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NMR in an electric field: A bulk probe of the hidden spin and orbital polarizations
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Recent theoretical work has established the presence of hidden spin and orbital textures in nonmagnetic
materials with inversion symmetry. Here, we propose that these textures can be detected by nuclear magnetic
resonance (NMR) measurements carried out in the presence of an electric field. In crystals with hidden
polarizations, a uniform electric field produces a staggered magnetic field that points to opposite directions
at atomic sites related by spatial inversion. As a result, the NMR resonance peak corresponding to inversion
partner nuclei is split into two peaks. The magnitude of the splitting is proportional to the electric field and
depends on the orientation of the electric field with respect to the crystallographic axes and the external magnetic
field. As a case study, we present a theory of electric-field-induced splitting of NMR peaks for 77Se, 125Te, and
209Bi in Bi2Se3 and Bi2Te3. In conducting samples with current densities of �106 A/cm2, the splitting for Bi can
reach 100 kHz, which is comparable to or larger than the intrinsic width of the NMR lines. In order to observe
the effect experimentally, the peak splitting must also exceed the linewidth produced by the Oersted field. In
Bi2Se3, this requires narrow wires of radius �1 μm. We also discuss other potentially more promising candidate
materials, such as SrRuO3 and BaIr2Ge2, whose crystal symmetry enables strategies to suppress the linewidth
produced by the Oersted field.
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I. INTRODUCTION

In nonmagnetic crystals with inversion symmetry, all
electronic bands are at least twofold degenerate. Until recently,
it was believed that this twofold degeneracy would prohibit
the appearance of nonzero spin textures. This view has been
dispelled through the discovery that degenerate Bloch states
can have nonzero spin [1,2] and orbital [3] polarizations when
projected to real-space positions whose local symmetry lacks
an inversion center.

The local spin and orbital polarizations of a pair of degen-
erate bands of energy Ekn at a particular crystal momentum k
and position r read

Skn(r) ≡
∑

n′∈deg

〈ψkn′ |S(r)|ψkn′ 〉,

Lkn(r) ≡
∑

n′∈deg

〈ψkn′ |L(r)|ψkn′ 〉, (1)

where |ψkn〉 is a Bloch state at momentum k and band n, S(r)
and L(r) are the electronic spin and orbital angular momentum
operators projected onto position r, and n′ is summed over
the pair of degenerate bands of energy Ekn. Both Skn(r) and
Lkn(r) are generally nonzero for inversion symmetric and
nonmagnetic crystals, provided that k �= 0 and r does not
coincide with the inversion center of the crystal. In addition,
spin-orbit interactions are required for Skn(r) �= 0, but not for
Lkn(r) �= 0.

The spin and orbital polarizations in Eq. (1) are “hidden” in
two ways. First, they take opposite directions in atoms related
by spatial inversion, such that the average of spin or orbital
texture over a unit cell vanishes,

∫
cell

d3r Skn(r) =
∫

cell
d3r Lkn(r) = 0. (2)

This is a consequence of the global inversion symmetry in the
crystal. Second, upon summing over occupied states in the
first Brillouin zone, the momentum-space polarizations add to
zero, ∑

kn

Skn(r)fkn =
∑
kn

Lkn(r)fkn = 0, (3)

where fkn is the Fermi-Dirac distribution. In other words, there
is no net electronic magnetization anywhere in real space. This
is a consequence of time-reversal symmetry, which enforces
Skn(r) = −S−k,n(r) and Lkn(r) = −L−k,n(r).

By their very nature, detecting the hidden polarizations
experimentally can be subtle. Thus far, various ways have been
proposed to render the hidden spin polarization visible. First,
the average over the unit cell in Eq. (2) can be made nonzero
by breaking the bulk inversion symmetry at the surface.
The resulting net spin polarization is accessible to surface
sensitive probes [2]. Second, in layered materials, a light beam
penetrating the crystal along the stacking direction probes
predominantly the topmost layer. This fact has enabled the
detection of the hidden spin polarization in WSe2 [4]. Third,
in certain materials such as MoS2, spin-dependent dipole
selection rules allow to probe the hidden spin polarization
under irradiation by circularly polarized light [5].

In this work, we will be interested in another way of
detecting the hidden spin and orbital polarizations. We begin
by recognizing that the sum over occupied Bloch states in
Eq. (3) can become nonzero when the electronic occupation
factors are driven away from the Fermi-Dirac distribution,
fkn → fkn + δfkn. If δfkn �= δf−kn, i.e., if the occupations of
Bloch states at k and −k are different, a net spin or orbital
polarization emerges at a site r away from the inversion centers.
This is the case, for instance, when an electric field is applied to
a conducting crystal. More generally, electric fields change not
only the occupation factors, but also the Bloch wave functions.
The latter effect also leads to a nonzero sum in Eq. (3) by
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altering Bloch wave functions at k and −k in an asymmetric
manner. Because the momentum-space spin textures are
opposite at inversion partner sites, the net real-space spin or
orbital polarization induced by an electric field will likewise
have opposite directions at sites related by inversion symmetry,
thereby forming a staggered, antiferromagneticlike pattern
inside each unit cell. The objective of the present work is to
show that this pattern may be detectable by nuclear magnetic
resonance (NMR).

The idea that electric fields can induce real-space spin
textures has attracted significant interest in spintronics in
general and in the development of new magnetic memory
devices in particular [6]. For example, the hidden spin
polarization enables to write information in antiferromagnetic
memory devices using electric fields. The use of NMR in
the detection and characterization of hidden polarizations
could bring this powerful experimental technique closer to
spintronics applications.

The remainder of this paper is organized as follows. In
Sec. II, we present the formalism to evaluate the influence of
an electric field in the NMR shifts and linewidths. In Sec. III,
we apply the formalism to Bi2Se3 and Bi2Te3, two materials
with hidden spin and orbital polarization. In Sec. IV, we
identify other potentially promising materials on grounds of
crystal symmetry. In Sec. V, we summarize our findings and
outline some future directions of research. Appendix explains
the symmetry arguments that are invoked throughout the main
text.

II. ELECTRIC-FIELD-INDUCED SPLITTING OF THE
NMR PEAK

In this section, we will present the general ideas and
formalism on how an electric field changes the NMR frequency
and linewidth.

