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Characterizing critical phenomena via the Purcell effect
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We investigate the role of phase transitions into the spontaneous-emission rate of a single quantum emitter
embedded in a critical medium. Using a Landau-Ginzburg approach, we find that in the broken symmetry phase,
the emission rate is reduced, or even suppressed, due to the photon mass generated by the Higgs mechanism.
Remarkably, its sensitivity to the critical exponents of the phase transition allows for an optical determination of
universality classes. When applied to the cases of superconductivity and superfluidity, we show that the Purcell
effect also provides valuable information on spectroscopic and thermodynamic quantities, such as the size of
the superconducting gap and the discontinuity in the specific heat at the transition. By unveiling that a deeper
connection between the Purcell effect and phase transitions exists, we demonstrate that the former is an efficient
optical probe of distinct critical phenomena and their associated observables.
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Critical phenomena and phase transitions are among the
most important and interdisciplinary research areas in physics.
Criticality is known to dramatically affect many structural,
thermal, and electrical properties of matter [1]. The importance
of the concept of criticality extrapolates the domains of physics
and finds applications in mathematics, biology, chemistry, and
even economics and social sciences [1]. In addition to its
phenomenological relevance, the field of critical phenomena
has always been the scenario of new and groundbreaking
theoretical ideas over the years, such as renormalization group
and topological phase transitions [2].

In optics, critical phenomena in matter also show up
in a crucial way. Examples are the optical bistability [3],
the many optical manifestations of structural transitions in
liquid crystals [4], and, more recently, the optical analog of
the spin-glass transition in random [5,6] and homogeneous
[7] lasers. The development of structured, artificial material
platforms to investigate light-matter interaction, such as
photonic crystals and metamaterials, has opened new venues
to investigate optical manifestations of phase transitions. For
instance, manifestations of the percolation phase transition
were experimentally shown to occur in the Fano line shape that
describes light reflection upon disordered photonic crystals [8].

The high sensitivity of the spontaneous-emission (SE) rate
of an excited dipole emitter to the local environment makes
the Purcell effect [9] especially prone to be influenced by
phase transitions in matter. Indeed, the Purcell effect and
single-molecule spectroscopy are unique tools to locally probe
the electromagnetic environment at the nanoscale [10], with
applications in solar cells [11], molecular imaging [10,12], and
single-photon sources [13]. Of particular interest is the emer-
gence of the new, heteroepitaxially grown, nanostructured bulk
materials, such as the organohalide perovskites [14]. Here, the
unique combination between the excellent electrical transport
properties of the perovskite matrix and the high radiative
efficiency of the colloidal quantum dots holds promise for
large-scale manufacturing of infrared optoelectronic devices
[15], such as multijunction solar cells and blue light-emitting
diodes. In addition, progress in the field of nanophotonics and
metamaterials has allowed for unprecedented control of the

SE rate in artificial media such as invisibility cloaks [16],
graphene-based structures [17], nanoantennas [18], photonic
crystals [19], and hyperbolic metamaterials [20]. In particular,
the latter may undergo a topological phase transition that
manifests itself in the Purcell factor [21]. By inducing long-
range spatial correlations, structural phase transitions were
demonstrated to have a dramatic impact on the distribution
of decay rates in disordered photonic media [22]. The SE of
emitters embedded in a medium undergoing a structural phase
transition induced by the temperature is also characteristically
affected at criticality [23]. Another example is the percolation
transition, which was shown to largely enhance the decay rate
of quantum emitters and crucially govern decay pathways [24].
Fluctuations of the local density of states were experimentally
shown to be maximum in thin metallic films near the
percolation transition [25]. Altogether these recent findings
on the Purcell effect at phase transitions, of different physical
origins, suggest that a more general and profound connection
between these phenomena should exist.

