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Solving the Bethe-Salpeter equation for the second-harmonic generation in Zn chalcogenides
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The influence of excitonic and local-field effects on the second-harmonic-generation spectrum of zinc-blende
ZnS, ZnSe, and ZnTe is studied from first principles using the Bethe-Salpeter equation. The calculations are
based on the theory of R. Leitsmann et al. [Phys. Rev. B 71, 195209 (2005)], which we extended to the
low-frequency range. The dielectric function and the second-harmonic-generation spectrum have been obtained
within the independent (quasi)particle approximation and within the Bethe-Salpeter approach. The calculations
demonstrate that the linear and the nonlinear optical properties are similarly affected by excitonic and local-field
effects. The computed spectra are furthermore compared with measurements and calculations within the time-
dependent density-polarization functional theory (TD-DPFT) in the real-time framework. The present approach
most commonly suggests stronger excitonic effects than observed in the real-time TD-DPFT calculations, while
local-field corrections are comparably described. Although agreement is found between the Bethe-Salpeter
spectra and measurements for the dielectric function, deviations from the experimental data are observed for
second-harmonic generation.
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I. INTRODUCTION

For several years one has been able to calculate the
linear optical response from first principles by considering
excitonic and crystal local-field effects along with the full
quasiparticle band structure [1–4]. Within the many-body
perturbation theory (MBPT), the quasiparticle (QP) levels are
obtained by solving the QP equation [5,6], typically in the GW

approximation [7]. Based on the quasiparticle levels, excitonic
and local-field effects can be accounted for by solving the
Bethe-Salpeter equation (BSE) [8–10]. This approach is highly
successful for the linear optical properties of various bulk
materials, surfaces, and molecules [1–4,11].

On the other hand, the technique of second-order nonlinear
optical spectroscopy, e.g., the second-harmonic generation
(SHG), is a powerful tool in the experimental characterization
of materials due to its sensitivity for surfaces and interfaces
[12,13]. Presently, only a few SHG calculations go beyond
the independent (quasi)particle level of theory: Luppi et al.
[14] suggested an approach to calculate SHG within response
theory and the time-dependent density functional theory
(TDDFT), which was applied to compute the SHG spectra
of the cubic bulk materials SiC, GaAs, and AlAs, observing
the essential influence of excitonic and local-field effects.

Attaccalite and Grüning [15] and Attaccalite et al. [16]
formulated a real-time framework where the response func-
tions are obtained from the dynamical polarization by nu-
merical integration of the equations of motion for the Kohn-
Sham states. In that way, higher-order response functions
are calculated without additional computational effort, and
excitonic as well as local-field effects in the SHG spectrum
are accounted for using an appropriate effective Hamiltonian
[17–19]. Recently, the SHG spectra of zinc-blende ZnS, ZnSe,
and ZnTe have been calculated within the time-dependent
density-polarization functional theory (TD-DPFT) in the real-
time framework [20].
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SHG calculations based on MBPT have been performed
by Leitsmann et al. [21] and Chang et al. [22], who used the
Bethe-Salpeter approach, to compute the SHG spectrum of
bulk GaAs and additionally of AlP, AlAs, and GaP. Further-
more, Trolle et al. [23] studied the nonlinear optical properties
of monolayer MoS2 with a theory similar to that in Ref. [21].

The aim of the present study is to investigate the impact
of excitonic and local-field effects on the SHG spectra from
MBPT with the BSE approach. We use the zinc-blende Zn
chalcogenides as model systems since there are both measured
spectra [24] and results within the real-time TD-DPFT
framework [20] available for comparison. Furthermore, a
simplified three-band Wannier exciton model for ZnS (and
other cubic semiconductors) suggests the importance of
excitonic effects in the SHG spectrum [25]. Methodologically,
we use the formalism of Leitsmann et al. [21], which is
based on MBPT and response theory [26]. To obtain the
SHG spectra within this approach, it is necessary to evaluate
three-particle Green’s-function-like expectation values, which
are approximated with the aid of interacting electron-hole pair
states from the solution of the Bethe-Salpeter equation. An
issue of the present paper is the extension of this formalism
to low frequencies: We remove the divergence for the limit
ω → 0 present in the derivation in Ref. [21]. Ground-state
properties and quasiparticle band energies, on which the
determination of the optical response is based, are obtained
with hybrid DFT [27–29] (HSE03) and by a perturbative
solution of the QP equation (G0W0 method [30–32]).

This paper is structured as follows: We present the analytic
derivation and provide implementation details for the present
approach in Sec. II. The parameters for the ground-state and
quasiparticle calculations as well as for the computation of the
optical response are summarized in Sec. III. The results are
discussed in Sec. IV, and the conclusions are given in Sec. V.