A. Formalism

The resonance frequency for a spin 1/2 nucleus located at
position r0 can be written as

ω(r0) = γ (r0)Hloc(r0), (4)

where γ (r0) is the nuclear magnetogyric ratio and Hloc(r0)
is the local magnetic field acting on the nucleus [7]. The
local field can be separated into different contributions,
Hloc(r0) = Hext + Hcont(r0) + Hdip(r0) + Horb(r0), where Hext

is the uniform and static external magnetic field and

Hcont(r0) = −2

3
μ0gsμB〈S(r0)〉,

Hdip(r0) = μ0

4π
gsμB

∫
d3r

〈S(r)〉 − 3r̂′〈S(r)〉 · r̂′

r ′3 ,

Horb(r0) = μ0

4π

∫
d3r

r′ × 〈J(r)〉
r ′3 (5)

are the contact, dipolar, and orbital fields generated by the
electrons in the sample. In Eq. (5), μ0 is the magnetic
permeability in vacuum, μB is the Bohr magneton, gs = 2
is the bare electronic g factor, r′ ≡ r − r0, and r̂′ = r′/r ′.
Also, 〈S(r)〉 and 〈J(r)〉 are the expectation values of the local

electronic spin- and current-density operators at position r,

S(r) = σ |r〉〈r|/2,

J(r) = − e

2
{v,|r〉〈r|} − e2

m
A(r)|r〉〈r|, (6)

where σ is a vector of Pauli matrices, e and m are the electron’s
charge and mass, {,} is an anticommutator, v is the velocity
operator, and A is the vector potential.

If the nuclear spin exceeds 1/2, quadrupolar effects partially
split the nuclear spin levels even when Hloc = 0. However,
because the quadrupolar moment is even under time-reversal,
a degeneracy remains between nuclear spin states that are
time-reversed partners. This residual degeneracy is then split
in the presence of a local magnetic field, following Eq. (4).

In usual NMR, the external static field Hext is used to
spin-polarize electrons and to produce orbital currents, both
of which contribute to Hloc(r0). In linear response,

Hloc(r0) = Hext + χH(r0) · Hext, (7)

where the tensor χH(r0) characterizes the electronic response
to the external magnetic field. The internal field χH(r0) ·
Hext shifts the nuclear resonance frequency from its value
in vacuum. In principle, Hloc(r0) (and thus the resonance
frequency) is identical for all nuclei of the same species
located at symmetry-equivalent lattice sites. In practice, the
resonance peak has a finite linewidth because local defects,
inhomogeneities in the carrier density and interactions with
neighboring nuclei lead to a distribution of the resonance
frequencies for equivalent nuclei. From here on, we refer to
this linewidth as the “intrinsic” linewidth.

In this work, we are interested in an additional contribution
to Hloc that arises in the presence of an electric field E. As
mentioned in Introduction, an electric field produces staggered
spin and orbital-current densities in crystals hosting hidden
spin and orbital polarizations. From Eq. (5), these spin and
orbital polarizations result in a staggered magnetic field Hstag

that takes opposite directions for two nuclei of the same species
located at inversion partner sites. Then, the total local field
reads

Hloc(r0) = Hext + χH(r0) · Hext + Hstag(r0), (8)

where Hstag(r0) �= 0 only in presence of an electric field, and
only if r0 is not an inversion center. As we discuss below, the
direction of Hstag depends on the direction of E as well as on
the symmetry of the crystal. In this work, we will concentrate
in the common situation where Hext 
 |χH · Hext| and Hext 

Hstag. Nevertheless, Hstag need not be small compared to |χH ·
Hext|, mainly because Hstag is independent of Hext in linear
response.

Under a uniform electric field, Hstag does not vary from one
unit cell to another (though, of course, it varies inside each
unit cell in a staggered fashion). Consequently, Hstag splits the
resonance peak of a type of nucleus in two, without introducing
additional broadening. For a given Hstag, the magnitude of the
splitting depends on the angle between Hstag and Hext. As
illustrated in Fig. 1, it is only the component of Hstag parallel
to Hext that contributes to the splitting. If Hstag ⊥ Hext, all
inversion partner nuclei have the same resonance frequency.
If Hstag is not perpendicular to Hext, the resonance frequencies
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FIG. 1. The nuclear resonance frequency at inversion partner sites
depends on the relative orientation between the staggered magnetic
field and the external magnetic field. In (a), Hext is perpendicular
to Hstag, and the two sites have the same resonance frequency ∝
[(Hext + χH Hext)2 + H 2

stag]1/2. In (b), Hext is aligned (or antialigned)
with the staggered field and, consequently, the two sites have different
resonance frequencies ∝ (Hext + χH Hext ± |Hstag|). Here, χH · Hext

is the internal magnetic field produced by the electrons in response to
Hext. For brevity, we have assumed that χH · Hext is parallel to Hext.

of inversion partner nuclei differ from one another (by the
component of Hstag parallel to Hext). The height of the two
peaks is half the height of the parent peak. For sufficiently
high electric fields, the splitting between the two peaks can
become comparable to or larger than the intrinsic linewidth of
each peak. It is in this regime that NMR can work as a probe
of the hidden spin and (or) orbital polarizations.

In order to make the preceding statements quantitative,
a recipe is needed to compute Hstag. Here, we consider a
uniform and static electric field, and adopt the linear response
expressions introduced in earlier work [8],

δ〈O(r)〉 = δ〈O(r)〉intra + δ〈O(r)〉inter1 + δ〈O(r)〉inter2 (9)

for O(r) = S(r),J(r), where

δ〈O(r)〉intra

= − eh̄

2�

∑
Ekn=Ekn′

〈ψkn|O(r)|ψkn′ 〉〈ψkn′ |v · E|ψkn〉 ∂fkn

∂Ekn

,

δ〈O(r)〉inter1

= −2eh̄
∑

Ekn �=Ekn′

Re[〈ψkn|O(r)|ψkn′ 〉〈ψkn′ |v · E|ψkn〉]

× �(Ekn − Ekn′)

[(Ekn − Ekn′)2 + �2]2
(fkn − fkn′),

δ〈O(r)〉inter2

= −eh̄
∑

Ekn �=Ekn′

Im[〈ψkn|O(r)|ψkn′ 〉〈ψkn′ |v · E|ψkn〉]

× �2 − (Ekn − Ekn′ )2

[(Ekn − Ekn′)2 + �2]2
(fkn − fkn′) (10)

are the intraband and interband contributions and � is a phe-
nomenological electronic scattering rate (in units of energy).
Notationwise, δ〈O(r)〉 denotes the change in the expectation

value of O(r) due to the electric field. Evaluating Eqs. (9)
and (10) and inserting the outcome in Eq. (5), we obtain the
E-induced part of the local field, namely, Hstag(r0). The contact
and dipolar parts of Hstag vanish in the absence of spin-orbit
interactions, whereas the orbital part does not. It must be noted
that Horb contains a staggered as well as a nonstaggered part.
The latter corresponds to the Oersted field created by a uniform
electric current. This part will be left out of Hstag and will be
treated separately below.