To elucidate this issue, in the present paper, we investigate
the effects of phase transitions into the SE rate of emitters
embedded in a bulk critical medium. By means of a Landau-
Ginzburg (LG) description of the order parameter fluctuations,
we find, without specifying a priori any particular physical
system, that in the broken symmetry phase, the emission rate
is reduced or even suppressed due to the photon mass generated
by the Higgs mechanism. We show that SE presents a remark-
able dependence upon the critical exponents associated to a
given phase transition, allowing for an optical determination of
universality classes. As concrete, realistic examples, we apply
our results to the cases of a quantum emitter embedded in (i)
a superconductor, either BCS or non-BCS, and (ii) superfluid
3He. In both cases, we are able to extract valuable information
on spectroscopic and thermodynamic quantities, such as, for
example, the size of the Cooper pair order parameter and the
discontinuity in the specific heat at the transition, quantities
with respect to which the SE rate is highly sensitive, for either
the s- or d-wave types of superconductors, as well as for
p-wave pairing in superfluid 3He, within the Higgs phase.
Finally, in the symmetric phase, we demonstrate that critical
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fluctuations of the order parameter lead to an anomalously
large enhancement of the SE at the critical point. Throughout
the manuscript, we use MKS units when presenting our results
for the SE rates and for related physical discussions, but, for
simplicity, we adopt natural units h̄ = c = kB = 1 during our
calculations.

The Purcell effect is characterized by a modification of the
SE rate, �, of quantum emitters by its environment. For a
two-level system in free space, the SE rate is

�0 = ω3
0μ

2

3πε0h̄c3
= 2π

(
ω0μ

2

6ε0h̄

)
ρ0(ω0), (1)

where ω0 is the two-level transition frequency, μ is the
transition dipole moment, and we identified the local density of
states (LDOS) in vacuum, ρ0(ω) = ω2/π2c3. Changes in the
electric dipole coupling and/or boundary conditions usually
modify Eq. (1), which can be readily identified by rewriting
the SE rate (divided by 2π ) as

g2ρ0(ω) ≡ 1

h̄ε0

∑
λ=±

∫
d3k

(2π )3
|ε̂k,λ · μ|2ω2

k A(0)(ωk,ω), (2)

where we introduced a generalized DOS, g2ρ0(ω), ε̂k,λ is the
polarization versor, ωk = c|k|, and A(0)(ωk,ω) is the diag-
onal part of the free-photon spectral function A(0)

μν(ωk,ω) =
ημνA(0)(ωk,ω), with

A(0)
μν(ωk,ω) = ημν

2ωk
{δ(ω − ωk) − δ(ω + ωk)}, (3)

obtained from the free-photon propagator (we work in the
Feynman gauge)

G(0)
μν(k2) = iημν

k2
. (4)

Here, kμ = (ω/c,k), ημν = diag(1, − 1, − 1, − 1), and we
used Lorentz invariance to simplify the dependence of G(0)

μν

to k2. In fact, it is easily seen that substitution of (3) into (2)
leads to (1).

Equation (2) relates the SE rate directly to a property
of its environment: the Green’s function of the quantized
electromagnetic field in free space. For interacting fields, a
natural generalization of the electromagnetic contribution for
the SE rate is

� ≡ 2πg2ρ(ω0), (5)

where g2ρ(ω) is now given by an analog of Eq. (2), but
with A(0)(ωk,ω) replaced by the interacting electromagnetic
spectral function A(ωk,ω).

We now can describe our system, in which a quantum
emitter is embedded in a bulk critical medium undergoing
a phase transition described by the Landau-Ginzburg effective
Lagrangian [26],

L = − 1
4FμνF

μν + 1
2 |Dμϕ|2 − a(T )ϕ∗ϕ − b(ϕ∗ϕ)2, (6)

where ϕ is a complex-scalar order parameter that couples to the
electromagnetic field through the covariant derivative Dμ =
∂μ − ie∗Aμ (with e∗ being the coupling between the radiation
and the order parameter, with dimensions of electric charge e),
and Fμν = ∂μAν − ∂νAμ is the field strength tensor. As usual,

FIG. 1. Photon DOS for the vacuum (black dashed curve) and
Higgs phases (solid red curve). Insets: For h̄ω0 < Mc2, inside the
shaded area, no photons are available and no emission occurs; for
h̄ω0 > Mc2, outside the shaded area, the DOS is finite and emission
is allowed.

a(T ) is a function of (T − Tc), where T is the temperature,
and changes sign at the transition, T = Tc, while b > 0.