II. THEORY

A. SHG equations including excitonic and local-field effects

The second-harmonic-generation process can be described
by the quadratic susceptibility tensor [26] χ (2)(−ω; ω1,ω2).
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The components P (2)
α (t) of the second-order polarization are

given for an incident monochromatic field E(t) = E0 e−iωt and
crystals with the zinc-blende structure by

P (2)
x (t) =

∑
βγ

χ
(2)
xβγ (−2ω; ω,ω)Eβ(t)Eγ (t) (1)

= 2χ (2)
xyz(−2ω; ω,ω)Ey(t)Ez(t), (2)

with analogous notation for Py and Pz. χ
(2)
αβγ (−2ω; ω,ω)

is the second-harmonic-generation tensor. The intrinsic per-
mutation symmetry, i.e., χ (2)

xyz = χ (2)
xzy , has been applied

from (1) to (2).
The Hamiltonian describing the interaction of optically

excited electrons and holes within the BSE approach is given
by [1–4]

H ex
vck,v′c′k′ = (εck − εvk)δvv′δcc′δk,k′ + 2

∫∫
drdr′ψ∗

ck(r)ψvk(r)v̄(r − r′)ψc′k′(r′)ψ∗
v′k′(r′)

−
∫∫

drdr′ψ∗
ck(r)ψc′k′(r)W (r,r′)ψvk(r′)ψ∗

v′k′(r′). (3)

The first term describes the excitation of noninteracting (quasi)particles with the respective energies εvk and εck at a point k of the
Brillouin zone (BZ). The second and the third terms with the statically screened Coulomb potential W (r,r′) and the nonsingular
part of the bare Coulomb potential v̄(r − r′) account for the electron-hole attraction and the crystal local-field effects, respectively.
The matrix elements are evaluated from the wave functions ψvk and ψck of valence and conduction states.

Now, one can define the two auxiliary functions,


α(�,cvk) := Acv
� (k)

∑
c′v′k′

pα
c′v′(k′)

[
Ac′v′

� (k′)
]∗

(4)

and

Zαβγ (�,�′,cvk) := [
α(�,cvk)]∗
[∑

c′

β(�′,c′vk)pγ

cc′ (k) −
∑
v′


β(�′,cv′k)pγ

v′v(k)

]
, (5)

where Acv
� (k) are the eigenfunctions to the eigenvalues E� of the exciton Hamiltonian and pα

nm(k) are the momentum matrix
elements. Additionally, we define

Zαβγ (�,�′) :=
∑
cvk

Zαβγ (�,�′,cvk). (6)

The auxiliary functions allow the following representation of the second-harmonic-generation tensor within the BSE approach
[as given by Eq. (42) of Ref. [21]]:

χ
(2)
αβγ (−2ω; ω,ω) = − ie3h̄3

2m3
eV

∑
�,�′

∑
cvk

{A(h̄ω̃,E�,E�′)[Zαβγ (�′,�) + Zαγβ(�′,�)]∗

− A(−h̄ω̃,E�,E�′)[Zαβγ (�′,�) + Zαγβ(�′,�)]

− B(h̄ω̃,E�,E�′ )[Zβγα(�′,�) + Zγβα(�′,�)]∗ + B(−h̄ω̃,E�,E�′)[Zβγα(�′,�) + Zγβα(�′,�)]}. (7)

The functions A and B are given by

A(h̄ω̃,E�,E�′) = 1

(E� + h̄ω̃)(E�′ + 2h̄ω̃)(h̄ω̃)3
, (8)

B(h̄ω̃,E�,E�′) = 1

(E� − E�′ + 2h̄ω̃)(E� + h̄ω̃)(h̄ω̃)3
, (9)

and the frequency ω is shifted by the positive broadening η, i.e., ω̃ = ω + iη. Equation (7) also exploits that

Zαβγ (�,�′) = [Zβαγ (�′,�)]∗, (10)

utilizing pα
nm(k) = [pα

mn(k)]∗.
The SHG tensor (7) becomes divergent for frequencies ω → 0 due to the factor ω̃−3 in the functions A and B. In order to lift

this divergence, we perform a partial fraction expansion for functions A and B following the procedure proposed by Ghahramani
et al. [33] and Aspnes [34] for the independent particle approximation (IPA). A and B can be expressed as

A(h̄ω̃,E�,E�′) =
∑

i=1,...,5

Ai(h̄ω̃,E�,E�′ ), (11)

B(h̄ω̃,E�,E�′ ) =
∑

i=1,...,5

Bi(h̄ω̃,E�,E�′). (12)
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The functions Ai and Bi are given in Appendix A. Appendix A also shows that A1,A2, and B1 are the only nonvanishing
contributions to the SHG tensor for crystals exhibiting the zinc-blende structure. The cancellation of the divergent contributions
related to A4 and B4 requires this special crystal symmetry. We mention that Ghahramani et al. [33] proved the vanishing of
related divergent terms for the IPA approach using k · p perturbation theory and finding an appropriate potential [see Eq. (A5) of
Ref. [33]]. Analogous access for the BSE approach has not been found within this study.

Employing the results above, the SHG tensor is given by

χ
(2)
αβγ (−2ω; ω,ω) = − ie3h̄3

2m3
eV

∑
�,�′

{
1

(2E�′ − E�)

[
1

E3
�′(E�′ + h̄ω̃)

− 16

E3
�(E� + 2h̄ω̃)

]
[Zαβγ (�,�′)∗ + Zαγβ(�,�′)∗]

− 1

(2E�′ − E�)

[
1

E3
�′(E�′ − h̄ω̃)

− 16

E3
�(E� − 2h̄ω̃)

]
[Zαβγ (�,�′) + Zαγβ(�,�′)]

− 1

(E� + E�′)

[
1

E3
�(E� + h̄ω̃)

− 1

E3
�′(E�′ − h̄ω̃)

]
[Zβγα(�,�′) + Zβγα(�′,�)∗]

}
. (13)

It is straightforward to obtain the expression for χ (2) within the IPA from Eq. (13): Since the exciton Hamiltonian H ex is
diagonal in the case of IPA, one can apply the replacement

IPA: Acv
� (k) = δcvk,�, Ecvk = εck − εvk, (14)

so that it follows for the auxiliary function 


IPA: 
α(�,cvk) = pα
cv(k) δcvk,�. (15)

Continuing in this way, one obtains the IPA-SHG equations in the formalism of Leitsmann et al. The details are given in
Appendix B. The equivalence to the IPA equations of Ghahramani et al. [33] and Aspnes [34] is also shown in Ref. [21].

