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We present a unified perspective on dynamical mean-field theory (DMFT), density-matrix embedding theory
(DMET), and rotationally invariant slave bosons (RISB). We show that DMET can be regarded as a simplification
of the RISB method where the quasiparticle weight is set to unity. This relation makes it easy to transpose
extensions of a given method to another: For instance, a temperature-dependent version of RISB can be used to
derive a temperature-dependent free-energy formula for DMET.
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Strong correlations count among the most challenging
problems in condensed-matter physics. While the development
of dynamical mean-field theory (DMFT) [1] and its cluster
[2–6] and diagrammatic [7] extensions has led to a better
understanding of relatively simple, strongly correlated models
and systems, there are still situations where the exact solution
of the DMFT quantum impurity model becomes prohibitive
due to the size of its Hilbert space and/or the Monte Carlo
negative-sign problem. These situations range from the study
of multiorbital systems to the exploration of low-temperature
phases over the investigation of long-range strong correlations.
This is particularly important for realistic investigations of 5f

systems, which require the simultaneous inclusion of crystal-
field effects, spin-orbit-coupling interaction multiplets, and
lattice relaxation. Outstanding challenges in this area include
the computation of phase diagrams and equations of state
of elemental actinides and their alloys. These are problems
of fundamental importance and of practical technological
relevance, and they require simplified, fast methods that still
capture correlation effects accurately enough.

Several such methods have been developed in recent years,
with a commonality with DMFT: the mapping of the lattice
problem onto a simpler, yet still nontrivial embedded quantum
problem. Prominent examples include cluster perturbation
theory (CPT [8,9], derivable from the self-energy functional
theory, SFT [10,11]), self-energy embedding theory (SEET
[12,13]), two-site DMFT [14,15], and site-occupation embed-
ding theory (SOET [16,17]).

Two particularly successful methods are the (mean-field)
rotationally invariant slave boson method (RISB [18,19])
and the density-matrix embedding theory (DMET [20,21]).
RISB yields kinetic energy renormalizations, double occupan-
cies, and valence histograms very close to those of DMFT
[22–24] and has been applied to numerous multiband models
[19,25–27] and realistic compounds [27–29]. These slave
boson methods have a close connection to the Gutzwiller
approximation as shown in Ref. [30] for the single-site case
and in Ref. [31] for the multiorbital case. As for DMET, it
has been shown to yield very accurate ground-state energies
for the Hubbard model [20,21,32–34] and quantum chemical
systems [35,36]. Both give access to ground-state (including
superconducting [32,37,38]) properties and spectral properties
[39], and have also been extended to tackle out-of-equilibrium
problems [40–47].

However, the precise relation between these two methods
has not been established to date and it is unclear whether they
yield a complementary picture of correlations, or if on the
contrary one corresponds to the simplification of the other.
This work intends to fill this gap by showing that DMET is a
simplication of RISB. We also illustrate the relation of RISB
with DMFT, thereby giving a comprehensive picture of the
interrelation and hierarchy between the three methods.

This paper is organized as follows: We first give an overview
of the results presented in this paper (Sec. I), then review
the RISB formalism and its relation with DMFT (Sec. II),
and finally derive the DMET approximation and show that it
is a simplified RISB with a quasiparticle weight equal to 1
(Sec. III).

I. OVERVIEW

In this section, we highlight the common structures of
RISB and DMET without providing detailed derivations. Our
purpose is to provide the reader with the key ideas that these
methods share and thus reveal their close connection.

Both RISB and DMET start with an interacting lattice
model of the form

Ĥ =
∑
ij,αβ

t̃iα,jβc
†
iαcjβ +

∑
i

Ĥloc[{ciα,c
†
iα}], (1)

depicted in Fig. 1, top panel. Greek indices α,β, . . . = 1 . . . Nc

denote local or orbital indices (within a unit cell). Latin indices
i,j, · · · = 1 . . . N /Nc denote unit cells. (The local or orbital
degrees of freedom may as well refer to inequivalent sites in a
cellular-DMFT-like construction, so that a “unit cell” may also
refer to a cluster cell). The first term is a kinetic term describing
hopping processes between different unit cells. The hopping
t̃ does not contain local hopping terms (t̃iα,iβ = 0); instead,
they are contained in Ĥloc. Later, we will denote by t the
full hopping matrix and by Ĥint the interaction Hamiltonian
(without local hoppings).

The key idea of RISB and DMET is to replace the lattice
model by a reference model or effective medium that depicts
correlations in an approximate fashion.

In DMET, this effective medium consists of one correlated
unit cell, called the fragment, and an environment where the
effect of correlations is described by a one-body potential λ,
as illustrated in Fig. 1, middle panel. (In the DMET literature,
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FIG. 1. Three layers of RISB and DMET. Top: Lattice problem:
all unit cells are interacting. Middle: Effective medium: only the
unit cell dubbed “fragment” is interacting, correlations for the rest
(“environment”) are described by a one-body potential λ. Bottom:
Embedded problem: the environment is mapped to a “bath” of the
same dimension as the fragment/impurity.

this potential is usually called u and is equal to λ up to a local
hopping term: λαβ = uαβ + [εloc]αβ .) The Hamiltonian of this
effective medium is

Ĥeff ≡
∑
ij,αβ

t̃iα,jβc
†
iαcjβ + Ĥloc[{c0α,c

†
0α}] +

∑
i �=0,αβ

λαβc
†
iαciβ .

(2)

RISB also has an effective medium, but it comes with an
additional parameter (called R in the following) that is used
to describe the mass of quasiparticles. This medium cannot be
described by a one-body potential only.

As a last step, both methods introduce an impurity or
embedded problem illustrated in Fig. 1, bottom panel. It
is obtained by the contraction of the environment (of size
N − Nc) to Nc bath orbitals using a Schmidt decomposition.
The embedded problem thus consists of Nc correlated or
impurity orbitals hybridized (via a hybridization termD) toNc

uncorrelated bath orbitals (described by the one-body potential
λc). It is given by a Hamiltonian of the form

Ĥembed ≡
∑
αβ

(Dαβc†αaβ + H.c.) + Ĥloc[{c†α,cα}]

+
∑
αβ

λc
αβaβa†

α. (3)

Here, c† and c (respectively, a† and a) are creation and
annihilation operators for the impurity (resp., bath) orbitals.

The goal of both methods is to determine the effective
medium, i.e., to find the value of λ (and optionally R), such
that the following self-consistency condition is satisfied: The
one-particle density matrix of the impurity model [Eq. (3)]
must match the projection of the reference medium’s density
matrix onto the embedded subspace. λ (and optionally R) can
then be used to construct approximations to the self-energy of
the lattice model.