The sums in Eq. (10) are carried out over the first Brillouin
zone and over all energy bands (with the indicated constraints
for intraband and interband parts). The evaluation of these
sums requires the knowledge of the electronic structure of the
material, the chemical potential, and the electronic scattering
rate. Concerning the electronic structure, it should in principle
be computed in the presence of Hext. We will, however, content
ourselves with the energy bands and Bloch wave functions at
zero external field, which is justified by the fact that we are
interested in the linear response to electromagnetic fields. In
regards to the chemical potential, it may be extracted from
experimental measurements of the carrier density. When it
comes to the scattering rate �, it may be obtained by calculating
the conductivity of the system with the Kubo formula and
varying � in order to match it to the experimental value.

The expressions in Eq. (10) are valid when � is small: in
conducting samples, � must be smaller than the Fermi energy
(measured from the band edge); in insulating samples, � must
be smaller than the energy gap. If these conditions are not met,
one may resort to more general expressions based on Green’s
functions [9]. We have verified that the small scattering rate
approximation is valid in the parameter regime considered
below.

In the small � regime, δ〈O(r)〉intra ∝ 1/�, δ〈O(r)〉inter1 ∝
� and δ〈O(r)〉inter2 is independent of the scattering rate.
Consequently, in highly conducting crystals, δ〈O(r)〉intra is
often dominant. On the contrary, in poorly conducting crystals,
the interband part takes over. Moreover, in crystals with
time-reversal symmetry, δ〈O(r)〉inter2 = 0 (much like the Hall
conductivity vanishes in time-reversal symmetric crystals).

Formally, the relation between the applied electric field and
the staggered magnetic field can be written as

Hstag(r0) = χE(r0) · E, (11)

where χE(r0) is a magnetoelectric susceptibility tensor at the
nuclear site r0. The form of this tensor, and hence the relative
direction between the electric field and the staggered magnetic
field, depend on the space group symmetry of the material.
This consideration will play an important role in Secs. III and
IV. It is likewise important to recognize that χE scales with
the conductivity σ of the crystal. This is evident from Eq. (10),
where replacing O(r) by the velocity operator amounts to
calculating the electric current produced by a uniform electric
field (modulo a prefactor). For instance, in good conductors
dominated by the contact interaction, a dimensional analysis
shows that

χE(r) ∼ μ0μBσ

evF

|Skn(r)|, (12)

where |Skn(r)| denotes the average of the magnitude of
the (dimensionless) hidden spin polarization over the Fermi
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surface, and vF is the (averaged) Fermi velocity. In a bad
conductor, where the interband transitions are dominant, a
relation similar to Eq. (12) still applies, but the Fermi surface
matrix elements of the spin and velocity operators are replaced
by interband matrix elements (e.g., between the top of the
valence band and the bottom of the conduction band). In
perfect insulators with time reversal symmetry, an electric field
does not induce a staggered magnetization.

For the purpose of comparison, let us recall that an
external electric field induces an electric polarization in
perfect insulators with time reversal symmetry. Moreover,
the polarizability of dielectrics remains finite in the � → 0
limit. The key behind the difference between the electric and
magnetic cases lies in the fact that electrical polarization is
even under time reversal, whereas the staggered magnetic
field is odd. In fact, the direct counterpart of the dielectric
polarization in our problem at hand resides in δ〈O(r)〉inter2,
which would give a �-independent staggered magnetic field
in an insulator with broken time-reversal symmetry.

In sum, highly conducting samples with large hidden po-
larizations are good candidates for achieving a strong electric-
field-induced splitting of NMR peaks. However, although
having a large hidden spin or orbital polarization is always
favorable, highly conducting samples result in an unwanted
NMR linewidth that can mask the peak splitting. Next, we
discuss this problem and possible solutions to it.

B. Current-induced linewidth

In conducting crystals, an electric field produces a linewidth
of the resonance peaks which, if sufficiently pronounced,
can mask the peaks splitting caused by the staggered field.
There are two sources to this linewidth: (i) the change in the
imaginary part of the spin and orbital susceptibility due to an
electric field, and (ii) the Oersted (“Amperian”) magnetic field
Hamp created by the electric current.

Source (i) implies a change in the T1 relaxation time in
the presence of an electric field. Concentrating on the Fermi
contact interaction (though the conclusion below will apply to
dipolar and orbital contributions as well), the relaxation rate
[10] at temperature T reads

1/T1(r0) ∝ T
∑

q

χ ′′
⊥,H(q,ω0,r0), (13)

where χ ′′
⊥,H(q,ω0,r0) is the imaginary part of the local

transverse magnetic susceptibility at momentum q and at the
resonance frequency ω0. To leading order in ω0 (which is a
small parameter in relation to characteristic electronic energy
scales and disorder broadening), we find [11] that the change
of χ ′′

⊥,H produced by an electric field is odd under q → −q.
Hence, given the sum over q in Eq. (13), there is no change in
T1 to leading order in E and ω0.

The linewidth produced by the Amperian magnetic field
Hamp is more insidious, not least because it does not disappear
at low temperature. Inside a cylindrical wire with a uniform
current density J ,

Hamp(r) = μ0J r

2
φ̂, (14)

where r is the distance from the wire axis and φ̂ is the
azimuthal unit vector. The Amperian field circulates in real
space, with an average of zero for any nuclear species in the
bulk. Therefore the Amperian field produces a distribution of
resonance frequencies with zero mean, i.e., a linewidth, with
no net shift in the resonance frequency (this is the opposite
state of affairs compared to Hstag, which shifts the resonance
frequency without broadening it).