Furthermore, applying time-reversal symmetry, Eq. (13) can be further simplified to the expression

χ
(2)
αβγ (−2ω; ω,ω) = − e3h̄3

2m3
eV

∑
�,�′

∑
s=±1

(
1

E� + E�′

[
1

E3
�(E� + sh̄ω̃)

− 1

E3
�′(E�′ − sh̄ω̃)

]
Im[Zβγα(�,�′)]

+ 1

2E�′ − E�

[
1

E3
�′(E�′ + sh̄ω̃)

− 16

E3
�(E� + 2sh̄ω̃)

]
{Im[Zαβγ (�,�′)] + Im[Zαγβ(�,�′)]}

)
, (16)

as shown in Appendix C.

B. Computation of the SHG spectrum

The exciton Hamiltonian (3) has to be diagonalized for
the computation of the SHG spectrum. Having obtained
the eigenvector-eigenvalue pairs, the SHG spectrum can be
calculated from Eq. (13) or Eq. (16). The numerical effort of
these computations is analyzed in the following. Defining the
two matrices

Ek,a,b,n(h̄ω̃; �,�′) := k

(a E� + b E�′)E3
�

1

(E� + n h̄ω̃)

(17)

and

βγ (�′,cvk) :=
∑
c′


β(�′,c′vk)pγ

cc′(k)

−
∑
v′


β(�′,cv′k)pγ

v′v(k), (18)

where k,a,b,n are real numbers, the subsequent expression
characteristic for Eq. (13) can be written in matrix formalism,∑

�,�′

k

(a E� + b E�′)E3
�

1

(E� + n h̄ω̃)

∑
cvk

Zαβγ (�,�′,cvk)

= Tr
{
E (h̄ω̃)

[
βγ 
+

α

]}
. (19)

The dependency of E on the constants k,a,b,n is suppressed,
and it is used for the trace of a matrix M in Eq. (19): Tr[M] =

∑
� M�,�. It is evident from Eq. (19) that setting aside the

ω-dependent matrix E , the leading order of computational
effort is three matrix-matrix multiplications to obtain Zαβγ ,
Zαγβ , and Zβγα . Focusing on computation time, we use
BLAS routines and MPI parallelization for the evaluation of
the algebraic operations. However, this requires additional
memory for the storage of the matrices 
, , and Z =  · 
+,
which have the size of the excitonic matrix (3).

Since the differences (2E� − E�′) in the denominators of
Eqs. (13) and (16) can cause divergent or singular numerical
results for positive excitonic eigenvalues E�, such cases for
E� and E�′ have to be handled separately. Exploiting the limit

lim
E�′→2E�

[A1(h̄ω̃,E�,E�′) + A2(h̄ω̃,E�,E�′)]

= −1

2

3h̄ω̃ + 4E�

E4
�(E� + h̄ω̃)2

=: Acorr(h̄ω̃,E�), (20)

we use the correction term

χ
(2),corr
αβγ (−2ω,ω,ω)

= − ie3h̄3

2m3
eV

∑
|2E�′−E�|<η

×{Acorr(h̄ω̃,E�′)[Zαβγ (�,�′)∗ + Zαγβ(�,�′)∗]

−Acorr(−h̄ω̃,E�′)[Zαβγ (�,�′) + Zαγβ(�,�′)]} (21)
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= − e3h̄3

2m3
eV

∑
|2E�′−E�|<η

∑
s=±1

×Acorr(sh̄ω̃,E�′){Im[Zαβγ (�,�′)]+Im[Zαγβ(�,�′)]}
(22)

to account for contributions with |2E�′ − E�| < η in the
numerical calculations. The expression (22) follows from (21)
by utilizing time-reversal symmetry similar to that for Eq. (16).
The correction contribution causes a small but visible change
in the line shape on the IPA level but is essential within the BSE
approach to ensure the stability of the numerical calculations.

III. COMPUTATION

Our purpose is to study the nonlinear optical properties
of the three zinc-blende-type wide-band-gap semiconductors,
ZnS, ZnSe, and ZnTe, with the methods presented in Sec. II.
Recently, the SHG spectrum was measured [24] and calcu-
lated within the TDDFT [20] framework for these three Zn
compounds.

In principle, the calculation of the optical properties can be
considered the third step of the ab initio calculation starting
with the determination of the ground state, followed by the
application of the GW approach to obtain an accurate band
structure, and finalized with the computation of the optical
spectra.

The ground state is obtained from hybrid DFT with the
HSE03 [27–29] functional as implemented in the Vienna Ab
initio Simulation Package (VASP) [35]. We use experimental
lattice constants, and the electron-ion interaction is described
using the projector augmented-wave (PAW) method [36,37]
with a plane-wave cutoff of 400 eV.