This is also the logic of DMFT, except that DMFT adjusts
the local self-energy �loc(iω) (instead of λ and R above) so

that the (one-particle) Green’s function,

[Gimp]αβ(iωn) ≡ −
∫ β

0
dτeiωnτ 〈T cα(τ )c†β(0)〉imp, (4)

of the impurity model matches the projection of the reference
medium’s Green’s function,

G(k,iω) = [iω − εk − �loc(iω)]−1, (5)

onto the impurity [where εk is the Fourier transform of the
hopping matrix tij or local density approximation (LDA)
Hamiltonian in a LDA+DMFT context; see Eq. (7) below].
Besides, because of this modified self-consistency condition,
the impurity model of DMFT contains an infinite number of
bath sites, contrary to Eq. (3).

While connections among RISB, DMET, and DMFT have
been mentioned in passing (see, e.g., Ref. [28]) and DMET
was inspired by DMFT, a precise direct connection has not
been available in the literature to date. This connection points
to many possible generalizations of these methods.

II. OVERVIEW OF ROTATIONALLY INVARIANT
SLAVE BOSONS

In this section, we briefly review the RISB formalism
introduced by Ref. [19]. Our starting point is the lattice
Hamiltonian Eq. (1). We note that Ĥloc contains both kinetic
and interaction terms. Denoting by tiα,iβ hoppings internal to
a unit cell, we can decompose

Ĥloc = Ĥint +
∑

i

∑
αβ

tiα,iβc
†
iαciβ,

t̃iα,jβ =
{
tiα,jβ if i �= j

0 otherwise . (6)

In the following, we will denote the i,j Fourier transform
of tiα,jβ (resp., t̃iα,jβ ) as

εk,αβ ≡ Nc

N
∑
ij

e−ik·(r i−rj )tiα,jβ (7)

(resp., ε̃k,αβ). Correspondingly,

[εloc]αβ ≡
∑

k

εk,αβ = t0α,0β . (8)

A. Slave bosons: Constraints and physical subspace

The second-quantized operators c
†
iα , ciα generate a Hilbert

spaceHphys with local many body states |Ai〉. RISB consists in
introducing fermionic operators f

†
iα , fiα and bosonic operators

φ̂
†
Ai,ni

, φ̂Ai ,ni
(one for each pair of local many-body states,

with ni labeling local Fock states, which like Ai form a basis
of the local Hilbert space) to replace c† and c. Yet, these new
operators generate a Hilbert space H which is much larger
than the original Hilbert space, so that one needs to define a
“physical” subspace. This is done by defining physical states
and the corresponding constraints. The physical states are
defined as follows:

|Ai〉 ≡ 1√
DA

∑
ni

φ̂
†
Ai,ni

|0〉|ni〉f , (9)
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with DA ≡ ( Nc

NA

)
(NA is the number of electrons in state A) and

the {|ni〉f } are the local Fock states formed with f † operators:

|ni〉f ≡
Nc∏

α=1

(f †
iα)niα |0〉. (10)

One can check that the physical states |Ai〉 are normalized.
One can prove [19] that these states (and only these states)
satisfy the following constraints:

∀i
∑
Aini

φ̂
†
Aini

φ̂Aini
= 1, (11a)

∀i,α,β f
†
iαfiβ =

∑
Ainimi

f 〈mi |f †
iαfiβ |ni〉f φ̂

†
Aini

φ̂Aimi
.

(11b)

In the following, we drop the site index i for conciseness.
One then writes a faithful representation of the original

Hamiltonian H in the physical subspace, where “faithful” is
defined as follows: For any (local) operator O, O is said to be
a faithful representation of O in the physical subspace if and
only if

∀A,B, 〈A|O|B〉 = 〈A|O|B〉. (12)

One can show [19] that the faithful representation of the
creation operator is given by the expression

c†α =
∑

β

Rβαf
†
β , (13)

with the φ̂-dependent matrix R defined by

Rβα ≡
∑

ABnm

〈A|c†α|B〉f 〈n|f †
β |m〉f√

NA(Nc − NB)
φ̂
†
Anφ̂Bm. (14)

Equation (13) is used to write down the faithful repre-
sentation of the kinetic term of the Hamiltonian. For the
local Hamiltonian term (which contains interactions and local
hoppings, see above), one can show [19] that

H loc =
∑
iABn

〈Ai |Hloc|Bi〉φ̂†
Aini

φ̂Bini
. (15)

One can thus write the faithful representation of H in terms
of the f and φ̂ fields:

H =
∑
ij,γ δ

⎧⎨
⎩
∑
αβ

Rγαt̃iα,jβR
†
βδ

⎫⎬
⎭f

†
iγ fjδ

+
∑
i,AB

〈Ai |Hloc|Bi〉
∑
ni

φ̂
†
Aini

φ̂Bini
. (16)

This Hamiltonian is nontrivial in the φ̂ operators (through
the φ̂ dependence of R), but quadratic in the f operators. In the
following, we will thus carry out a mean-field approximation
for the bosons and integrate out the f fields.

B. Mean-field approximation and matrix notation

We now condense the bosons; i.e., φ̂Bn is chosen to be a c

number (and φ̂
†
Bn becomes φ∗

Bn). For notational convenience,

we define the 2Nc × 2Nc matrices � and F :

[�]An ≡ φAn, (17)

[Fα]nm ≡ f 〈n|fα|m〉f . (18)

In particular, [�†]nA = [�]∗An = φ∗
An. We can always or-

der the |A〉 states in such a way that 〈A|cα|B〉 = [Fα]AB .
In particular, [F †

α ]AB = [Fα]∗BA = (〈B|cα|A〉)∗ = 〈A|c†α|B〉. If
the coefficients of the F matrix are real (which is the case if
one is dealing with Fock states, which is always possible), then

[F †
α]AB = [Fα]BA. (19)

Thus, the expressions for the constraints become

Tr[��†] = 1, (20a)

f †
αfβ = 


p

α,β ∀α,β. (20b)

with



p

αβ ≡
∑
Anmp

f 〈m|f †
α |p〉f f 〈p|fβ |n〉f [�†]nA�Am

= Tr[F †
αFβ�†�]. (21)

Furthermore,

Rβα =
∑

γ

∑
ABnm

F
†
α,A,BF †

γ,nm[�†]nA[�]Bm

× [(
p(1 − 
p))−1/2]γβ

=
∑

γ

Tr[�†F †
α�Fγ ][(
p(1 − 
p))−1/2]γβ,

where, to obtain the second line, we have assumed F to be real
valued [Eq. (19)]. Equivalently, we have

Rγα{[
p(1 − 
p)]1/2}γβ = Tr[�†F †
α�Fβ]. (22)

The local part of the Hamiltonian reads

H loc =
∑

i

∑
AiBini

〈Ai |Hloc|Bi〉[�†]niAi
�Bini

=
∑

i

Tr[�†Hloc�]. (23)

C. Mean-field free-energy and Lagrange equations

The problem at hand now boils down to minimizing
the free energy, a function of the slave-boson mean fields
�An, under the constraints (20a) and (20b). In the original
formulation [19], inspired by previous slave boson approaches
[30], the fulfillment of the constraints was enforced by
introducing two Lagrange multipliers Ec and λ. It was then
proposed [25,28,29], in order to overcome the remaining
strong nonlinearity of the free energy as a function of �,
to turn Eqs (21) and (22) into constraints, thereby making the
free energy quadratic in � at the price of adding two more
Lagrange multipliers λc and D and turning 
p and R into
independent variables. Following this strategy, the free energy