When T < Tc and a(T ) < 0, the ϕ field acquires a nonzero
vacuum expectation value, ϕ2

0 = −a/2b = v2, and we need to
consider perturbations around the symmetry broken vacuum,
ϕ(x) = ei

θ (x)
v [v + ρ(x)], where ρ and θ describe longitudinal

and transverse fluctuations of the order parameter ϕ, respec-
tively. In this case,

L = −1

4
FμνF

μν + M2

2
A2

μ + L0(ρ,θ ) + Lint. (7)

As usual, the longitudinal mode ρ becomes massive, with
m2

ρ = 2|a(T )|, while the transverse fluctuations θ are massless,
in accordance with Goldstone’s theorem [27]. Note that a
nonzero expectation value v �= 0 provides the gauge field Aμ

with a mass M = ve∗. This is the so-called Higgs mechanism
[27], in which case the massive photon propagator becomes

GM
μν(k2) = iημν

k2 − M2
, (8)

so that the photon spectral function reads

AM
μν(ωk,M ; ω) = ημν

2ωk,M

{δ(ω − ωk,M ) − δ(ω + ωk,M )}, (9)

where the dispersion relation is ωk,M =
√

|k|2 + M2. Calcu-
lating g2ρ(ω) from Eq. (2) and using Eq. (5) with AM (ωk,ω)
extracted from Eq. (9), we obtain

� = 2π

(
ω0μ

2

6ε0h̄

)
ρ0(ω0)

√
1 − M2c4

h̄2ω2
0

= �0

√
1 −

(
Mc2

h̄ω0

)2

,

(10)

for h̄ω0 � Mc2, while � = 0 for h̄ω0 < Mc2. Note that since
the LDOS vanishes continuously with the gap opening (as
seen in Fig. 1), the SE remains exponential with a rate given
by Eq. (10). This is different from the case of band-edge modes
in photonic crystals, where the exponential form for the SE rate
no longer applies [28].
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FIG. 2. Purcell factor inside the Higgs phase for different values
of the critical exponent β = 1/2, 1/4, and 1/8, for (M0c

2/h̄ω0)2 = 2.
Inset: �/�0 at the symmetric phase (T > Tc) for an exponential
correlation length, ξ−1(T ), with δ = 10.

A nonzero photon mass reduces the value of the SE rate in
the Higgs phase, and even suppresses it, for h̄ω0 < Mc2, when
the energy h̄ω0 is not large enough to overcome the rest energy
Mc2; see Fig. 1. This result is valid regardless of the specific
form of the parameter a(T ), as long as it changes sign at Tc.
Thus, for simplicity, but without loss of generality, we shall use
a power law M(t) = M0|t |β (with t = 1 − T/Tc), which is, in
principle, valid only for T → Tc. We find that in the broken
Higgs phase (T < Tc), the SE rate increases with T and its
behavior crucially depends on the value of β, as can be seen
in Fig. 2 where the SE rate is shown for β = 1/2, β = 1/4,
and β = 1/8. Away from criticality, the evolution of M(t) will
be system dependent, but nevertheless its effects on the SE
rate will be present not only close to the transition (T ∼ Tc),
but for the entire 0 < T < Tc range, as we show below in two
concrete examples: superconductivity and superfluidity.

We now focus on the behavior of the SE rate in the
symmetric phase. For T > Tc, a(T ) > 0 and there is no
spontaneous breakdown of the vacuum symmetry, v = 0.
This phase is described by the Lagrangian in Eq. (6), with
(m2/2) = a(T ) > 0 for all components of ϕ, and the photon
is massless. Thus, the presence of a medium surrounding the
emitter does not lead to a position shift of the pole in the photon
propagator, but it rather renormalizes the vacuum polarization
[27] i�μν(q2) = iq2ημν�(q2), in such a way that

GZ
μν(q2) = Z(q2)G(0)