Based on the ground-state results, the QP energies are
evaluated with a perturbative solution (G0W0) of the QP
equation with the self-energy in the GW approximation [38].
We use the implementation according to Refs. [39–41]. Klimeš
et al. [42] showed that quasiparticle GW calculations require
careful convergence tests concerning the number of states
in the calculation of the self-energy and the plane-wave
cutoff in the response function to determine the screened
Coulomb potential W . Additionally, the calculation of the
optical properties requires a high k-point sampling. We use
160 states and a plane-wave cutoff of 200 eV for the response
function together with a -centered k-point sampling of up
to 18 × 18 × 18. The applied numerical parameters in the
G0W0 calculations induce error bars for band energies of
about 0.2 eV, as shown in Ref. [43]. The QP band gaps using
these parameters, summarized in Table I, are close to the
experimental values and, consequently, provide an accurate
basis for the calculation of the nonlinear spectra. However, we
also find that the calculated Zn 3d binding energies clearly
deviate from measured values. This can, in some part, be
improved by using GW PAW data sets or solving the QP
equation self-consistently [41,58]. Focusing here on the optical
properties, we refer to Ref. [43] for a detailed discussion of
the band gaps and additionally the positions of the d states for
the cubic Zn compounds. The influence of Zn 3d states on the
nonlinear optical properties will be discussed below.

TABLE I. Lattice constants (in Å), band gaps Eg (in eV), high-
frequency dielectric constants ε∞, and Zn 3d binding energies (in eV)
within hybrid DFT (HSE) and G0W0 for ZnS, ZnSe, and ZnTe used
to compute the second-harmonic-generation spectra. The values are
compared with experimental results from Refs. [44–57] (see Ref. [43]
for details).

ZnS ZnSe ZnTe

a 5.4102 5.6687 6.1035
Eg (HSE) 3.10 2.22 1.97
Eg (G0W0) 3.83 2.95 2.32
Eg (expt.) 3.66–3.84 2.7–2.83 2.18–2.39
ε∞ (HSE) 5.15 5.97 7.37
ε∞ (expt.) 5.13 5.4–6.3 7.1–7.4
Zn 3d (HSE) 7.43 7.84 8.42
Zn 3d (G0W0) 6.87 7.37 7.82
Zn 3d (expt.) 9.03 9.20, 8.9 9.84, 9.1

The exciton Hamiltonian is calculated following
Refs. [11,59–61] for the linear optical properties to obtain
the nonlinear optical response. In particular, the screening in
the screened Coulomb potential W in Eq. (3) is described
with the model dielectric function proposed by Bechstedt
et al. [62] to reduce computation time. The high-frequency
dielectric constants ε∞ are required as input parameters for the
model dielectric function. We use the HSE03 values calculated
in Ref. [43], which are summarized in Table I and exhibit
excellent agreement with experimental values [44,51–54,57].

To classify and discuss tendencies between different levels
of theory for the SHG spectrum, we also calculate the dielectric
function within the independent particle, the independent
quasiparticle (IQA) approximations, and the BSE approach.
In general, the hybrid-DFT energies εnk, which are used in
IPA, are replaced by the corresponding G0W0 energies ε

QP
nk

for the IQA. The optical matrix elements [see, e.g., Eq. (4)
of Ref. [63]] entering the calculation of the dielectric function
are evaluated according to the work of Gajdoš et al.[64] within
the longitudinal approach. The momentum matrix elements,
required for the calculation of the SHG spectrum, are obtained
from the longitudinal approach [65],

pα
mn(k) = me(εmk − εnk)

h̄
lim
q→0

1

q
〈mk|eiqr̂α |nk〉 (23)

(with the position operator r̂α), and rescaled according to

pα,QP
mn (k) = ε

QP
mk − ε

QP
nk

εmk − εnk
pα

mn(k) (24)

in the IQA calculations, as proposed in Ref. [21]. This rescaling
can be considered the introduction of an effective momen-
tum operator accounting for nonlocal effects in the (QP)
Hamiltonian [66]. The independent quasiparticle energies
and momentum matrix elements also enter the computations
corresponding to the BSE approach. We mention the study of
Cabellos et al. [67], which shows that gauge invariance for
SHG in the velocity gauge scheme (as used here) on the IQA
level is not ensured with the rescaling of pα

mn(k) according to
Eq. (24). Instead, additional terms, which affect corrections
in intensity and line shape of the SHG spectrum, are required
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(a) ZnS (b) ZnSe (c) ZnTe

FIG. 1. Imaginary part of the dielectric function for (a) ZnS,
(b) ZnSe, and (c) ZnSe calculated within the independent
(quasi)particle approximation [IPA (IQA)] and within the Bethe-
Salpeter approach (BSE). A Lorentzian broadening of η = 0.2 eV
has been applied. The calculations are compared with measurements
from Refs. [44,69] (Exp).

to obtain gauge invariance for χ (2). The inclusion of such
corrections is, however, beyond the scope of the present study.

The calculation of the dielectric function is performed
utilizing the time-evolution method [61,68]. Circumventing
a diagonalization of the exciton Hamiltonian, a sufficient
number of transitions between valence and conduction states
can be included in the latter computation (e.g., Zn 3d

states are also contained in the computation). However, a
diagonalization of the excitonic matrix is required to evaluate
the SHG spectra. To reduce the computational effort, the most
strongly contributing valence and conduction states have been
identified, and the effects related to the reduction of the number
of k points are discussed in the following section.

IV. RESULTS

The computed optical absorption spectra for ZnS, ZnSe,
and ZnTe are compared with measurements [44,69] at room
temperature in Fig. 1. The comparison of the calculated results
within the three levels of theory (IPA, IQA, and BSE) exposes
the following tendencies: (i) One observes a blueshift of
spectral features going from IPA to IQA, which is caused
by the increased single-particle excitation energies within the
G0W0 approach compared with hybrid DFT. (ii) The inclusion
of excitonic and local-field effects causes a redistribution of
oscillator strengths so that features in the dielectric function
are redshifted and modified compared with IQA.