235139-3



THOMAS AYRAL, TSUNG-HAN LEE, AND GABRIEL KOTLIAR PHYSICAL REVIEW B 96, 235139 (2017)

of the system is given by

�[�,R,
p; Ec,λ,D,λc] ≡ −β log
∫

D[f ∗,f ]e−S[�,R,
p ;Ec,λ,D,λc], (24)

with

S[�,R,
p; Ec,λ,D,λc] = −
∑
kiω

Tr log
{
iω − Rαγ ε̃

γ δ

k R
†
δβ − λαβ + μδα,β

}
eiω0+

+
∑

i

Tr

⎡
⎣Ec

(
�†� − 1

)+
∑
αβ

(
Dαβ�†F †

α�Fβ + H.c.
)+
∑
αβ

λc
αβ�†�F †

αFβ + �†Hloc�

⎤
⎦

−
∑
i;αβ

(
λαβ + λc

αβ

)



p

αβ −
∑
i;αβγ

(DαβRγα + c.c.)[
p(1 − 
p)]1/2
γβ . (25)

Here,
∑

i is shorthand for Nc

N
∑

i , and in principle, all the variables �,R,
p,Ec,λ,D,λc depend on the site index i but we
dropped it since we will be looking for uniform solutions.

The slave boson amplitudes �An appear only in the second line. Inspired by the fact that these amplitudes are defined on a
local Hilbert space (spanned by A) and its copy (spanned by n), one can introduce [28] the corresponding tensor-product space,
spanned by the basis {|A〉 ⊗ |n〉a}A,n, where states |A〉 are created by impurity operators c†,c and |n〉a by “bath” operators a†,a.
In this construction, one interprets the amplitudes �An as coefficients of the Schmidt decomposition of general states |�〉 of this
product space:

|�〉 ≡
∑
An

ei π
2 NA(NA−1)�AnÛph|A〉|n〉a, (26)

where Ûph is a particle-hole transformation acting only on the a operators. With this definition and the phase factor, one has [28]

Tr[F †
αFβ�†�] = 〈�|aβa†

α|�〉, (27a)

Tr[�†F †
α�Fβ] = 〈�|c†αaβ |�〉, (27b)

which allows us to express the right-hand sides of Eqs (21) and (22) as correlators of the c and a operators. Besides, the second
line of the right-hand side of (25) becomes Ec(〈�|�〉 − 1) + 〈�|Ĥembed|�〉, with Hembed defined in Eq. (3). This Hamiltonian
describes an Anderson impurity level, described by the fields c, c† interacting through the local Hamiltonian Hint, hybridized
with noninteracting bath levels a, a† of energies −λc via the hybridization strengths D.

Finally, one extremizes the free energy with respect to its variables to find the Lagrange equations of the problem:



p

αβ =
∑

k∈BZ,iω

[iω − Rε̃kR
† − λ + μ]−1

βαeiω0+
, (28a)

∑
μ

{[
p(1 − 
p)]1/2}αμDβμ =
∑

k∈BZ,iω

[{ε̃kR
†}[iω − Rε̃kR

† − λ + μ]−1]βαeiω0+
, (28b)

λc
αβ = −λαβ −

∑
γ δη

{
Dγ δRηγ

∂{[
p(1 − 
p)]1/2}ηδ

∂

p

αβ

+ c.c.

}
, (28c)

Ĥembed|�〉 = Ec|�〉, (28d)

〈�|aβa†
α|�〉 = 


p

αβ, (28e)

〈�|c†αaβ |�〉 = Rγα{[
p(1 − 
p)]1/2}γβ . (28f)

D. Solution of the Lagrange equations

Root-solving. In previous works [25,28,29], the Lagrange
equations were solved by formulating the problem as a root-
solving procedure by defining the functions

F (1)[R,λ] ≡ 〈�|aβa†
α|�〉 − 


p

αβ, (29a)

F (2)[R,λ] ≡ 〈�|c†αaβ |�〉 − Rγα{[
p(1 − 
p)]1/2}γβ . (29b)

F (1) and F (2) are implicit functions of R and λ: For a given
R and λ, one can successively compute 
p, D, λc, and |�〉
by using Eqs. (28a), (28b), (28c), and (28d), respectively. The
fulfillment of the last two equations, Eqs. (28e) and (28f), thus
amounts to solving the root problem:

F (1)[R,λ] = 0,

F (2)[R,λ] = 0.
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We note that the same Lagrange equations can be cast
as different root problems (depending on the choice of free
variable; for instance, one could have chosen D and λc instead
of R and λ). In the next paragraph, we give an alternative route
to solve the Lagrange equations to shed light on the relation
of RISB with the DMFT method.

Forward recursion and comparison to DMFT. One can
alternatively solve the Lagrange equations in a forward
recursive fashion, as is usually done in DMFT:

(1) Start from a guess R and λ.
(2) Compute the local density matrix 
p using (28a) and

the local “kinetic energy,”

[Kloc]αβ ≡
∑

k∈BZ,iω

[{ε̃kR
†}[iω − Rε̃kR

† − λ + μ]−1]βαeiω0+
.

(30)

(3) Compute D and λc using Eq. (28b), i.e.,

Dβα = {[
p(1 − 
p)]−1/2}αμ[Kloc]μβ, (31)

and Eq. (28c).
(4) Solve the embedded problem Eq. (28d) for its (normal-

ized) ground state |�〉.
(5) Compute a new R as

Rγα = Mαβ{[Na(1 − Na)]−1/2}βγ (32)

with

Na
αβ ≡ 〈�|aβa†

α|�〉, (33a)

Mαβ ≡ 〈�|c†αaβ |�〉, (33b)

and a new λ as

λαβ = −λc
αβ −

∑
γ δη

{
Dγ δRηγ

∂{[Na(1 − Na)]1/2}ηδ

∂Na
αβ

+ c.c.

}
.

(34)

(6) Go back to step 2 until convergence of R and λ.
This cycle is illustrated in Fig. 2(b): In RISB, the impurity

model is solved for Nαβ and Mαβ to obtain the two matrices
Rαβ and λαβ , which are used as a parametrization of the lattice
self-energy:

�(k,iωn) ≈ iωn[1 − (R†R)−1] + R−1λ[R†]−1 − εloc. (35)

The impurity model is also parametrized by two matrices, the
hybridization strengths Dαβ and bath hopping parameters λc

αβ ,
which are adjusted in such a way that the local density matrix

p coincides with N and {[
p(1 − 
p)]1/2}ᵀR coincides with
M [Eqs. (28e)–(28f)].

In practice, this loop allows us to obtain stable solutions
in the Mott phase of the Hubbard model more easily than by
solving the Lagrange equations as a root problem.