For latter reference, let us estimate the Amperian linewidth.
For simplicity, we suppose that the external magnetic field is
large compared to the maximum Amperian field inside the
sample. Then, to first order in J , we can limit ourselves to
the component of Hamp that is parallel (or antiparallel) to
Hext. Indeed, the component of Hamp perpendicular to Hext

contributes to the linewidth only to second order, i.e., it can
be neglected in linear response theory. Assuming that Hamp

is coplanar to Hext, a straightforward calculation shows that
the fraction of nuclei “seeing” a field between Hext + H and
Hext + H + dH is given by

ρ(H )dH = 2

π

dH

Hamp(R)

√
1 −

(
H

Hamp(R)

)2

×�(|Hamp(R)| − |H |), (15)

where H is an arbitrary field along the direction of the
external field, dH is a small interval, Hamp(R) = μ0JR/2
is the magnitude of the Amperian field at the surface of the
wire, and �(x) is the Heaviside function. We verify that∫ ∞
−∞ ρ(H )dH = 1. Equation (15) gives the current-induced

distribution of the resonance frequencies for any nuclear
species. It shows that the resonance peak loses its height and is
broadened as the current density increases, the linewidth being
given by �2Hamp(R).

The NMR peak splitting produced by Hstag can be ex-
perimentally resolved if it is comparable or larger than the
combined intrinsic and Amperian linewidths. The staggered
field and the intrinsic linewidth are independent of the wire
radius (unless the wire is so narrow that quantum confinement
effects become significant, a circumstance that we do not
consider here), while the Amperian linewidth grows linearly
with the wire radius. This implies that the staggered field will
be masked by the Amperian linewidth when the wire radius
exceeds a certain value. We will return to this point below.

In order to eliminate the undesirable Amperian linewidth,
one might be tempted to work with samples that are as insulat-
ing as possible. However, this is not a good strategy because χE

scales roughly as the conductivity of the sample [cf. Eq. (12)]:
in perfectly insulating samples with time-reversal symmetry,
the staggered field vanishes. A better strategy is to apply the
external magnetic field parallel to the current: in this case, Hamp

is perpendicular to Hext and, as mentioned above, the Amperian
contribution to the linewidth becomes negligible to first order
in the current density. However, this strategy will work only if
Hstag has a nonzero component parallel to the current. Whether
or not this is the case depends on the material, as we will show
in Secs. III and IV.

In the light of the preceding discussion, there are various
questions that must be answered in order to assess the utility
of NMR as a probe of the hidden spin and orbital polarization.
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Is it experimentally possible to attain an electric field at which
the splitting of the resonance peak becomes comparable to or
larger than its intrinsic linewidth? Is the necessary electric field
sufficiently high that the Joule heating will be problematic,
and can the contribution of the current-induced staggered field
be distinguished from the background of the Amperian field?
The answers to these questions are nucleus- and material-
dependent.

In the next section, we proceed with a detailed study of
two candidate materials, where hidden spin and orbital polar-
izations exist and where NMR spectra have been measured
in the absence of electric currents. In a later section, we
will discuss other materials which, according to symmetry
arguments, could prove more promising.

III. APPLICATION TO Bi2Se3 AND Bi2Te3

The crystal structures of Bi2Se3 and Bi2Te3 allow for
the existence of hidden spin and orbital polarizations [2].
Since these materials are strongly spin-orbit coupled, they
constitute interesting (though likely not ideal [2]) candidates
to attain sizable values of electric-field-induced staggered
spin densities. Moreover, these compounds can develop
antiferromagnetic order upon magnetic doping [12], which
opens the prospect of steering the Néel order parameter via
current-induced staggered spin and orbital densities. Adding
to the interest, the past five years have witnessed numerous
NMR experiments in Bi2Se3 and Bi2Te3 [13], which have led
to a characterization of the shifts and linewidths for 77Se,
125Te, and 209Bi in the absence of external electric fields.
These experiments have been largely spurred by the fact that
Bi2Se3 and Bi2Te3 are topological insulators [14], although
band topology will not play a significant role in our results.

The crystal structure of Bi2Se3 consists of an ABC stacking
of monoatomic triangular lattices normal to the c axis. These
layers are grouped into quintuple layers (QL) of strongly
bounded planes, while neighboring QL interact mainly through
van der Waals forces. Each QL contains two equivalent “outer”
Se planes (Seout), two equivalent Bi planes, and another “inner”
Se plane (Sein) located at the center of inversion. Due to the
ABC stacking, the primitive rhombohedral unit cell spans three
QL and contains five atoms: two Seout(related by inversion
symmetry), two Bi (related by inversion symmetry), and one
Sein. An identical crystal structure applies to Bi2Te3, upon
replacing Se by Te. Below, we will denote as z the direction
perpendicular to the QL, while x and y will indicate orthogonal
axes in the plane of the QL [14].

We compute the electronic structure of these materials
by adopting a sp3 tight-binding description of the single-
electron Hamiltonian with spin-orbit interactions [15]. We
have detailed this model and its application to the calculation of
NMR shifts in earlier work [16]. Next, we present our results.

A. Results

Figure 2 illustrates the momentum-space spin and orbital
textures for Bi2Se3, projected onto a Bi and a Seout site, in
the absence of electric fields. These textures are calculated
according to the definitions from Ref. [3]. We show only the s-
orbital contribution to the spin textures, relevant to the contact
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FIG. 2. Momentum-space spin and orbital textures for Seout

[(a) and (c)] and Bi [(b) and (d)] in Bi2Se3. (a) and (b) show the
textures at the bottom of the conduction band and (c) and(d) display
the textures at the top of the valence band. Momentum in the kz = 0
plane is measured in units of the unit cell lattice parameter (axy , in
the xy plane). Angular momenta are measured in units of h̄.

interaction. Both orbital and spin textures are considerable, but
the former can be up to an order of magnitude larger (reaching
up to 0.5h̄). We have verified that the textures vanish when
projected onto inversion centers (Sein sites) and that their
directions are opposite at inversion partner sites.

In the presence of an electric field, we combine Eqs. (5) and
(10) in order to obtain the staggered field acting on the nuclei.
The form of the magnetoelectric tensor χE [cf. Eq. (11)] is
consistent with the R3̄m space group symmetry of Bi2Se3 and
Bi2Te3 (see Appendix),

χE(r0) =
⎛
⎝ 0 χxy(r0) 0

−χxy(r0) 0 0
0 0 0

⎞
⎠. (16)

It follows that Hstag · E = 0, and Hstag = 0 when E||ẑ. When
the electric field is along x (y), the staggered magnetic field
points at y (−x). Once again, inversion partner sites have
opposite signs of χE(r0) (see Appendix).