The separate impacts of local-field effects and the attractive
electron-hole interaction on the dielectric function are also
shown in Fig. 2(a). To account for local-field effects (or the
electron-hole interaction) separately the spectrum has been
calculated based on the excitonic matrix H ex, discarding the
third (second) line in Eq. (3) [i.e., with W = 0 (v = 0)]. The
comparison in Fig. 2(a) shows that local-field effects cause
an overall reduction of the intensity, while the line shape is
marginally affected. Similar observations have been made by
Grüning and Attaccalite [20] for the cubic Zn compounds
when comparing the particular independent particle spectrum
(which is based on a band-gap-corrected band structure) and
the spectrum computed within the random-phase approxima-
tion (RPA), which accounts for the inclusion of local-field

2 4 6 8 10 12
Photon energy (eV)

0

5

10

15

Im
 ε

(ω
)

BSE
EXC
LFC
IQA

0 2 4 6
(Incoming) photon energy (eV)

0

0.5

1

1.5

2

2.5

3

|χ
(2

)
xy

z| (
Å

/V
)

(a) (b)

FIG. 2. Separate influence of local-field corrections (LFC) and
excitonic effects (EXC) on (a) the dielectric function and (b) the
SHG spectrum for ZnS compared with spectra computed within the
independent quasiparticle approximation (IQA) and within the BSE
approach (BSE). A Lorentzian broadening of η = 0.15 eV has been
applied. The highest three valence and lowest five conduction bands
have been included in the computations (see text for details).

corrections. The attractive electron-hole interaction, on the
other hand, is responsible for the redshift of spectral features
and for the oscillator-strength redistribution. The full BSE
spectrum originates from the interplay of local-field and
excitonic effects.

Although the BSE spectra generally show very good
agreement with the measurements from Refs. [44,69], the
following is to consider comparing the computed spectra with
experimental data: Spin-orbit (SO) interaction is neglected in
the present calculations. In particular ZnSe and ZnTe exhibit
a strong SO split for the upper valence bands of ∼0.4 and
∼0.9 eV (see Refs. [70,71] and references therein). This causes
a split of the respective first absorption peak in the absorption
spectra of ZnSe and ZnTe [20,72,73].

Before a similar analysis of the influence of many-body
effects can be performed for the nonlinear optical spectra, some
additional notes on the numerical parameters are required.
In particular, it is necessary to reduce the dimension of the
excitonic matrix, which has to be diagonalized. One finds that
Zn 3d states cause an average reduction of the SHG intensity
by 11%, 9%, and 6% for ZnS, ZnSe, and ZnTe, respectively,
on the level of IPA. The line shape is only marginally affected.
Excluding Zn 3d states, computations of the SHG spectra
with 512 k points show that it is sufficient to use the highest
three valence and lowest five conduction states in the BSE
calculations. In addition, we reduce the number of k points
to 16 × 16 × 16. Altogether, one finds that the main features
remain conserved in the dielectric functions within the BSE
approach and in the SHG spectra on the IPA level with these
downscaled parameters. Therefore, excitonic matrices with a
dimension of 61 440 have been diagonalized to compute the
SHG tensors within the BSE approach.

The results for the SHG spectra are shown in Fig. 3. The
present results are compared with measurements by Wagner
et al. [24] and with recent calculations within the real-time
TD-DPFT framework by Grüning and Attaccalite [20]. The
spectra with the parameter-free approximations for the TDDFT
exchange-correlation kernel, the jellium-with-gap model [74]
(JGM), and the model proposed by Berger [75] to describe the
polarization functional and within the real-time TDDFT with
the Perdew-Burke-Ernzerhof (PBE) functional [76] (TD-PBE)
from Ref. [20] are shown in Figs. 3 and 4.
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FIG. 3. SHG spectrum for (a) ZnS, (b) ZnSe, and (c) ZnTe
calculated within the independent (quasi)particle approximation [IPA
(IQA)] and within the Bethe-Salpeter approach (BSE). The BSE
calculations have been performed without Zn 3d states (see text
for further details). A Lorentzian broadening of η = 0.2 eV has
been applied. The calculations are compared with measurements by
Wagner et al. [24] (Exp) and calculations by Grüning and Attaccalite
[20] within the real-time TD-DPFT framework approximating the
polarization functional with the jellium-with-gap model [74] (TD-
JGM) or with the model proposed by Berger [75] (TD-Ber).

Tendencies similar to those for the dielectric function are
observed when comparing the three levels of theory (see
Fig. 3). In particular, the blueshift of spectral features going
from IPA to IQA is additionally accompanied by an intensity
reduction. This is a consequence of the product of four
excitation energy differences in the denominators of the SHG
terms together with the rescaling of the momentum matrix
elements [see also expression (B3)]. The intensity is essentially
increased when taking excitonic and local-field effects into
account. Up to some point, the peak structures in IPA can
be recovered in the BSE spectra, but generally with different
intensities. The separate impacts of local-field corrections and
excitonic effects on the SHG spectrum can be seen from
Fig. 2(b): Local-field effects mainly cause a uniform intensity
reduction, while the electron-hole interaction redshifts spectral
features, modifies the line shape, and increases the intensity.