By contrast, DMFT (whose self-consistent loop is illus-
trated in the top panel of Fig. 2) requires the frequency-
dependent local Green’s function Gloc(iωn) [defined as the
k summation of the lattice Green’s function G(k,iω) defined
in Eq. (5)] to match the impurity Green’s function Gimp(iωn)
[Eq. (4)] by adjusting the hybridization function 
(iωn), at the
cost of approximating the lattice self-energy by the impurity

FIG. 2. From top to bottom: DMFT, RISB, and DMET: iterative
solution by forward recursion. (The chemical potential is not indicated
for conciseness.)

self-energy �imp(iωn): All these functions depend on an in-
finite number of Matsubara frequencies, and correspondingly
DMFT’s impurity model has an infinite number of bath levels:

(iωn) can in general only be represented by an infinity of
bath sites:


αβ(iωn) =
∞∑

b=1

∑
γ δ

Db
αγ [iω1 + [λc]b]−1

γ δ

[
Db

βδ

]∗
, (36)

contrary to RISB in which b = 1. Note that in the DMFT
literature, D (resp., λc) is usually denoted as V (resp., −ε).

Thus, RISB can be viewed as a well-defined way of
drastically truncating the number of bath levels in the impurity
problem and of parametrizing the low-energy behavior of
the impurity self-energy by two observables, the matrices
R and λ. Beyond the reduced number of bath levels of
the impurity model, RISB only necessitates the computation
of static correlators, 〈�|aβa†

α|�〉 and 〈�|c†αaβ |�〉, whereas
DMFT requires the full frequency dependence of the Green’s
function Gimp(iωn).

Alternative approaches to truncate the number of bath levels
exist: two-site DMFT [14] uses the low- and high-frequency
limit of the DMFT self-consistency condition Gimp(iω) =
Gloc(iω) to fix the position and hybridization of a single
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bath level (in the context of a single-band model; see also
Refs. [48,49] for another prescription in a multiorbital context).

In a different perspective, solving the DMFT impurity
model with an exact diagonalization method [50] also relies on
a truncation procedure. There, the number as well as position
and hybridization of bath sites is dictated not by formal consid-
erations (as in RISB or two-site DMFT) but by computational
limitations attached to the former and a (somewhat arbitrary)
fitting procedure [using the parametrization of Eq. (36)] for
the latter.

E. Equivalence to the multiband Gutzwiller approximation

RISB has been shown to be equivalent [31] to the multiband
formulation of the Gutzwiller approximation. In other words,
the above derivation can be carried out, instead of introducing
slave bosons φ and quasiparticle fields f , by minimizing
the variational energy 〈�G|H |�G〉 over the Gutzwiller wave
functions

|�G(R,λ)〉 ≡
∏

i

Pi(R,λ)|�0(R,λ)〉, (37)

where |�0〉 is a noninteracting wave function (a Slater deter-
minant |�0〉 =∏nocc

p=1 c
†
p|0〉 with p = 1 . . . nocc denoting the

occupied states) and Pi is a projector on the local many-body
Hilbert space defined above:

Pi =
∑
A,B

�A,B(R,λ)|Ai〉〈Bi | (38)

(the connection between the � matrix and the slave boson
matrix �An is explored, e.g., in Ref. [25]).

This is done under the “Gutzwiller constraints”

∀i 〈�0|P†
i Pi |�0〉 = 1, (39a)

∀i,α,β 〈�0|P†
i Pic

†
iαciβ |�0〉 = 〈�0|c†iαciβ |�0〉. (39b)

which can be shown (see, e.g., Ref. [31]) to be equivalent to
the aforementioned RISB constraints, Eqs. (20a) and (20b).

In the next section, we show that the recently introduced
DMET is a simplified form of RISB where R is approximated
by the identity matrix.

III. DENSITY-MATRIX EMBEDDING THEORY:
A SIMPLIFIED RISB

Density-matrix embedding theory (DMET) has been intro-
duced as a simplified version of DMFT [20]. As outlined in
Sec. I, DMET replaces the original lattice problem [Eq. (1)]
with a reference problem [Eq. (2)] where the effect of corre-
lations is described by a one-body potential λ (usually called
u in the DMET literature). In other words, the self-energy is
approximated by a static, local (within a cell) potential

�αβ(k,iωn) ≈ uαβ. (40)

Like in DMFT and RISB, the approximate form of the
self-energy (here a matrix, u) is obtained in a nontrivial way
by a self-consistent mapping of the reference problem onto
an embedded local problem with fewer correlated degrees
of freedom. The parameters of this impurity problem are
then adjusted (through an adjustment of u) to match the

(one-particle) density matrix of the embedded problem with
the projection of the density matrix of the reference problem
onto the embedded subspace.

In wave-function language, DMET corresponds to making
the following variational ansatz for the ground-state wave
function:

|�DMET〉 ≡ |�0(u)〉, (41)

where |�0〉 is a Slater determinant and u is obtained by
matching the density matrices as discussed above.

Several equivalent derivations of DMET have been given
in the literature [20,21,32–36,51]. Here, we give a derivation
similar to Ref. [34] but at times use different notation or
terminology to make the connection to the RISB or Gutzwiller
formalism more transparent.

A. Summary of the DMET self-consistency

In this subsection, we give a brief summary of the DMET
workflow. Having mapped the lattice problem onto a reference
problem consisting in an interacting fragment (of size Nc) and
a noninteracting environment (as illustrated in Fig. 1), DMET
defines an embedded subspace through a projection operator P

which projects the Nc + (N − Nc) degrees of freedom of the
fragment + environment onto the Nc + Nc degrees of freedom
of the embedded (i.e., impurity + bath) problem. Then, the
DMET self-consistency consists in matching

(i) the density matrix of the embedded problem

ρimp ≡
[
〈�|c†αcβ |�〉 〈�|c†αaβ |�〉
〈�|a†

αcβ |�〉 〈�|a†
αaβ |�〉

]
, (42)

where |�〉 is the ground state of Hembed [Eq. (3)], itself related
to Heff [Eq. (2)] by “projection” by P , namely

Hembed = Ĥloc[{c†α,cα}] +
∑
αβ

[
cα

aα

]†
[hembed]αβ

[
cβ

aβ

]
,

(43)

with

hembed ≡ P †hP, (44)

and h the one-body part of Heff ,

h ≡ t +

⎡
⎢⎢⎢⎣

0 0

0

⎡
⎢⎣

u

. . .
u

⎤
⎥⎦
⎤
⎥⎥⎥⎦ (45)

[the u block is of size (N − Nc) × (N − Nc)], with
(ii) the projection of the density matrix ρ of the reference

problem in the embedded subspace,

ρembed ≡ P †ρP, (46)

with

ρiα,jβ =
∑
iω

eiω0+
[iω1 − hTI + μ]−1

iα,jβ . (47)

We recall that the Latin indices i,j label the unit cells, while
the Greek indices α,β = 1 . . .Nc label the internal orbital and
cluster degrees of freedom. In the above expression, hTI is the
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translation-invariant version of h; i.e., it contains a potential u

on the upper-left (i = 0,j = 0) block: [hTI]iα,jβ = hiα,jβ +
uαβδi,0δj,0. In practice, we will see that exactly matching
those two density matrices is in general impossible, so that
a minimization of a distance between both matrices is carried
out.