Figures 3–5 display the magnitude of Hstag at different
nuclei, as a function of the carrier density (for fixed electronic
scattering rate �) and as a function of � (for fixed carrier
density). In Bi, the main contribution to the staggered field
comes from the contact term Hcont, in part due to the strong
atomic spin-orbit coupling. In contrast, in Seout and Teout,
which are lighter and have smaller hyperfine couplings [16],
the contact part is suppressed and the orbital part plays a
leading role.
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FIG. 3. Electric-field-induced staggered magnetic field as a func-
tion of the carrier density for different nuclei in Bi2Se3 and Bi2Te3, at
room temperature, for a fixed electronic scattering rate � = 10 meV
and a fixed current density J = 106 A/cm2.

In the metallic regime (Fig. 4), the intraband part from
Eq. (10) dominates. When the carrier concentration is low
(Fig. 5), the intraband part dominates as � → 0, but the
interband part takes over as � increases. For conducting
samples, we choose to represent the staggered field in terms of
the current density rather than the electric field. To calculate
the current produced by a given electric field for fixed carrier
density and electronic scattering rate, we make use of the
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tion of the electronic scattering rate in Bi2Se3 and Bi2Te3, at
room temperature, for fixed carrier density n � 1015 cm−3 and fixed
electric field E = 106 V/m. Except for very small values of �, Hstag

increases with �. This confirms that interband (non-Fermi-surface)
contributions make the dominant contribution to the staggered field
in poorly conducting samples.

standard Kubo formula, which, modulo prefactors, amounts
to replacing O(r) by the velocity operator in Eq. (10). For
carrier densities of the order of 1019 cm−3, a current density
of 106 A/cm2 produces staggered fields of the order of 1 mT
at Bi sites. The staggered field is up to an order of magnitude
smaller at Seout and Teout sites. In experiments, the typical
intrinsic linewidth of the Se and Bi NMR peaks is of the order
of 10 and 100 kHz, respectively, which in field units is within
0.1–1 mT. Thus, for J � 106 A/cm2, the staggered fields in
Bi and Se can produce peak splittings in excess of the intrinsic
linewidth.

Although Figs. 3–5 give a quantitative idea for the order
of magnitude of Hstag, in reality the electronic scattering rate
and the carrier density are not independent variables. In order
to obtain more reliable results, we take the carrier densities
and resistivities provided by various experiments [17–22], and
from there calculate the staggered field. The outcome is shown
in Fig. 6, which displays the dependence of the staggered
field on the current density. This figure confirms that sizable
staggered magnetic fields of the order of 1 mT (0.1 mT) can
be expected for Bi (Seout) in conducting samples for current
densities of 106 A/cm2. In comparison, for similar current
densities, the spin-orbit fields in ferromagnetic (Ga, Mn)As
and the staggered fields in the antiferromagnetic Mn2Au are
about 0.1 mT [23,24].

B. Amperian linewidth and Joule heating

Up until now, we have considered the splitting of the
resonance peak produced by Hstag, while omitting the linewidth
produced by the Amperian field Hamp. In Bi2Se3 and Bi2Te3,
the form of χE is such that the staggered field is perpendicular
to the electric field and thus coplanar to the Amperian
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field (Hamp ⊥ E because J||E in point group D3d to which
Bi2Se3 and Bi2Te3 belong). Therefore it is not a good idea
to attempt to reduce the Amperian linewidth by aligning the
external magnetic field with the current, because this would
also eliminate the splitting coming from the staggered field
(recall Fig. 1). Thus, in doped Bi2Se3 and Bi2Te3, staggered
and Amperian fields must be dealt with together. Moreover,
the two scale linearly with the current density, which means
that their relative importance will depend on the geometry
of the sample. For a wire with a circular cross section and
radius R, the condition for detecting the staggered field in the
background of the Amperian fields [i.e., Hstag � Hamp(R)] can
be expressed as

R � μB

evF

|Skn(r)|, (17)

where we have used Eq. (12). In sum, it is desirable to
have crystals with large hidden spin polarization (strong
spin-orbit interaction, large hyperfine coupling) in order to
satisfy condition (17) for larger values of R.

In Fig. 7, we show how the staggered field on Bi sites
becomes detectable for wires whose cross-sectional area is
�1 μm2. To detect the staggered field on Se or Te sites, the
radius of the wire should be about an order of magnitude
smaller. For such small cross-sectional areas, the NMR
signal is reduced, and low temperature measurements may
be required to compensate for the loss. On a positive side,
the wire length can be arbitrarily long; in fact, Bi2Se3 and
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FIG. 7. Approximate NMR lineshapes near a 209Bi resonance
peak for a cylindrical wire of radius R. (a) R = 2, (b) 1, (c) 0.5,
(d) 0.2 μm. The vertical dotted lines are guides for the eye indicating
H̃ ≡ (1 + χH )Hext and H̃ ± Hstag. The blue and green dashed lines
indicate the separate absorption signals for inversion partner nuclei.
The red solid line gives the total measured signal (the sum of the
blue and green lines). The electric-field-induced staggered magnetic
field splits the resonance frequency of Bi. We take Hstag = 2 mT
(independent of R), which corresponds to a current density of
�106 A/cm2, and we use Eqs. (14) and (15) to model the Amperian
linewidth. We neglect the intrinsic linewidth because it is typically
�1 mT. For R � 1 μm, the effect of the staggered field is masked by
the Amperian linewidth.

Bi2Te3 nanoribbons of lengths up to several millimeters
have already been synthesized and their transport properties
measured [25].

Another potential issue with conducting samples and high
current densities is the Joule heating. For a film of thickness
w in contact with an insulating substrate, the change in
temperature due to the Joule effect can be roughly estimated
as T � J 2w2/(σκ), where κ is the thermal conductivity of
the electrically insulating substrate. Taking J = 106 A/cm2,
σ = 106 �−1 m−1, κ = 100 W m−1 K−1 (a sapphire [26]
substrate at a few degree Kelvin) and w � 1 μm, the Joule
heating is rather small (T � 1 K). Nevertheless, for fixed J ,
the Joule heating becomes problematic as the sample thickness
exceeds 10 μm.

