
PHYSICAL REVIEW B 96, 235140 (2017)

Nematic order on the surface of a three-dimensional topological insulator

Rex Lundgren,1,2 Hennadii Yerzhakov,3 and Joseph Maciejko3,4,5

1Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
2Joint Quantum Institute, NIST/The University of Maryland, College Park, Maryland 20742, USA

3Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
4Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

5Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
(Received 8 March 2017; revised manuscript received 7 December 2017; published 26 December 2017)

We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional
topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic
order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear
in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic
Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at
zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that
changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition
between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on
finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport
and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin
fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.
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I. INTRODUCTION

Rotationally invariant Fermi liquids can spontaneously de-
velop spatial anisotropy as a result of strong electron-electron
interactions, a possibility first considered by Pomeranchuk
[1]. In the simplest scenario, for sufficiently strong attractive
interactions in the l = 2 angular momentum channel the
ground-state energy of the Fermi liquid is lowered by a spon-
taneous quadrupolar distortion of the Fermi surface, leading
to transport anisotropies and non-Fermi-liquid behavior [2].
Alternatively, the resulting time-reversal and translationally
invariant form of order, nematic order, can arise via ther-
mal or quantum melting of translational symmetry-breaking
stripe/smectic orders [3]. There is strong experimental ev-
idence for the existence of a nematic phase in quantum
Hall states [4–11], high-temperature superconductors [12–14],
and Sr3Ru2O7 [15,16]. On the theory side, nematic order
has been studied in a wide variety of systems including
quantum Hall states [17–29], graphene [30,31], two- and three-
dimensional systems with quadratic band crossing [32,33],
three-dimensional Dirac semimetals [34], dipolar Fermi gases
[35–37], high-temperature superconductors [38], and doped
Mott insulators [39].

The surface of three-dimensional (3D) topological insula-
tors offers a new type of gapless matter, the two-dimensional
(2D) helical Dirac fermion, which differs qualitatively from
conventional Fermi systems due to the phenomenon of spin-
momentum locking [40,41]. This begs the question whether
criteria for electronic instabilities and the nature of possible
broken-symmetry states on the surface of a 3D topological
insulator differ from those of conventional 2D Fermi sys-
tems. Although previous work has focused largely on su-
perconducting [42–51] and time-reversal breaking [48,52–61]
instabilities, little attention has been devoted to nematic
instabilities with the exception of Ref. [62] which studies the
spontaneous breaking of a discrete rotation symmetry on the

surface of a topological Kondo insulator with multiple Dirac
cones.

Our focus here is the isotropic-nematic phase transition
on the surface of a 3D topological insulator with a single
rotationally invariant Dirac cone. For an undoped system
(chemical potential at the Dirac point) one always has contin-
uous rotational invariance in the low-energy limit; for a doped
system our theory could apply to a number of experimentally
realized topological insulators with very nearly circular Fermi
surfaces, such as Bi2Se3 [63], Bi2Te2Se [64], SbxBi2−xSe2Te
[64], Bi1.5Sb0.5Te1.7Se1.3 [65], Tl1−xBi1+xSe2−δ [66], strained
α-Sn on InSb(001) [67], and strained HgTe [68]. A phe-
nomenological Landau-Fermi-liquid theory of the topological
surface state developed earlier by two of us showed that an
isotropic-nematic quantum phase transition can occur in the
doped system for a sufficiently negative value of the l = 2
“projected” Landau parameter f̄2 [69], in full analogy with the
standard Pomeranchuk instability. In this paper we construct
a field theory of the transition, investigate both the doped
and the undoped limits, and extend our analysis to nonzero
temperatures. In the doped limit we find a continuous transition
already at zero temperature with a breakdown of helical Fermi-
liquid behavior at the quantum critical point and in the nematic
phase in analogy with the spin-degenerate problem [2]. The
nematic phase exhibits a partial breakdown of spin-momentum
locking in the sense that spin and momentum are no longer
orthogonal to each other except at certain discrete points on
the Fermi surface. Other unusual observable consequences
of the spin-orbit coupled nature of nematic order in this
system include anisotropy in the in-plane spin susceptibility
in the absence of time-reversal symmetry breaking and the
generation of spin fluctuations from nematic fluctuations
at finite frequencies. At zero doping the isotropic-nematic
transition is first order at zero temperature and becomes
continuous at a finite-temperature tricritical point.
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The paper is organized as follows. In Sec. II, we introduce
our model and argue that strong spin-orbit coupling on the
topological insulator surface warrants a novel type of nematic
order parameter that mixes charge and spin degrees of freedom.
In Sec. III, we construct a mean-field theory of the isotropic-
nematic transition at both zero and finite temperatures and
discuss the consequences of nematic order for electronic prop-
erties at the mean-field level. Section IV discusses fluctuation
effects beyond mean-field theory, namely, collective modes
and their effect on electronic properties. A brief conclusion is
given in Sec. V.

II. MODEL AND NEMATIC ORDER PARAMETER

In this section, we introduce our field-theoretic model
for the isotropic-nematic transition on the surface of a 3D
topological insulator. We follow largely the approach of
Ref. [2] with important caveats due to the presence of strong
spin-orbit coupling as will be seen below. Although nematic
order in 2D electron gases with Rashba spin-orbit coupling
has been studied before [70,71], such systems have two
degenerate concentric Fermi surfaces and are thus qualitatively
distinct from the single nondegenerate helical Fermi surface
considered here.