1 2 3
0

0.5

1

|χ
(2

)
xy

z| (
Å

/V
)

1 2 3
(Incoming) photon energy (eV)

0

0.5

1

1.5

1 2 3
0

1

2

3

4

5

6TD-JGM
TD-Ber
TD-PBE
BSE
LFC

(a) ZnS (b) ZnSe (c) ZnTe

FIG. 4. SHG spectrum for (a) ZnS, (b) ZnSe, and (c) ZnSe
accounting for local-field corrections (LFC) and calculated within
the Bethe-Salpeter approach (BSE). The calculations have been
performed without Zn 3d states (see text for further details). A
Lorentzian broadening of η = 0.2 eV has been applied. The calcula-
tions are compared with those by Grüning and Attaccalite [20] within
the real-time TD-DPFT framework approximating the polarization
functional with the jellium-with-gap model [74] (TD-JGM) or with
the model proposed by Berger [75] (TD-Ber) and with real-time
TDDFT calculations with the PBE functional [76] (TD-PBE).

Similar observations about the influence of these two effects
also have been made by Luppi et al. [14] while studying the
SHG spectra of SiC, AlAs, and GaAs within the TDDFT
framework utilizing the static long-range kernel [77].

The basis for the comparison of the present results with the
calculations performed by Grüning and Attaccalite is given
by the fact that in both cases a similar band structure has
been applied (i.e., a PBE band structure with a corrected
band gap to reproduce the experimental value in Ref. [20]
and the HSE+G0W0 band structure in the present study).
The comparison of the relevant spectra is given in Fig. 4.
The coincidence between the TD-PBE spectra and the SHG
spectra accounting for local-field corrections is clearly visible
from Fig. 4. This can be explained by the experience [20] that
standard TDDFT spectra are close to those obtained within the
RPA accounting for local-field corrections within the TDDFT.
The additional inclusion of the excitonic contribution, either
within the real-time TD-DPFT framework or within the BSE
approach, particularly results in an intensity increase. The
intensity of the BSE spectra is by a factor of 3 to 1.3 larger than
the intensity of the corresponding spectra within the real-time
TD-DPFT framework for ZnS, ZnSe, and ZnTe (with the
model proposed by Berger [75]). The exception is the SHG
spectrum of ZnTe within the real-time TD-DPFT framework
employing the JGM [74], which generally exceeds the intensity
of the BSE spectrum. Therefore, the present approach mostly
suggests stronger excitonic effects than observed within the
real-time TD-DPFT framework in Ref. [20].

Comparing the BSE spectra with measurements by Wagner
et al., one finds that the present BSE calculations overestimate
the experimental intensities by factors of 2 to 3 in the
low-frequency region (i.e., at h̄ω 	 1 eV). The measured
intensity is underestimated by a factor of 2 for ZnS and ZnSe
as well as by factor of 1.6 for ZnTe for energies about 2
eV. Although the BSE spectra tend to come closer to the
experimental results than the IPA/IQA spectra for ZnS and
ZnTe, the visible deviations for SHG are clearly in contrast to
the agreement between the BSE spectra with the measurements
for the dielectric function. It has also been checked that
estimated horizontal error bars, given by 20% of the intensity
for the measurements [24] (see also Fig. 10 in Ref. [20]) and
estimated by 15% intensity reduction for the calculations (due
to the exclusion of Zn 3d states), and vertical error bars,
estimated by the accuracy of the band structure calculation
(∼0.2 eV) and temperature effects [46,78,79] (∼0.1 eV), do
not change the above conclusion at that point. Finally, the
influence of the SO interaction and gauge-invariance-related
corrections [67] on the SHG spectrum may also contribute to
the deviations between experiment and theory.

V. CONCLUSIONS

We used the theory of Leitsmann et al. [21], which accounts
for excitonic and local-field effects in the linear and nonlinear
optical responses, to study the second-harmonic-generation
spectrum of ZnS, ZnSe, and ZnTe from first principles. We
showed how this methodology can be extended to the limit
ω → 0. A major drawback of the present method is that the
excitonic matrix has to be diagonalized to obtain the SHG
spectrum. A similar influence of excitonic and local-field
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effects, i.e., a redshift of features in the spectrum with
additional line-shape modification compared with independent
particle calculations, is observed for the dielectric function and
for the second-harmonic-generation spectrum. More precisely,
local-field effects mainly decrease the intensity, while exci-
tonic effects increase the intensity, modify the line shape, and
redshift spectral features. The computed results for the nonlin-
ear optical spectrum have been compared with time-dependent
density (-polarization) functional theory calculations in the
real-time framework by Grüning and Attaccalite [20] as well
as with measurements by Wagner et al. [24]. The SHG spectra
obtained within the real-time TDDFT with the PBE functional,
which are close to spectra computed within the RPA, agree with
the present calculations accounting for local-field corrections.
In most cases, the calculations within the present approach
suggest larger excitonic effects than obtained within the
real-time TD-DPFT [20] framework. The comparison with
measurements [24] showed that, although the BSE spectra for
ZnS and ZnTe are closer to the experiment than the spectra
within the IPA and IQA, clear deviations are still apparent.
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APPENDIX A: DIVERGENT SHG CONTRIBUTIONS

The functions Ai and Bi in Eqs. (11) and (12) are given by
(with ε̃ := h̄ω̃)

A1(ε̃,E�,E�′ ) = 1

(2 E� − E�′)(E� + ε̃)E3
�

, (A1)

A2(ε̃,E�,E�′) = − 16

(2 E� − E�′)(E�′ + 2 ε̃)E3
�′

, (A2)

A3(ε̃,E�,E�′) = 1

E�E�′ ε̃3
, (A3)

A4(ε̃,E�,E�′) = −2 E� + E�′

E2
�E2

�′ ε̃2
, (A4)