μν(q2), (11)

with Z−1(q2) = 1 − �(q2) = 1 − [�2(q2) − �2(0)].
The function �2(q2) is regular at q = 0, ensuring that the

photon remains massless to all orders in perturbation theory,
but diverges in the ultraviolet limit, q2 → ∞. For either
spinorial or scalar quantum electrodynamics, one usually
chooses the on-shell renormalization condition �(q2 = 0) =
0 in such a way that the residue of the photon propagator,
Z(q2 = 0) = 1, for the massless photon [27]. In solid-state
systems, however, there are no ultraviolet divergences but,
instead, there is always some scale � that corresponds to a
given natural cutoff in the problem (e.g., the Fermi momentum
kF or the inverse lattice spacing 1/a). Letting q2 = �2 � m2,

we calculate �2(�2) − �2(0) = α∗
12π

ln (�2/m2), where α∗ =
(e∗)2/4π is the fine-structure constant and m(T ) ∼ ξ−1(T )
is the inverse correlation length, defined by 〈ϕ∗(r′)ϕ(r)〉 ∼
e−|r′−r|/ξ . We now set � = 1/ξ0, where ξ0 is the asymptotic
value of the correlation length far away from the critical point,
ξ (T � Tc) ≈ ξ0, in such a way that for T � Tc, we also
end up with �(q2 = ξ−2

0 ) = 0 and the residue of the photon
propagator is again Z(q2 = ξ−2

0 ) = 1.
The photon spectral function corresponding to the renor-

malized photon propagator in Eq. (11) becomes

AZ
μν(ωk; ω) = Z(ξ−2)A(0)

μν(ωk; ω), (12)

and, as a consequence, the SE rate is given by

� = Z(ξ−2) 2π

(
ω0μ

2

6ε0h̄

)
ρ(ω0) = Z(ξ−2) �0. (13)

For T � Tc, we obtain Z → 1 and thus � → �0. As the
critical point is approached, T → Tc, the correlation length
diverges, ξ � ξ0, and Z � 1, leading to a large enhancement
of the SE rate (up to the Landau pole when perturbation theory
breaks down in the tiny gray area in the inset of Fig. 2).

The inset of Fig. 2 shows the normalized SE rate with an ex-
ponential form for the correlation length, ξ (t) = ξ0 exp (δ/|t |),
for T > Tc.

We now apply our results to the cases of a quantum
emitter embedded in a superconductor, BCS, or high-Tc

cuprate, and in superfluid 3He. In both cases, fermions pair
up to form bosons, whose fluctuations are described by
an effective LG Lagrangian for a complex order parameter
[29]. For superconductors, Cooper pairs of Fermi-surface
electrons form singlets (� = 0 or � = 2, and s = 0), and the
U (1)ϕ-invariant effective Lagrangian is written in terms of
a charged, complex-scalar field ϕ, which is coupled to the
emitted photon Aμ, with e∗ = 2e [30,31]. For 3He, in turn,
Cooper pairs of 3He atoms form triplets (� = 1 and s = 1), and
the SO(3)� × SO(3)s × U (1)ϕ-invariant effective Lagrangian
is written in terms of not only a neutral, complex-scalar field
ϕ, which nevertheless couples to the emitted photon Aμ, with
e∗ = p0(2π/λ) (with p0 being the electric dipole moment of
the 3He Cooper pair and λ the wavelength of the radiation),
but also in terms of (2� + 1) × (2s + 1) complex matrices �,
describing the orbital and spin parts of the pair wave function
[32]. Nevertheless, in the U (1)ϕ sector of both theories, gauge
symmetry is spontaneously broken in the Higgs phase, ϕ2

0 �= 0,
providing the photon Aμ with a mass M , and modifying the
SE as in Eq. (10).

The use of Eq. (10) requires knowledge of both h̄ω0 and
Mc2. Typical values for the energy splitting in semiconducting
quantum dot (QDs) are of the order of h̄ω0/kB  100 K. The
photon mass M , in turn, is proportional to the expectation
value for the order parameter in the broken symmetry phase v,
which is itself proportional to [33]

�(T ) = �(0) tanh

[
π

kBTc

�(0)

√
2

3

�CV

CN

(
Tc

T
− 1

)]
. (14)

Here, �(0)/kBTc is the so-called gap-to-Tc ratio and �CV /CN

is the specific-heat jump at the transition, which depend on the
strength of the Cooper pairing mechanism, weak or strong,
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TABLE I. Values for the gap-to-Tc ratio, �(0)/kBTc, and the
specific-heat jump, �CV /CN , for the considered sizes and symmetry
of the order parameter (OPsize), from Refs. [30,32]. For the A and
B phases of superfluid 3He, both gaps are small and thus only the
symmetry is important.