The Hamiltonian that describes the noninteracting gapless
surface state of a topological insulator with a single Dirac cone
is given by [40,41] (in units where h̄ = kB = 1)

H0 =
∫

d2k

(2π )2 ψ
†
k[h(k) − μ]ψk, (1)

where ψk = (ψk↑,ψk↓) is a two-component Dirac spinor, vF

is the Fermi velocity, μ is the chemical potential, and

h(k) = vF ẑ · (σ × k) = vF

(
0 ike−iθk

−ikeiθk 0

)
, (2)

where σ is a vector of Pauli matrices, θk = tan−1(ky/kx), and

k =
√

k2
x + k2

y . The Hamiltonian (1) has a continuous spatial

SO(2) rotation symmetry [Jz,h(k) − μ] = 0 where

Jz = −i
∂

∂θk
+ 1

2
σz (3)

is the z component of total angular momentum.
In order to study the isotropic-nematic transition we need a

suitable microscopic definition of the nematic order parameter
in terms of the fermionic fields ψ,ψ†. In general, nematic
order is described by a quadrupolar order parameter Qab

which transforms as a real traceless symmetric rank-two tensor
under rotations [72]. Because of spin-orbit coupling, here the
relevant rotations are simultaneous rotations in real space and
spin space, generated by the total angular momentum (3).
Therefore, unlike for spin rotationally invariant Fermi liquids
[2], the nematic order parameter can involve both the spatial
(charge) and the spin degrees of freedom of the electron.
To lowest order in the electron momentum, the appropriate
generalization of the nematic order parameter considered in

Ref. [2] for spin rotationally invariant Fermi liquids to the
surface state of 3D topological insulators is

Q̂ab(r) = − i

kA

ψ†(r)(σa

↔
∂b + σb

↔
∂a − δabσ ·

↔
∂ )ψ(r), (4)

where a,b = 1,2 and
↔
∂ = (

↔
∂x,

↔
∂y) is a vector of symmetrized

derivatives whose action is defined as ψ†
↔
∂aψ ≡ 1

2 [ψ†∂aψ +
(∂aψ

†)ψ]. This ensures Q̂ab(r) is a Hermitian operator. Finally,
the parameter kA is defined differently depending on whether
one is in the doped or undoped limit. We consider that four-
fermion interactions, to be written out explicitly below, only
act within a high-energy cutoff that can be converted to a
momentum cutoff 	 by dividing by vF . In the undoped limit
μ = 0, we define kA ≡ 	, and the order parameter is local
in space. This order parameter was first introduced by one
of us in the context of nematic instabilities of the Majorana
surface state of superfluid 3He-B [73], and its 3D analog was
proposed as an order parameter for parity-breaking phases of
spin-orbit-coupled bulk metals [74,75]. In the doped limit,
defined as μ � vF 	, only (angular) degrees of freedom on
the Fermi surface are relevant, and we define kA ≡ |∂| [76].

In the spirit of Ref. [2], we consider an attractive four-
fermion interaction in the quadrupolar (l = 2) channel,

Hint = −f2

4

∫
d2r Tr[Q̂(r)2], (5)

where Tr denotes a trace over the spatial (nematic) indices a,b.
The action in imaginary time is then

S[ψ†,ψ] =
∫ 1/T

0
dτ

∫
d2r

{
ψ†[∂τ − ivF ẑ · (σ × ∂) − μ]ψ

− f2

4
Tr[Q̂(r)2]

}
. (6)

As our focus is the vicinity of the isotropic-nematic transition,
interactions in other angular momentum channels have been
ignored. Indeed, in the doped limit, as long as such interactions
are less than the critical value for a l �= 2 Pomeranchuk
instability, they will lead simply to a finite renormalization of
physical quantities, such as the Fermi velocity [69]. Although
the phenomenological Landau-Fermi-liquid description does
not strictly apply to the undoped case, we will assume in this
case that interactions in l �= 2 channels are sufficiently weak
so there are no competing instabilities.

III. MEAN-FIELD THEORY

To investigate a possible isotropic-nematic phase transition
in the action (6), we analyze it in the mean-field approxi-
mation. Introducing a real auxiliary scalar field Qab(τ,r) to
decouple the four-fermion term via the Hubbard-Stratonovich
transformation, we have

S[ψ†,ψ,Qab] =
∫ 1/T

0
dτ

∫
d2r

[
ψ†[∂τ − ivF ẑ · (σ × ∂) − μ]ψ − iQab

kA

ψ†(σa

↔
∂b + σb

↔
∂a − δabσ ·

↔
∂ )ψ + 1

f2
Tr(Q2)

]
. (7)
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Assuming a uniform and static order parameter Qab(τ,r) =
Q̄ab and integrating out the fermions, we obtain the following
saddle-point free-energy density,

F(Q̄) = 2

f2
Q̄2 − T

V

∑
ikn

∑
k

ln[(kn − iμ)2 + εk(Q̄)2], (8)

where kn = (2n + 1)πT and n ∈ Z is a fermionic Matsubara
frequency. We have rotated the order parameter such that
Q̄11 = −Q̄22 = 0, Q̄12 = Q̄21 = Q̄ without loss of generality
(corresponding to the principal axes of the distorted Fermi
surface being parallel to the x and y axes [77]), and

εk(Q̄) =
√(

ε0
k

)2 − 4Q̄ε0
k

k

kA

cos 2θk + 4Q̄2

(
k

kA

)2

(9)

is the mean-field dispersion relation of fermionic quasiparti-
cles in the nematic phase (for Q̄ �= 0), where ε0

k = vF k is the
dispersion relation in the isotropic phase. This corresponds to
an anisotropic Dirac cone [in the doped limit, εk(Q̄) is only
meant to model the dispersion of quasiparticles on the Fermi
surface with k ≈ kF ≡ μ/vF ]. Here kA is to be understood
in momentum space, i.e., kA = 	 in the undoped limit and
kA = k in the doped limit. Performing the sum over Matsubara
frequencies and ignoring constant terms, we obtain

F(Q̄) = 2

f2
Q̄2 − T

∑
s

∫
d2k

(2π )2
ln(1 + e−[sεk(Q̄)−μ]/T ),

(10)

where s = ±1 corresponds to the upper and lower branches,
respectively, of the Dirac cone and we have taken the infinite
volume limit V → ∞. At zero temperature, Eq. (10) becomes
the ground-state energy density,

E(Q̄) = 2

f2
Q̄2 − 1

2

∑
s

∫
d2k

(2π )2
|sεk(Q̄) − μ|. (11)

In the following our analysis is performed at constant μ.