In the following subsection, we show how the projector P

is constructed.

B. Construction of the impurity and bath operators

In this section, we define the mapping from the effective
medium (withN orbitals) to the embedded problem (with 2Nc

orbitals), or in other words we construct the projector P .
We start by explaining how to transform from the fragment

(size Nc) to the impurity (size Nc) orbitals. First off, diagonal-
izing the lattice density matrix ρ [given in Eq. (47)] yields a
transformation Docc

F from the single-site levels of the fragment
(denoted by Greek indices) to the occupied levels of Heff (see
Appendix A for details).

Second, we need to find a transformation from the occupied
levels to the impurity orbitals. The central object for doing so
is the overlap matrix between the fragment and the occupied
states of the lattice, defined as

Socc
pq ≡ 〈φp|P F|φq〉, (48)

with p and q labeling two occupied states of Heff (1 �
p,q � nocc), φp being the corresponding single-particle state,
|φp〉 ≡ c

†
p|0〉, and P F the projector on the fragment (P F ≡∑Nc

α=1 |φα〉〈φα|). We show in Appendix A that this matrix can
be transformed to a diagonal form,

Socc = VFn
0V

†
F , (49)

where n0 is a Nc × Nc diagonal matrix, and VF is a nocc ×
Nc rectangular matrix such that V

†
F VF = 1. [VF]p,α′ defines a

transformation from the occupied states (p, . . . ) to new states
(denoted by primed Greek indices α′, . . . ) that correspond to
the “natural orbitals” used, e.g., in Ref. [25].

With these two transformations, one defines the transfor-
mation from the fragment to the impurity as

C̃F = Docc
F VF,

or rather, with orthonormalized columns,

[CF]αα′ ≡
[
Docc

F

]
αp

[VF]pα′√
n0

α′

. (50)

(To determine the normalization, we have used C̃
†
FC̃F =

V
†

F D
occ,†
F Docc

F VF = V
†

F VFn
0V

†
F VF = n0.)

Likewise, the matrix which projects from the environment
to the bath is defined as the product of the transformation from
the environment levels to the occupied states (a matrix called
Docc

E ) with the transformation from the occupied levels to the
natural orbitals (VF). After orthonormalization of the columns,
we obtain

CB ≡ Docc
E VF√

1 − n0
. (51)

We thus define the projector,

P ≡
[
CF

CB

]
, (52)

which projects the lattice problem (fragment
{c†1α}1�α�Nc

+environment {c†iα}1<i�N /Nc,1�α�Nc
) onto the

embedded problem (impurity {c̃†α′ }1�α′�Nc
+bath {ã†

α′ }1�α′�Nc
):

c̃
†
α′ =

Nc∑
α=1

c
†
1α[CF]αα′ , (53)

ã
†
α′ =

N /Nc∑
i=2

Nc∑
α=1

c
†
iα[CB]iα;α′ . (54)

Instead of the natural-orbital basis, one can choose instead
to use the original basis (denoted by unprimed Greek indices)
as a single-site basis to express the creation operators c† and
a† of the embedded problem. This is done by defining the
alternative projector,

P ≡
[

1
CBC

†
F

]
, (55)

which is related to P by a unitary transform,

P = P

[
C

†
F

C
†
F

]
,

where P projects into the natural orbitals and P projects into
the original orbitals.

We note that the above construction corresponds to carrying
out the Schmidt decomposition of |�0(u)〉 [20].

In the next subsection, we use P to project lattice observ-
ables onto the embedded subspace.

C. Projections in the embedded subspace

After constructing the impurity and bath levels, one can
now map the density matrix and lattice Hamiltonian onto the
embedded subspace.

1. Embedded density matrix

The projection of the density matrix onto the embedded
subspace is defined in Eq. (46), and similarly for ρembed. After
a few algebraic steps detailed in Appendix B 1, we obtain

ρembed ≡ P
†
ρP =

[
n0

√
n0(1 − n0)√

n0(1 − n0) 1 − n0

]
, (56)

i.e., ρembed is entirely determined by the occupations of the
natural orbitals n0. Similarly, its expression in the original
basis is

ρembed =
[


p
√


p(1 − 
p)√

p(1 − 
p) 1 − 
p

]
, (57)

with


p ≡ CFn
0C

†
F = Docc

F D
occ,†
F = ρF,

with ρF the top left Nc × Nc block of ρ. Thus, 
p (as defined
in the RISB section) is the one-particle density matrix of the
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fragment, ρF. Using (47), we thus have



p

αβ =
∑
iω

eiω0+
[iω1 − t − u + μ]−1

1α,1β

=
∑
k,iω

eiω0+
[iω1 − εk − u + μ]−1

α,β .

We define

ũαβ ≡ uαβ + [εloc]αβ (58)

to obtain the analog of Eq. (28a) in the RISB formalism:



p

αβ =
∑
k,iω

eiω0+
[iω1 − ε̃k − ũ + μ]−1

α,β . (59)

Equations (28a) and (59) can be identified provided

R = 1, (60a)

λ = ũ. (60b)

In the next subsection, we show that this identification holds
for all other DMET observables.

2. Parameters of the embedded problem

Based on the two definitions of Hembed, Eqs. (3) and (43),
we can write1

hembed =
[

tF D
D† −λc

]
. (61)

Identifying the right-hand sides of Eqs. (44) and (61), and
thanks to the definition [Eq. (55)] of P , one can show, after a
few algebraic steps detailed in Appendix B 2, that

D =
∑
kiω

ε̃k[iω − ε̃k − ũ]−1[
√


p(1 − 
p)]−1 (62a)

and

λc = −ũ−[
√

(1−
p)
p]−1 Kloc(1−2
p) + (1−2
p)Kloc

2

× [
√


p(1 − 
p)]−1,

(62b)

which respectively correspond to Eqs. (28b) and (28c) with
the identification (60a) and (60b).

D. Self-consistency conditions

As mentioned in a previous section, the DMET self-
consistency conditions consist in matching the embedded
density matrix ρembed obtained by projection of the lattice-
density matrix onto the embedded subspace with the density
matrix of the embedded or impurity problem, whose block
structure reads

ρimp =
[
Nc M

M† Na

]
, (63)

1The minus sign in front of λc stems from the fact that Hembed

contains a term λcaa† instead of the more familiar λca†a.

with Na and M defined in Eqs. (33a) and (33b) and

Nc
αβ ≡ 〈�|c†αcβ |�〉, (64)

where |�〉 is the ground state of the impurity Hamiltonian, i.e.,
the solution of Eq. (28d). Thus, the self-consistency conditions
explicitly read

〈�|aβa†
α|�〉 = 


p

αβ, (65a)

〈�|c†αaβ |�〉 = [
√


p(1 − 
p)]αβ, (65b)

〈�|c†αcβ |�〉 = 

p

αβ. (65c)

The first two lines, with the identification (60a), correspond
to the RISB conditions (28e) and (28f).

