 with respect
to the contact F6. The current I passes through the injector F2
and the contact F1. Light circle indicate the current I = +14 μA;
light triangles show the current I = −14 μA. Dotted lines denote
an approximation of background signals by polynomials of the
second order. (b). The Hanle effect signals obtained by subtracting
background signals from the original ones, VH = VE–VB. Dotted
lines show calculations using expressions (17) with the follow-
ing parameters: TS = 1.5 ns,LS = 25 μm,PJ = 0.02,T = 77 K, and
d = 11 μm. The upper curve is the current I = +14 μA, the lower
curve is the current I = −14 μA.

to the transverse spin relaxation time T2 = 6.5 ns. Given the
tendency of the spin relaxation time to reduce with increasing
temperature, the as-obtained value of TS = 1.5 ns at T = 77 K
satisfactorily correlates with the value of T2 calculated based
on the ESR data at T = 4.2 K.

From the measurements of the signals under the Hanle
effect, we arrived at the value of LS = 25 μm for InSb. It is
significantly (4–6 times) greater than the spin diffusion length
in GaAs, where LS ranges from 6 [12] to 3 μm [11]. This
fact can be explained by higher electron mobility (by two
orders of magnitude) in InSb than in GaAs [16]. Indeed, the
spin diffusion length is LS = √

DTS. The mobility μ and the
diffusion coefficient D are related by Einstein’s relation that
nondegenerate electrons have the form D = kBT

e
μ. Hence,

LS ∼ √
μTS. The time TS measured in InSb is about 3 times

less than in GaAs [12]. Thus, the spin diffusion length in
InSb is about 6 times higher than in GaAs, which is in good
agreement with our measurements. It should also be noted
that the magnitude of LS depends not only on mobility and
temperature but also on imperfection and other individual

FIG. 7. The spin polarization PS under the injecting ferromag-
netic contact as a function of the electric current density JC . The
unfilled triangles indicate the polarization under the injector F4;
the dashed line parametrizes the values of PS depending on JC in
accordance with formula (16); the parameter of the spin-injection
efficiency is equal to PJ = 0.06. The open circles denote the
polarization under injector F2, the parameter of the spin-current
efficiency is PJ = 0.02.

features of the samples. The review [18] shows that the value of
the parameter LS measured by different groups of researchers
for different samples of the same material can vary by tens of
times.

Figure 7 shows the values of the electron spin polarization
PS in the semiconductor under the injecting ferromagnetic
contact obtained from Eqs. (15)–(17). They are a function of
the injected electric current density for two different contacts.
The unfilled triangles represent the injector F4 (4 μm wide)
and the detector F5, the open circles correspond to the injector
F2 (6 μm wide) and the detector F3 (see Fig. 3). Within
the measurement error, the dependence of the electron spin
polarization PS on the injection current density is a linear
function. For the injector F4 the parameter of the spin-current
injection efficiency amounts to PJ = 0.06. For the injector
F2, all the PS values calculated for different currents are well
described by one and the same value of PJ = 0.02.

The findings mentioned above demonstrate that the spin-
current injection efficiency PJ for two contacts of one and the
same device may differ noticeably.

One of the possible reasons for the difference observed
appears to be an error in determining PS . Perhaps this
error is caused by the assumption of the contact width
smallness compared to the distances between the contacts
when processing the experimental data. In fact, the contact
widths are comparable with the distances between the contact
edges. This circumstance makes it necessary to carry out
the averaging process over the contact width. This procedure
results in the appearance of a systematic error in determining
PJ . The wider the contact, the greater is the inaccuracy.
Emanating from the foregoing, in what follows, the true value
of the injection efficiency PJ is assumed to lie between the
values computed for the different contacts F2 and F4. Thus,
the value of the injection efficiency PJ for the system under
study (InSb/MgO/Co0.9Fe0.1) is equal to PJ = 0.04 ± 0.02.
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Another possible reason for the above-described differ-
ence in the values of PJ for different injectors may be
attributed to a very strong dependence of PJ on the presence
and properties of the MgO interlayer at the ferromagnetic
injector-semiconductor boundary. Let us discuss the role of
the MgO dielectric layer for reaching the above injection
efficiency PJ . In doing so, we compare this value to the value
predicted by the standard theory of injection [7]. The value
of PJ for a “transparent” ferromagnetic metal/semiconductor
contact, when the contact resistance is less than the re-
sistance of the semiconductor and ferromagnetic, can be
represented as

P
(tr)
J ∼ ρF

ρ

L
(F)
S

LS
P

(F)
S , (19)

where ρ and ρF are the specific resistances of the semicon-
ductor and ferromagnetic metal, respectively; LS and L

(F)
S are

their spin diffusion lengths. As for the InSb crystal used in
the experiment, its electron density is n = 1.2×1014 cm−3,
its electron mobility is μ = 6.2×105 cm2/Vs at T = 77 K,
the specific resistance is ρ = 1/eμn = 0.084 	 cm, and the
experimental spin-diffusion length amounts to LS = 25 μm.
As for the ferromagnet close to the Co0.91Fe0.09 composition,
its spin-diffusion length is L

(F)
S = 0.012 μm and its specific

resistance reaches ρF = 7×10−6 	 cm at a temperature of
4.2 K [22]. Next, to estimate the injection efficiency PJ for
the transparent contact, we admit that the magnitude order
of L

(F)
S and ρF measured at T = 77 K remains unchangeable

with increasing temperature. Then the upper estimate comes
to P

(tr)
J � 4×10−8.