A. Undoped limit

We first evaluate the free-energy density in the undoped
limit (μ = 0). At zero temperature, we have

E(Q̄) = 2

f2
Q̄2 −

∫
|k|<	

d2k

(2π )2
εk(Q̄), (12)

where we have imposed the momentum cutoff 	. The integral
over momentum can be performed exactly, and we obtain

E(�) = vF 	3

3π2

[
�2

λ
− |� − 1|E

(
− 4�

(� − 1)2

)]
, (13)

where E(m) is the complete elliptic integral of the second
kind and we define a dimensionless nematic order param-
eter � = 2Q̄/vF 	 and a dimensionless interaction strength
λ = 2f2	/3π2vF . A strongly first-order isotropic-nematic
transition is found at a critical value of λc ≈ 2.13 with a
jump of order one in the order parameter � at the transition,
corresponding to a value of Q̄ on the order of the high-energy
cutoff vF 	. This is to be expected since Q̄ has units of energy
and in the undoped limit the only energy scale in the problem

is the cutoff [the critical value of the interaction strength f2

also is determined by the cutoff since the interaction (5) is
perturbatively irrelevant at the Dirac point]. Expanding (13) in
powers of � in the limit |�| � 1, we find

E(�) − E(0) = vF 	2

3π2

[(
1

λ
− π

8

)
�2 + · · ·

]
, (14)

hence the limit of metastability of the isotropic phase (cor-
responding to the divergence of the nematic susceptibility)
is λ∗ = 8/π ≈ 2.55, but this is preempted by the first-order
transition at λc ≈ 2.13. The limit of metastability of the
nematic phase can be found numerically and is λ∗∗ ≈ 1.90.

The magnitude of the order parameter jump at the transition
can be reduced somewhat by considering the effects of the
nonzero band curvature at the Dirac point, i.e., deviations from
a perfectly linear dispersion (which are present anyway in real
topological insulator materials). In other words, we replace
vF in the noninteracting dispersion ε0

k by a k-dependent Fermi
velocity,

vF (k) = vF

[
1 + α

(
k

	

)2

+ · · ·
]
, (15)

with the dimensionless parameter α representing the leading
correction. Such corrections are formally irrelevant in the low-
energy limit k � 	 but affect the free energy [2,27], which
depends on the noninteracting dispersion at all wave vectors
up to the cutoff. In the presence of such terms the energy
density cannot be evaluated analytically, and one must resort to
numerical integration. A typical plot of the ground-state energy
density in the vicinity of the transition for nonzero α is given in
Fig. 1. We have found that negative values of α reduce both the
critical interaction strength and the order parameter jump at
the transition below their values for a strictly linear dispersion.

The appearance of a first-order transition is somewhat
surprising since Landau theory predicts a continuous isotropic-
nematic transition in 2D (unlike in 3D, there are no cubic
invariants). Expanding the quasiparticle dispersion relation
εk(Q̄) in powers of Q̄ in Eq. (12) and performing the integral
over k, we obtain the Landau theory,

E(�) − E(0)
?= vF 	2

3π2

[(
1

λ
− π

8

)
�2 +

∞∑
n=2

c2n�
2n

]
, (16)

where c2n < 0 for all n � 2. We have checked that the only
way to get a quartic term ∝�4 with a positive coefficient is
to consider a k-dependent Fermi velocity vF (k) that becomes
negative at a certain value of k below the cutoff 	, in clear
contradiction with the assumption of a single Dirac point
in the low-energy spectrum. Therefore, the Landau theory
(16) is unbounded from below for sufficiently large �, in
disagreement with the exact energy density (13) which behaves
qualitatively, such as in Fig. 1. As a result, there must be
nonanalytic terms in Eq. (13) but missed by the Landau
expansion around � = 0 that stabilize the energy density. Such
nonanalytic terms are ultimately responsible for the first-order
character of the phase transition. In fact, for |�| � 1 the
energy density (13) becomes

E(�) − E(0) ≈ vF 	2

3π2

(
�2

λ
− π

2
|�|

)
, |�| � 1. (17)
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−
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� −
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FIG. 1. First-order isotropic-nematic quantum phase transition
in the undoped limit (μ = 0). Plots of the mean-field ground-state
energy density E(�) in units of vF 	3/3π 2 are given as a function
of the dimensionless nematic order parameter � for λ < λc (the blue
curve), λ = λc (the black curve), and λ > λc (the red curve), where λ

is the dimensionless interaction strength with critical value λc ≈ 1.31
at the transition. The leading correction to linear dispersion is given
by α = −0.61.

Thus the energy density is stabilized at large � by the
“bare” (tree-level) mass term �2/λ, which grows faster than
the negative |�| term coming from the one-loop fermion
determinant, i.e., the integral over quasiparticle energies in
Eq. (12). The latter is in fact negative for all �. We note that a
first-order Ising nematic transition at zero temperature also was
found for a model of interacting electrons on the square lattice
[78]. In this case van Hove singularities in the quasiparticle
density of states, corresponding to Lifshitz transitions tuned
by the value of Q̄, are responsible for nonanalyticities in the
energy density and the first-order character of the transition.