E. Solution of the DMET equations: Overdetermination,
idempotency, and alternative self-consistency conditions

The DMET equations presented in the previous sections
have so far been solved in a forward recursive way:

(1) Start from a guess for u.
(2) Compute D and λc from 
p and Kloc.
(3) Solve the impurity model for ρimp, i.e., for Na , Nc,

and M .
(4) From u, compute ρembed(u) as given by Eq. (57).

If ρembed(u) = ρimp(u), self-consistency is reached and the
solution is u. Otherwise, find u′ such that ρembed(u′) = ρimp(u)
and go back to step 2 with the new u′ until self-consistency is
reached.

This loop is different from the loop presented in Sec. II D.
The potential advantage of this alternative forward recursion is
that it in principle requires fewer computations of the impurity
solution: the root problem,

Fu(u′) ≡ ρembed(u′) − ρimp(u) = 0, (66)

requires only one impurity computation [to compute ρimp(u)].
However, this root problem must be solved several times, so
that the numerical gain is a priori unclear.

On the other hand, the DMET self-consistency condition
leads to an overdetermined root problem: There is only one
unknown u to satisfy three self-consistency conditions, Eqs.
(65a), (65b), and (65c). In comparison, the root problem to
be solved in RISB has as many unknowns (R and λ) as
equations (F (1) = 0 and F (2) = 0). Another independent issue
is that ρembed as given in Eq. (56) or (57) is idempotent (one
can check that ρ2

embed = ρembed), with the consequence that its
eigenvalues must be zero or one. That ρimp generically shares
this property is improbable; in fact, converged RISB results
in the literature (with R �= 1) prove that ρimp is in general not
idempotent.

This has led to the exploration of several (arbitrary)
procedures in the literature: The original papers proposed
to minimize the sum of the squared differences between the
matrix elements of ρembed and ρimp [instead of trying to find
the root of Eq. (66)]; other authors suggest to fulfill only the
condition on the density [e.g., Eq. (65a)], a scheme dubbed
“density embedding theory”, DET [34].

In Fig. 2 (bottom panel), we illustrate another possible
recursive scheme to solve the DMET equations inspired from
DMFT (this scheme corresponds to the forward recursion
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presented in Sec. II D, only with R = 1). This figure, while
emphasizing the similarities between the three methods, also
hints at the overdetermination problem we just discussed:
While in RISB, two observables are needed to compute (Na

and M) and parametrize (λ and R) the self-energy and to
characterize the embedded problem (λc and D), in DMET,
two observables (Na and M) are computed at the level of
the embedded problem (and needed to describe it, λc and D),
but the self-energy is described by only one parameter (λ or
u), possibly pointing to an underexploitation of the physical
information contained in the solution of the impurity model.

IV. CONCLUSION

In this work, we have derived the relation between two
methods, RISB and DMET, which can both be regarded as
simplified versions of DMFT. As such, they can access regimes
of parameters and systems for which the exact solution, via
quantum Monte Carlo, of the DMFT impurity problem, is
prohibitively costly if not out of reach due to the negative-sign
problem or very large computing times.

We have shown that the DMET equations can be obtained
from the RISB equations by setting the quasiparticle weight
factor to 1 in RISB. This establishes a clear connection between
these two methods, which are both based on the mapping
of a strongly correlated problem onto a simplified problem
describing correlated orbitals embedded in a noninteracting
host.

An additional comparison among the methods is possible
if one uses the interpretation of the RISB method as a
linear expansion of a self-energy [28]. Therefore, if one
focuses on the the low-energy behavior of the self-energy,
DMFT has real and imaginary parts with a general frequency
dependence, RISB keeps the constant and linear term in a
real self-energy, and DMET is purely static. In this context,
it is worth mentioning other approximate methods which
use a very different parametrization of the self-energy in
terms of a continuous fraction expansion (see, for instance,
Refs. [52,53]).

This common perspective on the three methods naturally
suggests transposing extensions of one method to the oth-
ers. For instance, a simple generalization of the RISB and
Gutzwiller ground-state energy to a temperature-dependent
free energy, briefly exposed in Appendix C, can be used to
derive a temperature-dependent DMET free energy.

This work opens additional questions for cluster extensions.
For instance, DMET yields good spectra for the Hubbard
model [39]. Given that RISB and DMET have the same
computational cost (that of solving an impurity model with the
same number of bath and impurity levels), similar calculations
should be carried out with the RISB method to explore how that
embedding accelerates the convergence to the thermodynamic
limit for spectral properties.

Applications of DMFT to molecular systems already exist
[54,55], but it has been difficult to extend it to complex
molecules. On the other hand, DMET has been very successful
in its applications to quantum chemistry [35]. It would be
interesting to explore potential applications of RISB in that
field as well.
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APPENDIX A: TRANSFORMATION OF THE OVERLAP
MATRIX TO DIAGONAL FORM

We start by diagonalizing the noninteracting Hamiltonian
h; we obtain

h = DεD†,

with D being a N × N unitary matrix and ε =
diag({εk}k=1...N ) a diagonal matrix. Thanks to the expression
(47), D also diagonalizes the density matrix, i.e.,

ρ = DnD†, (A1)

with n a diagonal matrix with entries = nF(εk). The first nocc

eigenvalues of ρ (i.e., the first nocc entries of n) are unity (they
correspond to the occupied states), while the other eigenvalues
vanish (they correspond to the empty states).

We now split D into its fragment and its environment
blocks:

D =
[
DF

DE

]
, (A2)

where DF is of size Nc × N . Since D is unitary, the following
properties hold:

D
†
FDF + D

†
EDE = 1,

DFD
†
F = 1,

DED
†
E = 1. (A3)

We further decompose DF into two blocks:

DF = [Docc
F Dunocc

F

]
, (A4)

with Docc
F being a Nc × nocc matrix. Note that (A3) implies

D
occ†
F Docc

F + D
occ†
E Docc

E = 1. (A5)

We now perform a singular value decomposition of Docc
F .

We obtain

Docc
F = U{diag{

√
n0},0}V †, (A6)

with U being a Nc × Nc unitary matrix, {diag{
√

n0},0} a
Nc × nocc matrix (with diag{

√
n0} aNc × Nc diagonal matrix,

simply denoted as
√

n0 in the following), and V a nocc × nocc

unitary matrix. We decompose V into two blocks:

V = [VF VE
]
, (A7)

with VF being a nocc × Nc matrix. The unitarity of V implies
the properties

VFV
†

F + VEV
†

E = 1,

V
†

F VF = 1, (A8)

V
†

EVE = 1.

Plugging (A7) into (A6), we obtain

Docc
F = U

√
n0V

†
F . (A9)
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The last step is to notice that the overlap matrix Socc, defined
in Eq. (48), is also given by the expression

Socc = D
occ,†
F Docc

F . (A10)

Thus, using (A9), we obtain Eq. (49).

APPENDIX B: PROJECTIONS INTO
THE EMBEDDED SUBSPACE

We start by noting that the transformation between site
indices and natural orbital indices is given by CF [defined in
Eq. (50)], itself equal to U ,

CF = U
√

n0V
†

F VF√
n0

= U, (B1)

where we have used Eqs. (A9) and (A8).