IV. OTHER MATERIALS

Given the aforementioned difficulties in Bi2Se3 and Bi2Te3,
it is natural to wonder what other materials could there be
whose attributes might be more favorable for NMR-based
detection of the hidden spin or orbital polarization. The first
approach is to try crystals with larger hidden spin polarization,
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FIG. 8. A favorable configuration to probe the hidden spin and
orbital polarizations with NMR, in crystals where the macroscopic
(unit cell averaged) current is flowing parallel to the electric field E,
and the staggered field has a nonzero component along the current.
This situation is optimal in that the Amperian field is perpendicular
to the staggered field. Then, if a large external magnetic field is
applied parallel to the current, the linewidth from the Amperian field
is suppressed (it becomes second order in the electric field), while
the NMR peak splitting due to the staggered field remains intact (first
order in the electric field). This situation can be realized in crystals
belonging to monoclinic or higher-symmetry crystal classes, provided
that one or more atoms in the unit cell are located at sites whose local
symmetries do not contain either inversion or mirror planes.

so that the maximum value of R in Eq. (17) becomes larger.
LaOBiS2 and related compounds [2] could be interesting
candidates in that regard.

Another approach is to search for materials where Hstag ·
E �= 0. In other words, crystals where χE has one or more
nonzero diagonal elements (χjj �= 0 for one or more values of
j , where j ∈ {x,y,z}). In addition to Hstag · E �= 0, we need
the electric current J to be parallel to the electric field: together,
these two conditions ensure a nonzero staggered field in the
direction perpendicular to the Amperian field. The objective of
this section is to identify materials that meet these criteria. This
objective is motivated by the fact that, in materials with Hstag ·
E �= 0 and J||E, there will be an optimal configuration for the
external electric and magnetic fields, shown schematically in
Fig. 8: with Hext||E, the Amperian linewidth can be largely
eliminated (it goes as the square of the electric field) while
keeping the effect of the staggered field intact (linear in the
electric field).

Before continuing, we remark that the Amperian field Hamp

is a macroscopic (unit cell averaged) quantity. Accordingly, its
direction can be determined completely from the knowledge
of the point group of the crystal. For a given electric field, the
conductivity tensor determines the direction of J, which in turn
establishes the direction of Hamp. In contrast, the staggered
field is a local quantity whose variation inside the unit cell
plays a major role. Thus, in order to determine the form of
χE(r0), we must use the space group of the crystal.

We are now ready to embark on symmetry arguments. On
the one hand, for crystals of monoclinic or higher symmetry
[27], the macroscopic conductivity tensor is such that J||E,
as long as the electric field is applied along a symmetry axis.
Here, it suffices to consider the conductivity tensor in the
absence of external magnetic fields, because we are interested
in the linear response to electromagnetic fields. On the other
hand, the crystals allowing for Hstag · E �= 0 must have atoms
whose site symmetries contain neither inversion nor (vertical
or horizontal) mirror planes. This rule follows from the fact
that spin is a pseudovector, while the electric field is a polar

vector (see Appendix for details). In general, we can infer
whether a crystal will allow for Hstag · E �= 0 or not from the
knowledge of the atomic arrangement in the unit cell (i.e., the
Wyckoff positions occupied by the atoms, along with their site
symmetries).

From the outset, it must be recognized that many layered
semiconductors with hidden polarizations display χij �= 0 for
i �= j , but χjj = 0, because all atoms occupy sites whose
local symmetry contains a mirror plane. This is the case in
Bi2Se3 and Bi2Te3, in which Bi, Seout and Teout occupy
Wyckoff positions 2c of site symmetry C3v [28]. This is
also the case in transition metal dihalides [29] of the type
MX2, where M is a transition metal cation and X is a
halogen anion. The same state of affairs applies to layered
semiconductors of the type of GaTe [30]. Next, we will give
several representative examples of centrosymmetric materials
with significant spin-orbit interactions, for which χjj (r0) �= 0.

The first proposed example comes from monoclinic transi-
tion metal trihalides [31] with the AlCl3 structure (space group
C2/m). Among them, we note α-RuCl3, which is a candidate
for being a spin liquid [32]. In this layered compound,
the monoclinic C2 axis is oriented along y, and the layers are
stacked along z. Ru atoms occupy Wyckoff positions 4g (site
symmetry C2), and the two symmetry-inequivalent Cl atoms
(named Cl1 and Cl2) occupy Wyckoff sites 8j (site symmetry
1) and 4i (site symmetry Cs), respectively. Hence χjj (Ru) �= 0
and χjj (Cl1) �= 0, but χjj (Cl2) = 0 because Cs has a mirror
plane. Recent experiments [33] have reported 35Cl NMR data
in the absence of electric fields. It would be interesting to
see the evolution of the Cl1 NMR shift as a function of an
electric field applied along the y direction (with Hext||ŷ). One
drawback of this material is that it is insulating [34], with a
room temperature resistivity of the order of 103� cm. Hence
the main contribution to the staggered field will come from the
deformation of Bloch wave functions by an electric field (the
interband part), which will lead to an electric-field-induced
change in the hyperfine coupling. Detailed calculations will
be required in order to find out the electric fields and the
disorder scattering rates for which the staggered field becomes
significant.

Another example concerns As2Se3 and As2S3 crystals,
belonging to the space group P 21/c. These are layered
compounds, where the monoclinic C2 axis is perpendicular to
the layers [35]. The two symmetry-inequivalent As atoms and
the three symmetry-inequivalent Se (or S) atoms per unit cell
are all located [36] at general Wyckoff positions (site symmetry
1). Hence χjj �= 0 for all atoms. The 77Se NMR data in the
absence of an electric field [37] shows three peaks, which
correspond to the three inequivalent Se atoms. If an electric
field is applied along the monoclinic axis, each of the peaks
should split in two. Unfortunately, these compounds have
extremely large resistivities [38], especially in the direction
perpendicular to the layers (�1012 � cm), which may make
the staggered field too weak to observe.

SrRuO3 (space group Pbnm) and related compounds
appear to be much better candidates. For one thing, SrRuO3

conducts electricity (with a resistivity of about 1 m� cm
at room temperature [39]), and one of its two symmetry-
inequivalent oxygens sits in a general Wyckoff position 8d

(site symmetry 1) [40]. For this oxygen, χjj �= 0. For the rest
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of the atoms, the site symmetry contains either a nondiagonal
mirror plane or inversion, so that χjj = 0. Due to the admixture
of 2s electrons at the Fermi level [41], the contribution from the
contact interaction to the staggered field should be significant.
Consequently, it will be interesting to measure the evolution
of the 17O resonance frequency under an electric field (once
again we suggest applying the electric field along a symmetry
axis, with the external magnetic field parallel to it).