At finite temperatures the free-energy density in the
undoped limit is given by

F(Q̄) = 2

f2
Q̄2−T

∑
s

∫
|k|<	

d2k

(2π )2
ln(1+e−sεk(Q̄)/T ). (18)

In the remainder of this section we focus on the limit of strict
linear dispersion vF (k) = vF . The integral over the magnitude
of k can be evaluated analytically in terms of dilogarithms
Li2(x) and trilogarithms Li3(x); the remaining angular integral
must be performed numerically. In Fig. 2(a) we plot the jump
�c in the order parameter at the transition as a function of
temperature T . The jump decreases smoothly from its value
at zero temperature, eventually vanishing above a certain
temperature TTCP corresponding to a tricritical point (TCP);
for T > TTCP the transition is continuous (a similar behavior
was found in Ref. [78]). Since � vanishes at the tricritical
point, to find TTCP we expand the free-energy density (10) in
powers of �. To describe the tricritical point we must expand
to sixth order,

F(�,T ) − F(0,T ) = vF 	3

3π2
(a2�

2 + a4�
4 + a6�

6), (19)

where a2,a4,a6 are functions of T . We find that a6 > 0 for
0.2 � T/vF 	 � 0.6, which comprises the tricritical point
[Fig. 2(a)]. The tricritical point (TTCP,λTCP) is found from the
condition a2 = a4 = 0 from which we find TTCP/vF 	 ≈ 0.35
and λTCP ≈ 2.23. The finite-temperature phase diagram is
shown in Fig. 2(b) in which we also plot the limits of metasta-
bility of the isotropic (T ∗) and nematic (T ∗∗) phases. Note
that the first-order phase boundary and limits of metastability
are obtained from the numerically evaluated exact free-energy
density (10) rather than from the Landau expansion (19), which
is accurate only in the vicinity of the continuous transition.
Strictly speaking, the finite-temperature phase transition for
T > TTCP is a Kosterlitz-Thouless transition and the nematic
phase only exhibits quasi-long-range order at finite T (but is
truly long-range ordered at T = 0).

At the mean-field level, the nematic phase is a theory of
noninteracting Dirac quasiparticles with anisotropic dispersion
with Hamiltonian HMF = ∑

k ψ
†
kHkψk where

Hk = vF ẑ · (σ × k) + Q̄ab

	
(σakb + σbka − δabσ · k). (20)

�� �

/

(a) (b)

FIG. 2. Finite-temperature isotropic-nematic transition in the undoped limit (μ = 0): (a) A jump in the dimensionless nematic order
parameter at the first-order phase transition as a function of temperature; (b) mean-field phase diagram on the plane of temperature T and
dimensionless interaction strength λ. A first-order transition (the red line) at low temperatures turns into a continuous transition (the blue line)
above a tricritical point (the black dot). The dotted lines correspond to limits of metastability of the isotropic (T ∗) and nematic (T ∗∗) phases.
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Without loss of generality we choose Q̄12 = Q̄21 = Q̄, Q̄11 =
−Q̄22 = 0, and thus

Hk = vF ẑ · (σ × k) + 2Q̄

	
(σxky + σykx). (21)

The velocities in the x and y directions (i.e., parallel to the
principal axes of the nematic order parameter) at the Dirac
point are

vx = vF |1 − �|, vy = vF |1 + �|. (22)

Away from � = ±1, the density of states remains linear
near the Dirac point N (ε) ∝ |ε|. In the limit of strict linear
dispersion vF (k) = vF , the value of � = 1 (� = −1) thus
corresponds to a Lifshitz transition where the quasiparticle
dispersion vanishes along x (y) and degenerates into the
intersection of two planes, i.e., a quasi-one-dimensional Dirac
dispersion with formally infinite density of states. In the
presence of nonzero band curvature, however [Eq. (15)], this
degeneracy is lifted, and the flat direction acquires a cubic
dispersion at small momenta,

εk(� = 1) ≈ vF

√
4k2

y + α2

	4
k6
x, k → 0, (23)

with kx and ky interchanged for � = −1. This corresponds to
a density of states of the form N (ε) ∝ |ε|1/3 near the Dirac
point ε = 0.

An interesting signature of the unusual type of nematic
order described here is anisotropy in the in-plane spin
susceptibility in the absence of any time-reversal symmetry
breaking. To compute the spin susceptibility we augment the
mean-field Hamiltonian matrix (33) with a Zeeman term,

δHZ
k = − 1

2gμB B · σ , (24)

where g is the g factor, μB is the Bohr magneton, and B is an
in-plane magnetic field. To linear order in �, we find

χxx(T ) − χyy(T ) = g2μ2
B	

8πvF

F

(
T

vF 	

)
�(T ), (25)

where χij (T ) is the spin susceptibility tensor at temperature
T , �(T ) is the dimensionless nematic order parameter at
temperature T , and F is a smooth function of temperature
(Fig. 3) defined as

F (x) = x

∫ 1/x

0
dy

[
sinh y + y

(
y tanh

y

2
− 1

)]
sech2 y

2
.

(26)

Thus anisotropy in the in-plane susceptibility is a direct
measure of nematic order. For T > TTCP, the transition is
continuous [the blue curve in Fig. 2(b)], thus �(T ) is small
near Tc, and the expression (25) can be used in the vicinity of
the transition. We thus expect

χxx(T ) − χyy(T ) ∝ F

(
Tc

vF 	

)
�(T ) ∝ (Tc − T )β, (27)

on the nematic side of the transition for (Tc − T )/Tc � 1.
Thus the susceptibility anisotropy can give a direct measure
of the order parameter critical exponent β, which is 1/2 in
mean-field theory. In the first-order region since � may not
be small Eq. (25) cannot be used directly, but we nonetheless

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

x

F(
x)

FIG. 3. Plot of the dimensionless function F (x) defined in
Eq. (26).

expect the anisotropy to be nonzero everywhere in the nematic
phase and to vanish in the isotropic phase.

From a qualitative standpoint, the observation of in-plane
spin susceptibility anisotropy in the absence of time-reversal
symmetry breaking distinguishes the unusual type of nematic
order discussed here from other types of order. For conven-
tional nematic order in spin rotationally invariant systems [2],
the breaking of rotation symmetry is in the charge sector
and does not cause anisotropy in the spin sector. In-plane
ferromagnetic order would lead to anisotropy in the spin
response but requires time-reversal symmetry breaking.