The previously mentioned estimates show that the use of
the MgO tunnel barrier for an enhancement of the efficiency of
the spin injection from the ferromagnetic metal into the InSb
semiconductor enables one to increase this efficiency by 6 or-
ders of magnitude compared with the theoretically calculated
efficiency of the InSb/Co0.9Fe0.1 transparent contact without a
tunnel layer. Being strongly dependent on the presence of the
MgO tunnel barrier, the value of PJ is extremely sensitive to
the quality of a very thin MgO layer. Even a little difference
in the tunnel properties of the MgO layer between the
semiconductor and different ferromagnetic contacts can lead to
a well-marked difference in the efficiency of the spin injection
PJ for these contacts.

In spite of differing in the parameters of the spin injection ef-
ficiency PJ of different contacts from each other, from Eq. (16)
we can extract information about the system characteristic
dependent to a much lesser extent on the properties of the
particular contact. As such a characteristic, the ratio PS/PJ can
be used. According to (16), the ratio is directly proportional to
the density of the electric current flowing through the contact
injector, with the proportionality coefficient depending on the
characteristics of the semiconductor and the width of the
contact w:

PS/PJ = JC/JC, (20)

where

JC = 2 enD/w. (21)

FIG. 8. Dependence of the ratio of the polarizations (PS/PJ ) on
the ratio of the current densities (JC/JC). Circles and triangles denote
the injectors with a width of 6 and 4 μm, respectively.

Figure 8 represents these data in the coordinates (PS/PJ ) vs
(JC/JC). With such a choice of the variables, the experimental
data for PS of all the injector-detector pairs lie in one and the
same straight line: unfilled triangles represent the injector F4
(4 μm wide) and the detector F5, the open circles correspond to
the injector F2 (6 μm wide) and the detector F3. For the entire
current range (JC � JC), the spin polarization PS is signifi-
cantly less than the value of the current polarization PJ . The
smallness of the obtained values of PJ as compared to the ferro-
magnetic polarization P

(F)
S ≈ 0.224 may be due to two reasons.

Apparently, one of them is the imperfect MgO tunnel barrier
at the interface of the InSb semiconductor plate with the
ferromagnetic contacts. This is associated with defects in the
structure of the MgO layer. The defects of the tunnel barrier
result in a decrease in its resistance and the manifestation
of the conductivity mismatch effect [4] for the contact pair
Co0.9Fe0.1-InSb.

Another reason may be revealed even in case of a highly
perfect tunnel barrier with high resistance which minimizes
the conductivity mismatch effect. Such a contact can provide
a significant effect only if the tunneling layer acts as an
effective spin filter. The latter must transmit electrons with
one spin direction and reflect a significant portion of the
electrons with an opposite spin direction. These properties
of the tunnel junction are predetermined by the relation of the
energy spectrum parameters of the ferromagnetic CoFe and
MgO on the one hand and by InSb and MgO on the other hand.
However, a detailed discussion of these reasons is beyond the
scope of this work.

V. CONCLUSIONS

The basic relations of the theory of spin-charge coupling for
complete description of electric detection of nonequilibrium
spin density of the electrons injected into a semiconductor with
ferromagnetic metal contacts are formulated in the present
paper. The analytical expressions have been derived for the
electrical response of the ferromagnetic contact on a spin
disturbance in a semiconductor with an arbitrary dispersion
law of electrons and an arbitrary degree of degeneracy of the
electron gas.
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The authors discuss a scheme of nonlocal electrical detec-
tion of spin transport implemented in an InSb nondegenerate
semiconductor with Co0.9Fe0.1 ferromagnetic contacts under
the Hanle effect conditions. The foregoing allows one to
determine the spin diffusion length, the spin relaxation time
and the current injection efficiency, and also to calculate the
magnitude of polarization of the electron gas under an injector
as a function of the injection current.

The use of an MgO dielectric layer between the InSb semi-
conductor and the CoFe metal contact increases the current
injection efficiency. In our case, this increase is 6 orders of
magnitude in comparison with the current injection efficiency
of a transparent contact. However, the spin injection efficiency

does not reach the values comparable with polarization in a
ferromagnet. One of possible reasons for that is imperfectness
of the MgO layer, as well as a negligible performance of the
spin filter in the MgO layer that separates the CoFe metal and
the InSb semiconductor.
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