1. Density matrix

Using the block decomposition of the lattice density matrix,

ρ =
[
ρF ρc

ρ
†
c ρE

]
(B2)

(with ρF a Nc × Nc matrix, and so on) and the expressions
(A1), (A2), and (A4), we obtain

ρ =
[
Docc

F D
occ,†
F Docc

F D
occ,†
E

Docc
E D

occ,†
F Docc

E D
occ,†
E

]
.

Thus, using Eq. (46),

ρembed

=
[
C

†
FD

occ
F D

occ,†
F CF, C

†
FD

occ
F D

occ,†
E CB

C
†
BDocc

E D
occ,†
F CF, C

†
BDocc

E D
occ,†
E CB

]

=
⎡
⎣V

†
F D

occ,†
F Docc

F√
n0

D
occ,†
F Docc

F VF√
n0

,
V

†
F D

occ,†
F Docc

F√
n0

D
occ,†
E Docc

E VF√
n0

V
†

F D
occ,†
E Docc

E√
1−n0

D
occ,†
F Docc

F VF√
n0

,
V

†
F D

occ,†
E Docc

E√
1−n0

D
occ,†
E Docc

E VF√
n0

⎤
⎦

=
[

n0
√

n0(1 − n0)√
n0(1 − n0) 1 − n0

]
. (B3)

2. Parameters of the embedded Hamiltonian

Identifying the blocks of Eqs (44) and (61), and using
Eq (55), we obtain

D = hcCBC
†
F = DFεD

†
E

Docc
E VF√

1 − n0

V
†

F D
occ,†
F√
n0

, (B4)

λc = −CFC
†
BhECBC

†
F,

= −Docc
F VF√
n0

V
†

F D
occ,†
E√

1 − n0
DEεD

†
E

Docc
E VF√

1 − n0

V
†

F D
occ,†
F√
n0

.

(B5)

Let us simplify D:

D = DFεD
†
EDocc

E VFU
†[
√

(1 − 
p)
p]−1UV
†

F VF

√
n0U †

= DFεD
†
EDocc

E D
occ,†
F U [

√
n0]−1U †[

√
(1 − 
p)]−1

= hcρ
†
c [
√


p(1 − 
p)]−1. (B6)

Besides,

[hcρ
†
c ]αβ =

∑
jγ

[tc]α,jγ [ρ†
c ]jγ,β

=
∑
jγ

[t̃]1α,jγ [ρ]jγ,1β

=
∑

k,k′,γ

∑
j

ei(k−k′)·Rj [ε̃(k)]α,γ [ρ(k′)]γ,β

=
∑
k,γ

[ε̃(k)]α,γ [ρ(k)]γ,β

=
∑
k,γ

[ε̃(k)]α,γ

∑
iω

eiω0+
[iω1 − ε̃(k) − ũ]−1

γ,β .

In the first line, we have used the block structure (45). The
second line follows from the definition of tc and t̃ , the third
line from the definition of the Fourier transform, Eq. (7), and
the fifth line from Eq. (47). This yields Eq. (62a) of the main
text.

Comparing with Eq. (30), we note that

hcρ
†
c = Kloc[R = 1,λ = ũ]. (B7)

Let us now simplify λc:

λc = −U
√

n0V
†

F VFU
†[
√


p(1 − 
p)
p]−1UV
†

F D
occ,†
E

×DEεD
†
EDocc

E VFU
†[
√

(1 − 
p)
p]−1UV
†

F VF

√
n0U †

= −[
√

(1 − 
p)]−1U [
√

n0]−1U †Docc
F D

occ,†
E

×DEεD
†
EDocc

E D
occ,†
F U [

√
n0]−1U †[

√
(1 − 
p)]−1

= −[
√

(1 − 
p)
p]−1ρchEρ†
c [
√


p(1 − 
p)]−1.

To simplify ρchEρ
†
c , let us first notice

Kloc = hcρ
†
c = DFεD

†
EDEnD

†
F

= DFεnD
†
F − DFεD

†
FDFnD

†
F

= DFεnD
†
F − hF


p.

Hence,

ρchEρ†
c = DFnD

†
EDEεD

†
EDEnD

†
F

= DFnεnD
†
F + DFnD

†
FDFεD

†
FDFnD

†
F

−DFnεD
†
FDFnD

†
F − DFnD

†
FDFεnD

†
F

= Kloc + hF

p + 
phF


p

− (Kloc + hF

p)
p − 
p(Kloc + hF


p)

= 1
2 [Kloc(1 − 2
p) + (1 − 2
p)Kloc]

+
p(1 − 
p)hF.

This yields Eq. (62b) of the main text.
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APPENDIX C: GROUND-STATE ENERGY
AND FINITE-TEMPERATURE EXTENSION

At T = 0, the total energy in RISB is given by

E =
∑

k

Tr[nF(Rε̃kR
† + λ − μ)(Rε̃kR

†)]

+
∑

i

Tr[Hloc�i�
†
i ], (C1)

where nF is the Fermi function and Hloc contains the chemical
potential μ.

Note that it is straightforward to show that, using Eqs. (28b),
(28f), and (27b), and with R = 1, Eq. (C1) is equivalent to the
DMET ground-state energy given in [20,33]

E =
∑

i

⎧⎨
⎩Tr

∑
αβ

(Dαβ�
†
i F

†
α�iFβ) + Tr[Hloc�i�

†
i ]

⎫⎬
⎭. (C2)

In RISB, Eqs. (C1) and (C2) produce the same total energies
because the Lagrange equations, Eqs. (28a)–(28f), are exactly
satisfied. However, in DMET, since the Lagrange equation,
Eq. (66), can merely be minimized, Eqs. (C1) and (C2) no

longer yield the same energy. One has to evaluate the total
energy using Eq. (C2) as done in the DMET literature.

The RISB formalism can be readily extended to finite
temperatures, as will be explored in a separate publication.
We give the final expression for the resulting free energy:

� = −T
∑

k

log(1 + e−β(Rε̃kR
†+λ−μ))

+ T
∑

i

Trlog[1 − e−β(Ĥembed−EcÎ )] + Ec

−
∑
i,αβ

(
λαβ + λc

αβ

)



p

αβ

−
∑
i;αβγ

(DαβRγα + c.c.)[
p(1 − 
p)]1/2
γβ , (C3)

where Î is an identity matrix with the size of the Hilbert space
of Ĥembed.

The fact that DMET is a simplification of RISB with R = 1
gives an easy way to generalize DMET to finite temperatures.
The implications of this finite-temperature extension of RISB
and DMET will be explored in a separate publication.
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Phys. Rev. Lett. 118, 126401 (2017).
[30] G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362

(1986).
[31] J. Bünemann and F. Gebhard, Phys. Rev. B 76, 193104 (2007).
[32] B.-X. Zheng and G. K.-L. Chan, Phys. Rev. B 93, 035126 (2016).
[33] B.-X. Zheng, J. S. Kretchmer, H. Shi, S. Zhang, and G. K.-L.