B. Doped limit

In the doped limit μ � vF 	, the cutoff is imposed around
the Fermi surface,∫

|k−kF |<	

d2k

(2π )2
≡

∫ kF +	

kF −	

dk k

2π

∫ 2π

0

dθk

2π
, (28)

where kF ≡ μ/vF is the (isotropic) Fermi momentum of
noninteracting electrons. We obtain the ground-state energy
density (11) to leading order in 	/kF as

E(Q̄) − E(0) =
(

2

f2
− N (μ)

)
Q̄2 + N (μ)

4μ2
Q̄4 + O(Q̄6),

(29)

where N (μ) = μ/(2πv2
F ) is the noninteracting density of

states at the Fermi surface. Since the coefficient of the Q̄4

term is positive, we therefore find a continuous quantum phase
transition at a critical value of the interaction strength f2 given
by

N (μ)f2 = 2. (30)

From general considerations we expect a line of finite-T
Kosterlitz-Thouless phase transitions that terminates at this
quantum critical point. We note also that Eq. (30) corresponds
precisely to the l = 2 Pomeranchuk criterion,

F̄2 = −1 (31)

derived from a phenomenological Landau theory for the
helical Fermi liquid on the surface of a 3D topological
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insulator [69]. In this context the dimensionless projected
Landau parameters F̄l are defined as F̄l = 1

2N (μ)fl for l � 1,
where fl is the quasiparticle interaction strength in angular
momentum channel l. The difference in sign arises simply from
the fact that in Eq. (5) an attractive interaction corresponds to
f2 > 0, whereas in Ref. [69] it corresponds to f2 < 0.

A first observable signature of nematic order of the
type we have described in the doped limit is the partial
breakdown of spin-momentum locking. In the doped limit,
the mean-field Hamiltonian for fermionic quasiparticles is
HMF = ∑

k ψ
†
kHkψk where

Hk = vF ẑ · (σ × k) − μ + Q̄ab(σak̂b + σbk̂a − δabσ · k̂),

(32)

and k̂a = ka/k. Without loss of generality we choose Q̄12 =
Q̄21 = Q̄, Q̄11 = −Q̄22 = 0, and thus

Hk = vF ẑ · (σ × k) − μ + 2Q̄(σxk̂y + σyk̂x). (33)

Equation (33) describes an anisotropic Fermi surface. Near the
Fermi surface, the eigenstates have positive helicity (assuming
μ > 0, thus above the Dirac point) and are given by

|ψ+(k)〉 = 1√
2

(
ieiθk f (θk,�F )

e2iθk −�F

1

)
, (34)

where we define

f (θk,�F ) ≡
√

1 + �2
F − 2�F cos 2θk. (35)

We introduce a new dimensionless order parameter �F ≡
2Q̄/μ for the doped limit. The expectation value sk ≡
〈ψ+(k)|σ |ψ+(k)〉 of the spin operator on the Fermi surface
is in plane with components,

sx
k = (1 + �F ) sin θk

f (θk,�F )
, s

y

k = − (1 − �F ) cos θk

f (θk,�F )
, (36)

thus nematic order affects the spin polarization on the Fermi
surface. To leading order in �F , the angle δ(θk) between the
spin vectors in the presence and absence of nematic order is

δ(θk) ≈ �F | sin 2θk|. (37)

Thus except for four points on the Fermi surface θk =
0,π/2,π,3π/2, spin and momentum are no longer orthog-
onal (Fig. 4). However, one might naively think that spin-
momentum locking is preserved in the sense that the spin
vector remains tangent to the Fermi surface even if the latter
is distorted. This is not true: Defining a unit vector t̂ k tangent
to the distorted Fermi surface (that winds around the Fermi
surface clockwise), we have

ẑ · (sk × t̂ k) ≈ �F sin 2θk, (38)

to leading order in �F , thus the spin vector is tangent to the
Fermi surface only at four points θk = 0,π/2,π,3π/2 (Fig. 4).
This partial breakdown of spin-momentum locking except at
high-symmetry points could be detected experimentally us-
ing spin-resolved angle-resolved photoemission spectroscopy
using, for instance, the setups described in Ref. [63].

As in the undoped case, nematic order of the type con-
sidered here would lead to anisotropy in the in-plane spin
susceptibility. Here the transition is continuous already at

FIG. 4. Partial breakdown of spin-momentum locking in the
nematic phase. The blue dashed line: Fermi surface in the isotropic
phase (�F = 0); the orange dashed line: Fermi surface in the nematic
phase (here shown for �F = 0.18). The red (black) vectors represent
the expectation value of spin on the Fermi surface in the isotropic
(nematic) phase. Except at four special momenta (the green dots),
spin in the nematic phase is no longer perpendicular to momentum,
nor is it tangential to the (distorted) Fermi surface.

zero temperature, and in the vicinity of the zero-temperature
quantum critical point we find

χxx − χyy = 1

4
g2μ2

BN (μ)
	

kF

�F , (39)

to leading order in �F . More conventional measures of
nematicity, such as anisotropy in the in-plane resistivity [2,79],
apply here as well. Considering scattering on nonmagnetic
impurities modeled by a collision time τ , a calculation of the
conductivity using the Kubo formula and impurity-averaged
Green’s functions in the first Born approximation gives

ρxx − ρyy

ρxx + ρyy

≈ �F , (40)

to leading order in �F and assuming weak disorder 1/(μτ )�1.
By symmetry we anticipate an analogous result in the undoped
case.

