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Quantum kinetic theory of the chiral anomaly
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We present a general quantum kinetic theory of low-field magnetotransport in weakly disordered crystals
that accounts fully for the interplay between electric-field-induced interband coherence, Bloch-state scattering,
and an external magnetic field. The quantum kinetic equation we derive for the Bloch-state density matrix
naturally incorporates the momentum-space Berry phase effects whose influence on Bloch-state wave-packet
dynamics is normally incorporated into transport theory in an ad hoc manner. The Berry phase correction to
the momentum-space density of states in the presence of an external magnetic field implied by semiclassical
wave-packet dynamics is captured by our theory as an intrinsic density-matrix response to a magnetic field.
We propose a simple and general procedure for expanding the linear response of the Bloch-state density matrix
to an electric field in powers of magnetic field. As an illustration, we apply our theory to magnetotransport in
Weyl semimetals. We show that the chiral anomaly (positive magnetoconductivity quadratic in magnetic field)
that appears when separate Fermi surface pockets surround distinct Weyl points survives only when intervalley
scattering is very weak compared to intravalley scattering.
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I. INTRODUCTION

The electrical transport properties of weakly disordered
quantum degenerate crystalline conductors are normally con-
trolled by occupation probabilities of states close to the Fermi
surface that change in response to electric fields or temperature
gradients. Transport properties then depend on the shapes of all
Fermi surfaces, on the distributions of group velocities, and the
details of the processes that scatter electrons between Bloch
states on those surfaces. It has recently become more widely
appreciated that intrinsic effects, independent of disorder and
related more to Bloch-state wave functions than energies,
are sometimes important. In special cases, these effects are
nearly completely characterized by momentum-space Berry
curvatures [1], which can be nonzero only in systems that
have broken time-reversal symmetry, or broken inversion
symmetry, or both. One widely recognized and important
example of a transport effect that is often dominated by
Berry curvature physics is the anomalous Hall effect [2],
i.e., the Hall effect in the absence of a magnetic field in a
crystal in which time-reversal symmetry is broken by magnetic
order. This paper is motivated by the need for a practical
theory suitable for application to real crystals that can provide
a general description of magnetotransport in systems in
which Bloch-state wave function properties play an important
role.

Large momentum-space Berry curvatures are often as-
sociated with nontrivial band topology. For example, the
anomalous Hall conductivity of a two-dimensional (2D)
insulator [3,4] is equal to the quantum unit of conductance
e2/h times the sum of the Chern numbers of all occupied
bands. The Chern number of a band is a topological index that
is simply the integral of its Berry curvature over the full 2D
Brillouin zone divided by 2π , and must be an integer. Indeed,
recent interest in the topological classification of crystalline
matter started with theories of the quantum Hall effect, and was
later extended to time-reversal-invariant topological insulators
[5–10]. The classification of topological phases has now been

extended to three-dimensional (3D) gapless metallic systems
referred to as Weyl semimetals [11–13] or Dirac semimetals
[14–17]. Although Weyl semimetals cannot be characterized
by bulk topological invariants, nondegenerate band-touching
points (Weyl points) are topologically stable and can be
regarded as monopole momentum-space sources of phase flux
[18,19]. Dirac points, which can be viewed as a superposition
of two degenerate Weyl points, are not generically stable,
but can be stabilized by crystalline symmetries [17]. The
experimental identification of Dirac semimetals [20–23] and
Weyl semimetals [24–27] has motivated a growing effort,
with both theoretical and experimental components, aimed at
identifying and exploring novel phenomena in these materials.
Three-dimensional topological semimetals host a variety of
transport and magnetotransport properties that are dependent
on their unusual Bloch-state wave-function properties, some of
which we highlight in the following paragraphs, and therefore
require the type of transport theory discussed in this paper for
a proper theoretical description.