System Superconductor Superfluid

OPsize/sym Small gap Large gap Small gap Small gap
s wave d wave p wave B p wave A

�(0)
kBTc

1.76 4.3 1.76 2.02
�CV

CN
1.43 0.95 1.43 1.19

as well as on the topology of the order parameter, nodal or
not, and for this reason we shall consider four possibilities:
(i) small-gap s wave, for weakly coupled BCS, (ii) nodal,
large-gap d wave, for strongly coupled high-Tc cuprates [30],
(iii) small-gap p wave, for the B phase of superfluid 3He, and
(iv) nodal, small-gap p wave, for the A phase of superfluid
3He (this one is stable at P = 30 bar) [32]. Typical values
for these ratios, corresponding to the coupling regimes and
topologies considered here, are given in Table I. For BCS
superconductors, we use the upper limit of Tc = 30 K, valid
in the weak-coupling regime, while for strongly coupled
cuprates, we choose Tc = 80 K, as in overdoped BSCCO-2212
[30]. For superfluid 3He, whose Cooper pairing occurs due
to the even weaker van der Waals interaction, we shall use
T A

c = 2.55 and T B
c = 2.2 mK [32], and h̄ω0/kB  1 mK,

which is the typical splitting of higher (above the gap) levels
in QDs. From these values of Tc, we calculate �(0) and, from
the jump of the specific heat given in Table I, we plot Figs. 3
and 4.

As it is evident from Figs. 3 and 4, for small-gap systems
such as BCS and 3He, SE occurs at any temperature below Tc

with a rather large Purcell factor. Conversely, for the large-gap
d-wave high-Tc superconductors, the SE is suppressed for a

FIG. 3. Purcell factor for two limits for the size of the supercon-
ducting order parameter: (i) isotropic, small-gap s wave (in blue), and
(ii) nodal, large-gap d wave (in red). Inset: Gaps in reciprocal space,
normalized to their maximum value.

FIG. 4. Phase diagram of 3He unveiled by the Purcell effect.
The kink occurs at the A − B transition, which separates phases
with distinct Fermi-surface topologies. The behavior of �/�0 in the
symmetric phase, as T → Tc, is similar to the one in Fig. 2 (not shown
here due to scale limitations).

wide range of temperature and recovers only close to criticality.
Remarkably, for the case of the superfluid transitions in 3He,
the Purcell factor captures the well-known kink at the transition
between the two topologically distinct phases A and B [32].
Finally, for a different system other than the ones studied here,
we see that by measuring the Purcell factor as in Figs. 3 and 4,
we can extract the size of the gap, �(0), from �(T → 0)/�0

and also the jump in the specific heat, �CV /CN , from the slope
of �(T → Tc)/�0. This shows how an optical phenomenon,
such as the Purcell effect, can provide relevant information
about spectroscopic and thermodynamic quantities in critical
systems.

In conclusion, we have investigated, using a Landau-
Ginzburg approach, the effects of phase transitions on the
SE rate of quantum emitters embedded in a critical medium.
In the broken symmetry phase, we prove that the SE rate
is reduced or even suppressed due to the photon mass
generated by the Higgs mechanism. Remarkably, we show
that one can determine critical exponents, as well as other
thermodynamic and spectroscopic quantities, by means of
the Purcell effect, which is revealed to be sensitive to the
strength of the interaction and topology of the order parameter.
This result is demonstrated in two concrete examples, namely,
superconductivity (BCS or high Tc) and superfluidity in 3He.
Altogether, our findings suggest that the spontaneous-emission
rate could be exploited as an alternative optical probe of phase
transitions and their universality classes.
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