IV. FLUCTUATION EFFECTS

We now go beyond the mean-field level and investigate the
effect of fluctuations in the vicinity of the quantum critical
point in the doped limit kF � 	. Following Ref. [2], we
rewrite the order parameter in terms of the Pauli matrices
τz and τx ,

Q̂ = ψ†�1ψτz + ψ†�2ψτx, (41)
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where

�1 = −i(σx∂̂x − σy∂̂y), �2 = −i(σx∂̂y + σy∂̂x), (42)

and we define ∂̂ ≡
↔
∂ /|∂| in the sense of Fourier transforms

[see Eq. (4)]. We can now rewrite the imaginary-time action
in a vectorial form

S[ψ†,ψ] =
∫ 1/T

0
dτ

∫
d2r

[
ψ†Ĝ−1

0 ψ − f2

2
(ψ†�ψ)2

]
,

(43)

where � = (�1,�2) and

Ĝ−1
0 = ∂τ − ivF ẑ · (σ × ∂) − μ (44)

is the noninteracting Green’s operator. Introducing a bosonic
auxiliary field n = (n1,n2) to decouple the four-fermion term,
we have

S[ψ†,ψ,n]=
∫ 1/T

0
dτ

∫
d2r

[
ψ†(Ĝ−1

0 − n · �
)
ψ+ 1

2f2
n2

]
.

(45)

After integrating out the fermions to second order in n, we find
the effective action,

Seff[n] = 1

2

∑
iqn,q

n(q,iqn)T χ−1(q,iqn)n(−q,−iqn), (46)

where the inverse propagator for the auxiliary field is given to
lowest order in momentum q and Matsubara frequency qn by

χ−1
ij (q,iqn) = δij (r + κq2) + Mij (q,iqn). (47)

Here r = f −1
2 − N (μ)/2 is the distance from criticality which

gives a mass to the auxiliary field, κ = N (μ)/(8k2
F ) gives it a

finite velocity, and

M(q,iqn) = isN (μ)
∫ 2π

0

dφ

2π

1

is − cos(φ − θq)

×
(

sin2 2φ − sin 2φ cos 2φ

− sin 2φ cos 2φ cos2 2φ

)
(48)

is a dynamical term where s ≡ qn/(vF q) and θq is the angle
between q and the x axis. Performing the integral over φ, we
have

M(q,iqn) = N (μ)

2

|s|√
s2 + 1

[1 − (
√

s2 + 1 − |s|)4

× (σz cos 4θq + σx sin 4θq)], (49)

which, after a rotation of θq by π/4, gives the same inverse
propagator as for the spinless nematic Fermi fluid [2]. The
effective action (46) can be diagonalized by a rotation n →
n′, χ−1 → χ ′−1, where

n′(q,iqn) = R(4θq)T n(q,iqn) =
(

d̂q · n(q,iqn)
ẑ · [d̂q × n(q,iqn)]

)
.

(50)

Here R(φ) = e−iσyφ/2 is an orthogonal rotation matrix and
d̂q ≡ (cos 2θq, sin 2θq). Thus n′

1 and n′
2 correspond to the

longitudinal and transverse components of n, respectively. The
transformed inverse propagator is

χ ′−1(q,iqn) = R(4θq)T χ−1(q,iqn)R(4θq)

=
(

χ ′−1
1 (q,iqn) 0

0 χ ′−1
2 (q,iqn)

)
. (51)

For small s, we have

χ ′−1
1 (q,iqn) = r + κq2 + 2N (μ)s2 + · · · , (52)

χ ′−1
2 (q,iqn) = r + κq2 + N (μ)|s| + · · · . (53)

A. Collective modes

Since the inverse propagator of nematic fluctuations is the
same as in the spinless case, the number and dispersion of
collective modes, given by the condition,

det χ−1(q,iqn) = 0 (54)

is also the same. Analytically continuing Eq. (52) and (53) to
real frequencies iqn → ω + iδ, we find

χ ′−1
1 (q,ω) = r + κq2 − 2N (μ)

(
ω

vF q

)2

, (55)

χ ′−1
2 (q,ω) = r + κq2 − N (μ)

iω

vF q
, (56)

to leading order in ω/(vF q). At criticality r → 0+, the
collective mode dispersions are

ω1(q) ≈
√

κ

2N (μ)
vF q2, ω2(q) ≈ − ivF κ

N (μ)
q3, (57)

thus ω1 is an undamped z = 2 mode, and ω2 is an overdamped
z = 3 mode. Since ω2 � ω1 in the long-wavelength limit
q → 0, the overdamped mode dominates the long-wavelength
response, and the dynamical critical exponent at the transition
is z = 3 [2].

We note that, although ω1 corresponds to longitudinal
fluctuations of n, when projecting to the Fermi surface the
longitudinal (11 and 22) components of the order parameter
(4) map to the transverse (12 and 21) components of the usual
spinless nematic order parameter,

ψ†(∂a∂b − 1
2δab∂

2
)
ψ, (58)

where the effectively spinless field ψ† creates electrons of
the appropriate helicity on the Fermi surface (see Sec. S4
of the Supplemental Material in Ref. [69]). Likewise, under
projection the transverse components of (4) are mapped to the
longitudinal components of (58). Thus in this sense ω1 (ω2)
is the transverse (longitudinal) mode, in accordance with the
terminology of Ref. [2].