A5(ε̃,E�,E�′) = 4 E2
� + 2 E�E�′ + E2

�′

E3
�E3

�′ ε̃
(A5)

and

B1(ε̃,E�,E�′) = 1

(E� + E�′)(E� + ε̃)E3
�

, (A6)

B2(ε̃,E�,E�′) =− 16

(E�+E�′)(E�−E�′ +2 ε̃)(E� − E�′)3 ,

(A7)

B3(ε̃,E�,E�′ ) = 1

(E� − E�′)E�ε̃3
, (A8)

B4(ε̃,E�,E�′) = − 3 E� − E�′

(E� − E�′)2E2
�ε̃2

, (A9)

B5(ε̃,E�,E�′ ) = 7 E2
� − 4 E�E�′ + E2

�′

(E� − E�′)3E3
�ε̃

. (A10)

It will be shown in the following that the contributions to the
SHG tensor arising from A3–A5 and B2–B5 vanish.

Exploiting the property

B2(ε̃,E�,E�′) = B2(−ε̃,E�′ ,E�) (A11)

together with Eq. (10), it is straightforward to show that
this contribution vanishes. The cancellation of contributions
related to A3–A5 and B3–B5 can be shown by taking time–
reversal symmetry into account. Time-reversal symmetry
implies that

ψnk(r) = [ψnk(r)]∗, pij (k) = −[pij (k)]∗, εnk = εnk,

(A12)

with k := −k for simplicity. One can directly show for the
exciton Hamiltonian (3) with Eqs. (A12) that

H ex
vck,v′c′k′ = [

H ex
vck,v′c′k

′
]∗

. (A13)

At this point, one way to proceed is to apply the spectral
theorem for Hermitian matrices. One can show by induction
for real functions f (E�),f ′(E�) ∝ E±n

� (with n > 0 being
integer and the one-to-one correspondence between k and k in
the BZ required)

[f (H ex)]vck,v′c′k′ =
∑
�

f (E�)Acv
� (k)

[
Ac′v′

� (k′)
]∗

=
∑
�

f (E�)
[
Acv

� (k)
]∗

Ac′v′
� (k

′
). (A14)

It follows for the auxiliary functions 
 and Z that∑
�

f (E�)
α(�,cvk) = (−1)
∑
�

f (E�)
[

α(�,cvk)

]∗

(A15)

and∑
��′

f (E�)f ′(E�′)Zαβγ (�,�′,cvk)

= (−1)
∑
��′

f (E�)f ′(E�′)[Zαβγ (�,�′,cvk)]∗. (A16)

Considering the A3 contribution, one has to add up contribu-
tions similar to∑

��′

∑
cvk

{A3(ε̃,�,�′) [Zαγβ(�′,�,cvk)]∗

− A3(−ε̃,�,�′) Zαγβ(�′,�,cvk)}

= 1

ε̃3

∑
��′

∑
cvk

1

E�E�′
{[Zαγβ(�′,�,cvk)]∗

+ Zαγβ(�′,�,cvk)},
which vanish due to time-reversal symmetry (A16) and since
one has for integration of a function g(k) over the whole BZ∫

BZ
d3k g(k) =

∫
BZ

d3k g(k). (A17)
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Another way to utilize the time-reversal symmetry of the
excitonic matrix (A13) is described in Appendix C and results
from the fact that only Im(Z) contributes to the SHG spectrum.

Taking additionally the algebraic property of Z [Eq. (10)]
into account, it can be shown with the same procedure that the
contributions related to A5, B3, and B5 vanish independently
of each other. The cancellation of contributions related to A4

together with B4 can be shown for crystals exhibiting the zinc-
blende structure utilizing

χ
(2)
αβγ = 1

3

[
χ

(2)
αβγ + χ

(2)
βγα + χ

(2)
γαβ

]
(A18)

and

A4(ε̃,E�,E�′) − A4(ε̃,E�′ ,E�)

= B4(ε̃,E�,E�′) − B4(ε̃,E�′ ,E�) = E�′ − E�

E2
�E2

�′ ε̃2
. (A19)

APPENDIX B: CROSSOVER BETWEEN BSE
AND IPA APPROACH

The three-band contribution of the IPA SHG equations are
given in Eq. (32) of Ref. [21] by (with h̄ωmn(k) := εmk − εnk)

χ
(2),three
αβγ (−2ω,ω,ω) = − ie3

m3
e h̄

2V

∑
n,m,l

′ ∑
k

pα
nm(k){pβ

ml(k)pγ

ln(k)}+
ωln(k) − ωml(k)

(
16fnm(k)

[ωmn(k)]3[ωmn(k) − 2ω̃]

+ fml(k)

[ωml(k)]3[ωml(k) − ω̃]
+ fln(k)

[ωln(k)]3[ωln(k) − ω̃]

)
. (B1)

The prime in the sum denotes that the summation runs over all single-particle states with n �= m �= l. We use the abbreviation{
p

β

ml(k)pγ

ln(k)
}

+ = 1
2

[
p

β

ml(k)pγ

ln(k) + p
γ

ml(k)pβ

ln(k)
]
. (B2)

Applying the occupation number differences fnm = 0, − 1,1 in the second addend of Eq. (B1), one finds

− ie3

m3
e h̄

2V

∑
k

{∑
vv′c

′ pα
vv′ (k)

{
p

β

v′c(k)pγ
cv(k)

}
+

ωcv(k) + ωcv′ (k)

1

ωcv′ (k)3[ωcv′ (k) + ω̃]
+

∑
vv′c

′ pα
vc(k)