As extra examples, we list α-Cu2Se and BaIr2Ge2, both
from space group P 21/c. In these compounds, all atoms are
located in sites whose local symmetry is just the identity
[42,43]. Hence χjj (r0) �= 0 for all atoms. These compounds
have rather low resistivities (BaIr2Ge2 is metallic, while
the resistivity of α-Cu2Se can be as low as 1 m� cm at
room temperature), and the low-energy electronic states have
a significant s-orbital character, which presages a sizable
staggered field for reasonable electric fields.

Thus far, we have presented examples of materials with
significant spin-orbit coupling. In crystals without spin-orbit
coupling, the electric-field-induced NMR shift has purely
orbital origin (i.e., the contact and dipolar contributions to
Hstag vanish). This purely orbital shift can be expected to
be smaller than that of strongly spin-orbit coupled systems
with significant contact hyperfine interaction. However, as
we have found in our calculations for Bi2Se3 and Bi2Te3,
the orbital component of Hstag can attain 0.1 mT for current
densities of 106 A/cm2, which can by itself leave a fingerprint
in the NMR spectrum. Motivated by this, we close this section
by proposing a few weakly spin-orbit coupled materials,
whose crystal symmetries are conducive to having current-
induced staggered magnetic fields with a suppressed Amperian
linewidth. First, we mention organic layered compounds of
the type of BEDT-TTF. Several of these compounds [44] are
centrosymmetric, conducting, and contain atoms in general
Wyckoff positions with site symmetry 1. Second, we bring
up the cuprate La2−xSrxCuO4 (space group Bmab), which
constitutes a Fermi liquid in the overdoped regime. In this
compound, one of the two inequivalent oxygens in the unit
cell [45] is placed in Wyckoff position 8e (site symmetry C2),
which allows for χjj �= 0.

V. CONCLUSIONS AND OUTLOOK

In summary, we have proposed a detection scheme of
the hidden spin and orbital polarization based on nuclear
magnetic resonance carried out in an electric field. To test
our proposal, we have completed a quantitative theory of
the electrically induced NMR shifts in Bi2Se3 and Bi2Te3.
We have learned, however, that these materials are not ideal
because the electrically induced staggered magnetic field
is perpendicular to the current. This fact makes it more
difficult to observe the NMR peak splitting experimentally
because one must contend with the linewidth generated by
the circulating Amperian magnetic fields. We have discussed
two possible solutions to this problem. One is to use wires
with small cross sectional areas. Another option is to use other
materials whose crystal symmetry allows to have the staggered
field perpendicular to the Amperian field. The ideal systems
would be highly conducting, strongly spin-orbit coupled, with
significant s-orbital admixture near the Fermi level, and would

have some atoms whose site symmetries lack inversion and
nondiagonal mirror planes. There exist materials, like SrRuO3

and BaIr2Ge2, that appear to satisfy all of these requirements.
Although the electrically induced splitting of NMR reso-

nance peaks predicted in this work has not been reported thus
far, partially related effects are known in the semiconductor
and quantum information literature.

On the one hand, in silicon-based qubits [46], an electric
field modifies the hyperfine coupling of a donor nuclear spin-
electron system placed in proximity to a gate, thereby shifting
the resonance frequency in a controllable way. This effect
is formally similar to the interband contribution discussed
in our work, which also captures the change in the local
field originating from the electric-field-induced deformation
of the electronic wave functions. That said, there are several
differences. First, our formalism involves many electrons, as
opposed to just one in silicon qubits. For that reason, the
intraband (Fermi-surface) contribution, which plays a major
role in our theory, is not present in silicon qubit proposals.
Second, in our case, the magnitude and direction of Hstag

depend on the local symmetry at the location of the nucleus;
such symmetry considerations do not play a role in existing
silicon qubit proposals.

On the other hand, there exists a large body of theoretical
and experimental work [47] concerning electric-field effects
in electron spin resonance (ESR). For instance, in spin-
orbit coupled systems with broken inversion symmetry, an
electric field can lead to an electronic spin polarization, which
modulates (or induces, in the case of ac electric fields) ESR.
Our idea differs from this line of work in that we are focused on
nuclear spin resonance. In centrosymmetric and nonmagnetic
crystals, Hstag averages to zero inside a unit cell. Thus, for
itinerant electron systems, the shift in the ESR frequency due
to Hstag should vanish in the bulk.

To conclude, our study can be extended in various direc-
tions. First, it will be interesting to explore the impact (if any)
of hidden spin and orbital polarization in the manipulation of
spin qubits. Second, the electric fields we have considered in
this work were external and uniform. A desirable extension
would consist of investigating spin textures induced by
internal and inhomogeneous electric fields. Third, electric-
field-induced shifts in the NMR resonance frequency can also
occur in noncentrosymmetric crystals. In these materials, the
momentum-space spin texture is not hidden because it does not
average out to zero within a unit cell. Accordingly, an electric
field generates a global magnetization, which can be used to
write information in magnetic memory devices, or to shift
the resonance frequency of a nucleus. In order to minimize
the Amperian linewidth and highlight the NMR shift coming
from the electric field, we propose using crystals where at
least some atoms are sitting in positions not containing mirror
planes. The chiral (enantiomorphic) crystal classes will ensure
that this condition is satisfied, as they are noncentrosymmetric
and do not contain any mirrors. Among these, there are some
recently discovered Weyl semimetals [48].

ACKNOWLEDGMENTS

This research was undertaken thanks in part to funding
from the Canada First Research Excellence Fund. Additional

235201-9



RAMÍREZ-RUIZ, BOUTIN, AND GARATE PHYSICAL REVIEW B 96, 235201 (2017)

funding came from the Réseau Québécois sur les Matériaux
de Pointe and the Natural Sciences and Engineering Research
Council of Canada. J.R.R. acknowledges financial support in
the form of a Mitacs Globalink Graduate Fellowship Award.
The numerical calculations were done using the computer
resources from Calcul Québec and Compute Canada. We are
indebted to J. Haase, M. Pioro-Ladrière, and J. Quilliam for
illuminating discussions.

APPENDIX: SYMMETRY CONSTRAINTS IN THE FORM
OF THE MAGNETOELECTRIC TENSOR

In this Appendix, we show how symmetry operations of
the space group of the crystal determine the form of χE . For
concreteness, we will study the transformation properties of a
related but simpler quantity,

χ̃ij (r) =
∑
knn′

〈ψk,n| Si(r) |ψk,n′ 〉 〈ψk,n′ | vj |ψk,n〉

×F (Ek,n,Ek,n′ ), (A1)

where i,j ∈ {x,y,z} and F (Ek,n,Ek,n′ ) is a function only of
energies of Bloch states (as well as their broadening parameter
�). The tensor χE(r) transforms in the same way as χ̃

under space group operations, because internal magnetic fields
transform in the same way as spins (both are pseudovectors).