In the nematic phase (r < 0), we consider Gaussian
fluctuations about the classical saddle point, which we take to
be n̄ = (n̄,0) without loss of generality. Near the critical point
where n̄ is small, the leading change in the effective action for
fluctuations compared to the isotropic phase is to the uniform
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and static parts (q = iqn = 0) of the inverse propagator [2],

χ−1(q,iqn)

=
(

2|r| + κq2 + M11(q,iqn) M12(q,iqn)
M21(q,iqn) κq2 + M22(q,iqn)

)
,

(59)

i.e., the longitudinal (amplitude) mode δn1 acquires a mass
2|r|, and the transverse (Goldstone) mode δn2 is massless.
Deep in the nematic phase (i.e., n̄ not small), the q2 part and
the dynamical part Mij will be modified from their form at
n̄ = 0, but our conclusions drawn from the small-n̄ limit will
not be affected in a major way (for instance, a finite n̄ would
lead to a difference κ⊥ �= κ‖ in stiffness for the amplitude and
Goldstone modes). The two eigenvalues χ−1

⊥ and χ−1
‖ of the

inverse propagator (59) give the spectrum of collective modes
in the nematic phase. The inverse transverse propagator, given
by

χ−1
⊥ (q,iqn) = κq2 + N (μ)|s| cos2 2θq

−N (μ)

(
cos 4θq + N (μ)

16|r| sin2 4θq

)
2s2

+O(s3) (60)

corresponds to the gapless nematic Goldstone mode, which is
overdamped due to Landau damping except along the principal
axes of the distorted Fermi surface (θq = ±π/4,±3π/4 for
the saddle point considered, corresponding to Q̄11 = −Q̄22 �=
0). Along those directions the inverse transverse propagator
reduces to Eq. (52), and the Goldstone mode disperses
quadratically according to ω1(q) in Eq. (57). Those undamped
directions also correspond to the Fermi-surface momenta
where spin-momentum locking is preserved (the green dots
in Fig. 4). The inverse longitudinal propagator is given by

χ−1
‖ (q,iqn) = 2|r| + κq2 + N (μ)|s| sin2 2θq

+N (μ)

(
cos 4θq + N (μ)

16|r| sin2 4θq

)
2s2

+O(s3), (61)

and describes gapped amplitude fluctuations as expected.
Despite the number and dispersion of collective modes

being formally the same as in the spinless nematic Fermi fluid,
their physical nature is very different: In the latter case only
charge degrees of freedom fluctuate, whereas fluctuations of
the spin-orbit-coupled nematic order parameter (4) strongly
mix charge and spin. An important observable consequence of
this difference is that nematic fluctuations in the helical liquid
considered here should strongly couple to the spin sector.
Although static nematic order does not break time-reversal
symmetry and thus cannot induce a static spin polarization,
nematic fluctuations can in principle induce spin fluctuations.
To quantify this effect, one can use linear response: A nematic
fluctuation δn(q,ω) with momentum q and frequency ω should
induce a spin fluctuation δ〈s(q,ω)〉 with the same momentum
and frequency,

δ〈si(q,ω)〉 ∝ �R
ij (q,ω)δnj (q,ω), (62)

p + q, ipn + iqn

p, ipn

q, iqn
q, iqn

σi Δj
ΔjΔi

k − q,
ikn − iqn

q, iqn

k, ikn k, ikn

(b)(a)

FIG. 5. One-loop diagrams for (a) the spin-nematic susceptibility
[Eq. (64)] and (b) the electron self-energy [Eq. (70)].

if a suitably defined retarded spin-nematic susceptibility
�R

ij (q,ω) is nonzero. An appropriate definition is

�R
ij (r,t) = −iθ (t)〈[(ψ†σiψ)(r,t),(ψ

†�jψ)(0,0)]〉, (63)

in real space and time, where ψ†σψ is the spin operator and
ψ†�ψ is the operator that couples to nematic fluctuations in
Eq. (45). Equation (63) will differ in the isotropic and nematic
phases; here we compute �R

ij in the isotropic phase and find a
nonzero result, but we expect a nonzero result in the nematic
phase as well.

In the Matsubara frequency domain, the spin-nematic
susceptibility is given by the bubble diagram in Fig. 5(a),

�ij (q,iqn) = T

V

∑
p,ipn

Tr σiG0( p + q,ipn + iqn)

×�j ( p, p + q)G0( p,ipn), (64)

where

�1(k,k′) ≡ σx

(
k̂x + k̂′

x

2

)
− σy

(
k̂y + k̂′

y

2

)
, (65)

�2(k,k′) ≡ σx

(
k̂y + k̂′

y

2

)
+ σy

(
k̂x + k̂′

x

2

)
(66)

are the Fourier transform of the nematic vertices (42), and G0

is the unperturbed electron Green’s function, given by

G0( p,ipn) = ipn + μ + vF ẑ · (σ × p)

(ipn + μ)2 − v2
F p2

. (67)

The retarded spin-nematic susceptibility �R
ij (q,ω) is obtained

from (64) by analytic continuation iqn → ω + iδ. We evaluate
its imaginary part �′′

ij (q,ω) at zero temperature and in the long-
wavelength q � kF , low-energy |ω| � μ limits. To leading
order in ω/vF q, we find

�′′
11(q,ω) = −�′′

22(q,ω) ∼ ω

v2
F

cos 3θq, (68)

�′′
12(q,ω) = �′′

21(q,ω) ∼ ω

v2
F

sin 3θq, (69)

ignoring constant prefactors (we are only interested in showing
that the response does not vanish). From time-reversal sym-
metry one can show that �′′

ij (q,ω) = �′′
ij (−q,−ω), which is

obeyed since Eqs. (68) and (69) are odd in both q and ω.
Kramers-Kronig relations imply that the real part �′

ij (q,ω)
approaches a constant at low frequencies and has the same
structure in momentum space. By virtue of Eq. (62), nematic
fluctuations can thus induce spin fluctuations by contrast with
the spinless (or spin degenerate) nematic Fermi fluid.
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B. Helical non-Fermi-liquid behavior

We now turn to the fermion self-energy on the Fermi
surface. In the random-phase approximation, i.e., at the one-
loop level, the self-energy is given by the diagram in Fig. 5(b),

�(k,ikn) = T

V

∑
q,iqn

∑
ij

�i(k,k − q)G0(k − q,ikn − iqn)

×�j (k − q,k)χij (q,iqn), (70)

where χij is the propagator of nematic fluctuations given in
Eq. (47). Here we only consider the effect of longitudinal
fluctuations (i.e., the z = 3 overdamped mode) which are
expected to dominate at low energies. At the critical point
r = 0, we find