Chan, Phys. Rev. B 95, 045103 (2017).
[34] I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89,

035140 (2014).
[35] S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K. Chan,

J. Chem. Theory Comput. 12, 2706 (2016).
[36] S. Wouters, C. A. Jiménez-Hoyos, and G. K. L. Chan,

arXiv:1605.05547.

235139-11

https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.58.R7475
https://doi.org/10.1103/PhysRevB.58.R7475
https://doi.org/10.1103/PhysRevB.58.R7475
https://doi.org/10.1103/PhysRevB.58.R7475
https://doi.org/10.1103/PhysRevB.61.12739
https://doi.org/10.1103/PhysRevB.61.12739
https://doi.org/10.1103/PhysRevB.61.12739
https://doi.org/10.1103/PhysRevB.61.12739
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevB.62.R9283
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.77.1027
http://arxiv.org/abs/arXiv:1705.00024
https://doi.org/10.1103/PhysRevB.48.418
https://doi.org/10.1103/PhysRevB.48.418
https://doi.org/10.1103/PhysRevB.48.418
https://doi.org/10.1103/PhysRevB.48.418
https://doi.org/10.1103/PhysRevLett.84.522
https://doi.org/10.1103/PhysRevLett.84.522
https://doi.org/10.1103/PhysRevLett.84.522
https://doi.org/10.1103/PhysRevLett.84.522
https://doi.org/10.1140/epjb/e2003-00121-8
https://doi.org/10.1140/epjb/e2003-00121-8
https://doi.org/10.1140/epjb/e2003-00121-8
https://doi.org/10.1140/epjb/e2003-00121-8
https://doi.org/10.1088/1367-2630/aa5d34
https://doi.org/10.1088/1367-2630/aa5d34
https://doi.org/10.1088/1367-2630/aa5d34
https://doi.org/10.1088/1367-2630/aa5d34
http://arxiv.org/abs/arXiv:1703.06981v1
https://doi.org/10.1103/PhysRevB.64.165114
https://doi.org/10.1103/PhysRevB.64.165114
https://doi.org/10.1103/PhysRevB.64.165114
https://doi.org/10.1103/PhysRevB.64.165114
https://doi.org/10.1080/00268976.2014.993342
https://doi.org/10.1080/00268976.2014.993342
https://doi.org/10.1080/00268976.2014.993342
https://doi.org/10.1080/00268976.2014.993342
https://doi.org/10.1080/00268976.2016.1182224
https://doi.org/10.1080/00268976.2016.1182224
https://doi.org/10.1080/00268976.2016.1182224
https://doi.org/10.1080/00268976.2016.1182224
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1103/PhysRevB.76.155102
https://doi.org/10.1103/PhysRevB.76.155102
https://doi.org/10.1103/PhysRevB.76.155102
https://doi.org/10.1103/PhysRevB.76.155102
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1021/ct301044e
https://doi.org/10.1021/ct301044e
https://doi.org/10.1021/ct301044e
https://doi.org/10.1021/ct301044e
https://doi.org/10.1209/0295-5075/85/57009
https://doi.org/10.1209/0295-5075/85/57009
https://doi.org/10.1209/0295-5075/85/57009
https://doi.org/10.1209/0295-5075/85/57009
https://doi.org/10.1103/PhysRevB.80.064501
https://doi.org/10.1103/PhysRevB.80.064501
https://doi.org/10.1103/PhysRevB.80.064501
https://doi.org/10.1103/PhysRevB.80.064501
https://doi.org/10.1038/ncomms5261
https://doi.org/10.1038/ncomms5261
https://doi.org/10.1038/ncomms5261
https://doi.org/10.1038/ncomms5261
https://doi.org/10.1103/PhysRevB.85.035133
https://doi.org/10.1103/PhysRevB.85.035133
https://doi.org/10.1103/PhysRevB.85.035133
https://doi.org/10.1103/PhysRevB.85.035133
https://doi.org/10.1103/PhysRevB.95.085119
https://doi.org/10.1103/PhysRevB.95.085119
https://doi.org/10.1103/PhysRevB.95.085119
https://doi.org/10.1103/PhysRevB.95.085119
http://arxiv.org/abs/arXiv:1708.03191
https://doi.org/10.1103/PhysRevX.5.011008
https://doi.org/10.1103/PhysRevX.5.011008
https://doi.org/10.1103/PhysRevX.5.011008
https://doi.org/10.1103/PhysRevX.5.011008
https://doi.org/10.1103/PhysRevLett.118.126401
https://doi.org/10.1103/PhysRevLett.118.126401
https://doi.org/10.1103/PhysRevLett.118.126401
https://doi.org/10.1103/PhysRevLett.118.126401
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevB.76.193104
https://doi.org/10.1103/PhysRevB.76.193104
https://doi.org/10.1103/PhysRevB.76.193104
https://doi.org/10.1103/PhysRevB.76.193104
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevB.93.035126
https://doi.org/10.1103/PhysRevB.95.045103
https://doi.org/10.1103/PhysRevB.95.045103
https://doi.org/10.1103/PhysRevB.95.045103
https://doi.org/10.1103/PhysRevB.95.045103
https://doi.org/10.1103/PhysRevB.89.035140
https://doi.org/10.1103/PhysRevB.89.035140
https://doi.org/10.1103/PhysRevB.89.035140
https://doi.org/10.1103/PhysRevB.89.035140
https://doi.org/10.1021/acs.jctc.6b00316
https://doi.org/10.1021/acs.jctc.6b00316
https://doi.org/10.1021/acs.jctc.6b00316
https://doi.org/10.1021/acs.jctc.6b00316
http://arxiv.org/abs/arXiv:1605.05547


THOMAS AYRAL, TSUNG-HAN LEE, AND GABRIEL KOTLIAR PHYSICAL REVIEW B 96, 235139 (2017)

[37] A. Isidori and M. Capone, Phys. Rev. B 80, 115120 (2009).
[38] G. Mazza and A. Georges, Phys. Rev. B 96, 064515 (2017).
[39] G. H. Booth and G. K.-L. Chan, Phys. Rev. B 91, 155107

(2015).
[40] M. Schiró and M. Fabrizio, Phys. Rev. Lett. 105, 076401

(2010).
[41] M. Schiró and M. Fabrizio, Phys. Rev. B 83, 165105 (2011).
[42] N. Lanatà and H. U. R. Strand, Phys. Rev. B 86, 115310 (2012).
[43] G. Mazza and M. Fabrizio, Phys. Rev. B 86, 184303 (2012).
[44] M. Behrmann, M. Fabrizio, and F. Lechermann, Phys. Rev. B

88, 035116 (2013).
[45] G. Mazza, A. Amaricci, M. Capone, and M. Fabrizio, Phys. Rev.

B 91, 195124 (2015).
[46] M. Behrmann and F. Lechermann, Phys. Rev. B 91, 075110

(2015).

[47] J. S. Kretchmer and G. K.-l. Chan, arXiv:1609.07678v1.
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