Let R be a symmetry operation of the nonmagnetic
crystalline space group. Under this operation, a wave vector k
changes to Rk, with ERk,n = Ekn. In addition [49], R|ψkn〉 =
Ukn|ψRk,n〉, where Ukn is a unitary matrix acting on the twofold
degenerate subspace of band n at momentum k (it also includes
the phase factors from nonsymmorphic symmetry operations).
Inserting R−1R = 1 in Eq. (A1), we can write

χ̃ij (r) =
∑
knn′

〈ψRk,n| RSi(r)R−1 |ψRk,n′ 〉

× 〈ψRk,n′ | RvjR
−1 |ψRk,n〉 F (Ekn,Ekn′ )

=
∑

Rk,nn′
〈ψRk,n| RSi(r)R−1 |ψRk,n′ 〉

× 〈ψRk,n′ | RvjR
−1 |ψRk,n〉 F (ERk,n,ERk,n′ )

=
∑
knn′

〈ψkn| RSi(r)R−1 |ψkn′ 〉

× 〈ψkn′ | RvjR
−1 |ψkn〉F (Ekn,Ekn′ ). (A2)

In the first line of Eq. (A2), the matrix U has been removed
by a gauge transformation (this is always possible because
χ̃ij is gauge invariant). In the second line, we have used
the fact

∑
k f (k) = ∑

k f (Rk) = ∑
Rk f (k) for any function

f (k) because k and Rk contain the same momenta (only the
ordering differs, but the sum is independent of the ordering).
In the third line, we have made a change of variables Rk → k.

Armed with Eq. (A2), one can find out how various
symmetry operations constrain the form of χ̃ . To begin, let
us consider the spatial inversion operator, R = I . In this case,

ISi(r)I−1 = I
σi

2
I−1I |r〉 〈r| I−1 = σi

2
|r′〉 〈r′| = Si(r′),

(A3)

where we have used the fact that spin is a pseudovector and
r′ = Ir is the inversion partner of r. Since velocity is a polar
vector, Ivj I

−1 = −vj . Hence, from Eq. (A2), we get

χ̃ij (r) = −χ̃ij (r′). (A4)

This shows that χE takes the opposite sign at inversion partner
sites, a fact that we have repeatedly mentioned in the main
text. In particular, if the site symmetry of the atom includes
inversion, i.e., if r′ = r, we are led to χE(r) = −χE(r) = 0.

Let us now consider a rotation by an angle φ around the z

axis. For an n-fold axis, φ = 2π/n, the operators transform as

CφSi(r)C−1
φ = ei

σz
2 φ σi

2
e−i

σz
2 φCφ |r〉 〈r| C−1

φ

CφvjC
−1
φ = ei

σz
2 φvj e

−i
σz
2 φ. (A5)

In the second line, vj must be understood as a vector whose
only nonzero component is the j th component. If Cφ r and r
are equivalent sites (i.e., if the site symmetry at r contains the
Cφ operation), the local spin operator transforms as

Sx(r) →Sx(r) cos φ + Sy(r) sin φ,

Sy(r) → − Sx(r) sin φ + Sy(r) cos φ,

Sz(r) →Sz(r). (A6)

The velocity operator transforms similarly. It then follows
from Eq. (A2) that χ̃xz(r) = χ̃xz(r) cos φ + χ̃yz(r) sin φ and
χ̃yz(r) = −χ̃xz(r) sin φ + χ̃yz(r) cos φ. When φ �= 0 mod2π ,
the only solution for these two equations is χ̃xz(r) = χ̃yz(r) =
0. Likewise, one can show that χ̃zj (r) = 0 for j ∈ {x,y}.
Similarly, another consequence of the Cφ axis is that

(χ̃xx(r) − χ̃yy(r)) sin2 φ = (χ̃xy(r) + χ̃yx(r)) sin φ cos φ,

(χ̃xx(r) − χ̃yy(r)) sin φ cos φ = −(χ̃xy(r) + χ̃yx(r)) sin2 φ.

If sin φ = 0 (C2 axis), these two equations are trivially sat-
isfied. However, if sin φ �= 0, they enforce χ̃xx(r0) = χ̃yy(r0)
and χ̃xy(r0) = −χ̃yx(r0). Such is the case of Bi, Seout and
Teout sites in Bi2Se3 and Bi2Te3, whose site symmetries
contain a C3 axis along z.

Next, let us consider an atomic site r whose local symmetry
contains a mirror plane. For concreteness, let us suppose that
the mirror is perpendicular to the y axis. Under this mirror,
Sx(r) → −Sx(r) and vx → vx , which implies that χ̃xx(r) =
−χ̃xx(r) = 0. Likewise, Sy(r) → Sy(r) and vy → −vy , which
means that χ̃yy(r) = −χ̃yy(r) = 0. Also, Sz(r) → −Sz(r) and
vz → vz, which leads to χ̃zz(r) = −χ̃zz(r) = 0. In sum, a site
symmetry containing a mirror plane that is perpendicular to
either the x, y, or z axis imposes χ̃jj (r) = 0, a result that we
have utilized in the main text. This kind of situation arises in
Bi2Se3 and Bi2Te3, where Bi, Seout, and Teout. In contrast, if the
site symmetry contains a diagonal mirror (not perpendicular
to neither x, y, nor z axes), it is no longer true that χ̃jj (r) = 0.

A mirror plane can also constrain the off-diagonal matrix
elements of χE . For example, a site symmetry including a
mirror perpendicular to the y axis yields χ̃xz(r) = 0, because
Sx(r) → −Sx(r) and vz → vz under the said mirror. Likewise,
Sz(r) → −Sz(r) and vx → vx translate into χ̃zx(r) = 0. In
contrast, χ̃xy(r) and χ̃yz(r) are allowed to be nonzero. The
presence of additional mirror operations in the site symmetry
group will add further zeros in χE . For example, if two mirror
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planes exist, one perpendicular to x and one perpendicular
to y, χ̃yz(r) = 0, though χ̃xy(r) is still allowed to be nonzero
(essentially because Sx and vy transform in the same way

under both mirrors). In Bi2Se3 and Bi2Te3, where all mirror
planes at the locations of Bi, Seout, and Teout contain the z

axis, χxy(r) �= 0 is allowed.
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