�(k,ikn) = [1 + ẑ · (σ × k̂)]�0(k,ikn) (71)

for |k − kF | � kF and |kn| � μ, where

�0(k,ikn) = −iω
1/3
0 |kn|2/3 sgn kn, (72)

and ω0 ∼ N (μ)−1(vF κ)−2, ignoring factors of order one.
Near the Fermi surface, we can ignore the lower helicity
branch (assuming μ > 0), and the electron Green’s function
G(k,ikn) = [G0(k,ikn)−1 − �(k,ikn)]−1 is given approxi-
mately by

G(k,ikn) ≈ 1

2

1 + ẑ · (σ × k̂)

2iω
1/3
0 |kn|2/3 sgn kn − ξk

, (73)

where ξk = vF |k| − μ. Thus to a first approximation the
critical Green’s function retains the same helicity structure
as in the noninteracting limit,

G0(k,ikn) ≈ 1

2

1 + ẑ · (σ × k̂)

ikn − ξk
, (74)

but exhibits non-Fermi-liquid behavior with vanishing quasi-
particle residue as ω → 0. The spectral function is of the form

A(k,ω) ∼ 1

2
[1 + ẑ · (σ × k̂)]

ω
1/3
0 |ω|2/3

ξ 2
k

, (75)

in the limit ω
1/2
0 |ω|2/3 � |ξk| � μ. Apart from the helicity

structure, this is fully analogous to the spinless case [2]. In
analogy with Ref. [80], we conjecture that the transverse (z =
2) fluctuations will give a finite anomalous dimension η to the
electron propagator, replacing the denominator ξ 2

k in Eq. (75)
by |ξk|2−η.

In the nematic phase, the longitudinal modes are gapped
[see Eq. (61)], and one must look at the effect of the transverse
Goldstone modes described by the inverse propagator (60).
Because the symmetry generator Jz that is broken in the
nematic phase does not commute with translations, on general
grounds one expects non-Fermi-liquid behavior in the nematic
phase as well [81]. By contrast with the electron self-energy
at the critical points (71) and (72) however, we expect the
self-energy in the nematic phase to reflect the broken rotational
symmetry.

To estimate the self-energy in the nematic phase, we observe
that, on the Fermi-surface |k| = kF , the electron Green’s
function appearing in Eq. (70) can be approximated by

G0(k − q,ikn − iqn) ≈ 1

2

1 + ẑ · (σ × k̂)

ikn − iqn + vF k̂ · q
, (76)

since the momentum q of the collective mode is much smaller
than the Fermi momentum. Here we assume we are close to
the quantum critical point such that the distortion of the Fermi
surface is small and can be neglected in the calculation of the
self-energy; this is an O(n̄) effect and can be understood in
mean-field theory (Sec. III B), whereas the breakdown of the
Fermi-liquid theory in the nematic phase appears at “zeroth”
order in n̄ as will be seen. In the low-energy limit (i.e., on the
Fermi-surface kn → 0) Eq. (76) is peaked at θq = θk ± π/2,
thus in Eq. (70) one can replace θq in the Goldstone mode
propagator (60) by θk ± π/2 [82,83],

χ−1
⊥ (q,iqn) ≈ κq2 + N (μ)|s| cos2 2θk. (77)

We obtain

�(k,ikn) = (1 − σy cos 3θk − σx sin 3θk)| cos 2θk|−2/3

×�0(k,ikn), (78)

where �0 is defined in Eq. (72). Ignoring the lower helicity
branch, we obtain the Green’s function,

G(k,ikn) ≈ 1

2

1 + ẑ · (σ × k̂)

2iω
1/3
0 | cos 2θk|4/3|kn|2/3 sgn kn − ξk

, (79)

and the spectral function,

A(k,ω) ∼ 1

2
[1 + ẑ · (σ × k̂)]

ω
1/3
0 | cos 2θk|4/3|ω|2/3

ξ 2
k

, (80)

which are analogous to the spinless results [2] apart from
the helicity structure. Equations (78)–(80) hold for generic
angles θk �= ±π/4,±3π/4 on the Fermi surface away from
the principal axes of the nematic. Along the principal axes
θk = ±π/4, ± 3π/4, we find that after projection to the
upper helicity branch the self-energy scales as ∼|ω|3/2 as
in Ref. [2], corresponding to long-lived quasiparticles along
those directions. Equations (75) and (80) correspond to a
helical non-Fermi liquid in which the destruction of long-lived
quasiparticles over most (in the nematic phase) or all (at the
quantum critical point) of the Fermi surface coexists with a
Berry phase of π in spin space.

V. CONCLUSION

In this paper, we have developed a field-theoretic descrip-
tion of nematic order for a single Dirac cone on the surface of
a 3D topological insulator. Due to spin-orbit coupling present
in topological insulators, the nematic order parameter for
helical Fermi liquids involves both spin and momentum, in
contrast to the case of regular Fermi liquids which just involves
momentum. In the undoped limit at zero temperature, we found
a first-order isotropic-nematic transition at the mean-field
level, in contrast with the expectation of a continuous transition
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based on Landau theory. The transition becomes continuous
at a finite-temperature tricritical point. In the doped limit the
transition was found to be continuous even at zero temperature.
The spin-orbit-coupled nature of nematic order was shown
to lead to the partial breakdown of spin-momentum locking
on the distorted Fermi surface and anisotropy in the in-plane
spin susceptibility in both the doped and the undoped limits.
The number and dispersion of collective modes in the doped
limit as well as the prediction of non-Fermi-liquid behavior
at the quantum critical point and in the nematic phase were
seen to be the same as for spin rotationally invariant nematic
Fermi fluids. However, in the helical case it was shown that
nematic fluctuations can induce spin fluctuations, owing once

again to the spin-orbit-coupled nature of nematic order in these
systems.
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