{
p

β

cv′ (k)pγ

v′v(k)
}

+
2ωcv′ (k) − ωcv(k)

1

ωcv′ (k)3[ωcv′ (k) − ω̃]

+
∑
cc′v

′ pα
cv(k)

{
p

β

vc′ (k)pγ

c′c(k)
}

+
2ωc′v(k) − ωcv(k)

1

ωc′v(k)3[ωc′v(k) + ω̃]
+

∑
cc′v

′ pα
cc′ (k)

{
p

β

c′v(k)pγ
vc(k)

}
+

ωcv(k) + ωc′v(k)

1

ωc′v(k)3[ωc′v(k) − ω̃]

}
(B3)

On the other hand, using the IPA expressions (14) and (15), one finds for Z [see Eq. (5)]

IPA: Zαβγ (�,�′,cvk) =
∑
c′

[
pα

cv(k)
]∗

δ�,cvk p
β

c′v(k)δ�′,c′vk p
γ

cc′ (k) −
∑
v′

[
pα

cv(k)
]∗

δ�,cvk p
β

cv′ (k)δ�′,cv′k p
γ

v′v(k). (B4)

Note that the triple (cvk) is mapped on a single integer index.
Employing the IPA expressions of the matrices Z in the
BSE-related equation (13), one finds that the IPA and BSE
contributions with the prefactor 16 are related. Additionally,
it can be concluded from expression (B3) that the second
(and analogously the third) IPA addend [in Eq. (B1)] contains
contributions related to the remaining (2E� − E�′)−1 terms
as well as to the (E� + E�′)−1 terms in Eq. (13).

APPENDIX C: SIMPLIFICATION
WITH TIME-REVERSAL SYMMETRY

It can be found with Eqs. (A13) and (A17) that

∑
c′v′k′

Hvck,v′c′k′
[
Ac′v′

� (k
′
)
]∗ = E�

[
Acv

� (k)
]∗

. (C1)

This reveals that Bcv
� (k) := [Acv

� (k)]∗ (note the one-to-one
correspondence between k and k in the BZ) are also excitonic
eigenvectors to the eigenenergies E�. Consequently, the basic
SHG equation (7) can be rewritten with B� instead of A�. One
can define appropriate auxiliary functions 
̃ and Z̃ with the
properties


̃α(�,cvk) := Bcv
� (k)

∑
c′v′k′

pα
c′v′ (k′)

[
Bc′v′

� (k′)
]∗

(C2)

= −[
α(�,cvk)]∗ (C3)

and

Z̃αβγ (�,�′) = −[Zαβγ (�,�′)]∗. (C4)

The consequence is that only Im(Z) contributes to the SHG
spectrum.
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U. Grossner, and B. G. Svensson, J. Appl. Phys. 100, 043709
(2006).

[72] J. P. Walter, M. L. Cohen, Y. Petroff, and M. Balkanski,
Phys. Rev. B 1, 2661 (1970).

[73] S. Zh. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvåg, and
B. G. Svensson, Phys. Rev. B 75, 155104 (2007).

[74] P. E. Trevisanutto, A. Terentjevs, L. A. Constantin, V. Olevano,
and F. D. Sala, Phys. Rev. B 87, 205143 (2013).

[75] J. A. Berger, Phys. Rev. Lett. 115, 137402 (2015).
[76] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[77] S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C.

Weissker, A. Rubio, G. Onida, R. D. Sole, and R. W. Godby,
Phys. Rev. B 69, 155112 (2004).

[78] Y. F. Tsay, S. S. Mitra, and J. F. Vetelino, J. Phys. Chem. Solids
34, 2167 (1973).

[79] J. Camassel and D. Auvergne, Phys. Rev. B 12, 3258 (1975).

235206-10

https://doi.org/10.1063/1.2227266
https://doi.org/10.1063/1.2227266
https://doi.org/10.1063/1.2227266
https://doi.org/10.1063/1.2227266
https://doi.org/10.1103/PhysRevB.1.2661
https://doi.org/10.1103/PhysRevB.1.2661
https://doi.org/10.1103/PhysRevB.1.2661
https://doi.org/10.1103/PhysRevB.1.2661
https://doi.org/10.1103/PhysRevB.75.155104
https://doi.org/10.1103/PhysRevB.75.155104
https://doi.org/10.1103/PhysRevB.75.155104
https://doi.org/10.1103/PhysRevB.75.155104
https://doi.org/10.1103/PhysRevB.87.205143
https://doi.org/10.1103/PhysRevB.87.205143
https://doi.org/10.1103/PhysRevB.87.205143
https://doi.org/10.1103/PhysRevB.87.205143
https://doi.org/10.1103/PhysRevLett.115.137402
https://doi.org/10.1103/PhysRevLett.115.137402
https://doi.org/10.1103/PhysRevLett.115.137402
https://doi.org/10.1103/PhysRevLett.115.137402
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.69.155112
https://doi.org/10.1103/PhysRevB.69.155112
https://doi.org/10.1103/PhysRevB.69.155112
https://doi.org/10.1103/PhysRevB.69.155112
https://doi.org/10.1016/S0022-3697(73)80064-2
https://doi.org/10.1016/S0022-3697(73)80064-2
https://doi.org/10.1016/S0022-3697(73)80064-2
https://doi.org/10.1016/S0022-3697(73)80064-2
https://doi.org/10.1103/PhysRevB.12.3258
https://doi.org/10.1103/PhysRevB.12.3258
https://doi.org/10.1103/PhysRevB.12.3258
https://doi.org/10.1103/PhysRevB.12.3258