The topologically nontrivial electronic band structures of
Weyl and Dirac semimetals can lead to an approximate
realization of the chiral anomaly in condensed matter physics.
In quantum field theory the chiral anomaly, which occurs only
in systems with odd space dimensions, refers to the violation of
axial current conservation ∂μJ

μ

5 �= 0 as a combined response
to electric and magnetic fields. In the case of Weyl semimetals,
these response properties are conveniently described in terms
of a θ term added to the system’s electromagnetic action [28]:

Sθ = e2

4π2h̄c

∫
dt d3r θ (r,t)E · B, (1)

where θ (r,t) is a coupling coefficient, and E and B are external
electric and magnetic fields. The presence of a θ term implies
a charge current j (r,t) = δSθ/δ A = (e2/4π2h̄c)[∇θ (r,t) ×
E + θ̇(r,t)B] [28]. Here, A is the electromagnetic field’s
vector potential. The electric-field-induced current is the
anomalous Hall effect since it is perpendicular to the electric
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field, and the magnetic-field-induced current is referred to as
the chiral magnetic effect [29–31] which we discuss below.

Weyl semimetals with two Weyl points are characterized by
the following approximate expression: θ (r,t) = 2(b · r − b0t)
[30–35]. Here, b is the vector connecting the distinct Weyl
points in momentum space, and b0 is the difference between
distinct local chemical potentials, if one is somehow estab-
lished in different regions of momentum space. Such a chemi-
cal potential difference is of course absent in equilibrium; the
possible existence of an equilibrium chiral magnetic effect has
been considered theoretically [36–42], but can be ruled out in
crystalline solids as discussed in Ref. [36]. A related dynamical
realization of the chiral magnetic effect was recently proposed
for axionic insulators [43,44]. A chemical potential difference
can be generated by the combined influence of electric and
magnetic fields as explained below, and when present is
responsible for a related negative magnetoresistance (positive
magnetoconductance) that is quadratic in magnetic field
[45–48]. A positive magnetoconductance stands in striking
contrast to the familiar negative magnetoconductance due to
the Lorentz force. Remarkably, negative magnetoresistance
has recently been observed in the low-magnetic-field regime in
the Dirac semimetals Na3Bi [49], Cd3As2 [50,51], and ZrTe5

[52], and in the Weyl semimetals TaAs [53] and TaP [54].
The peculiar positive magnetoconductance behavior occurs
only for parallel electric and magnetic fields, which suggests
that it is related in some way to an E · B contribution to
the electromagnetic action. This very specific effect is a
particularly attractive target of the magnetotransport theory
developed here, which is able to realistically address its partial
realization in real materials.

In this paper, we develop a general quantum kinetic theory
of low-field magnetotransport in weakly disordered crystals
that accounts fully for the electric-field-induced interband
coherence responsible for Berry phase contributions to wave-
packet dynamics and to the momentum-space density of states,
and at the same time to account for the interplay between
Bloch-state scattering and the presence of an external magnetic
field. We take the effect of magnetic fields into account
using a semiclassical approximation that we expect to be
accurate when the magnetic field is weak enough that Landau
quantization can be neglected. Our main result is a quantum
kinetic equation which includes driving terms associated
with both external electric and magnetic fields, and which
we expect to be valuable for understanding the interesting
magnetotransport anomalies present in any conductor that has
band crossings at energies close to the Fermi energy.

Our paper is organized as follows. In Sec. II we provide a
brief overview and physical explanation of our main results,
neglecting all technical details. In Sec. III we derive a
general quantum kinetic equation that accounts fully for
momentum-dependent Bloch-state wave functions and the
associated interband coherence response in the presence of
external electric and magnetic fields. In Sec. IV we describe
a general scheme to apply our theory to magnetotransport
phenomena, by performing a systematic low-field expansion.
In Sec. V we explain in detail when the intervalley scattering
rate emerges as an important parameter in transport properties
of many-valley electronic systems, and when it does not. In
Sec. VI, as an application of our formalism, we explain how

our formalism quite generally captures the pumping between
valleys that occurs in systems with Fermi surface pockets
that enclose Weyl points with a net chirality. In Sec. VII we
apply our quantum kinetic equation to a commonly employed
toy model of a two-node Weyl semimetal, highlighting the
complicated interplay between disorder, free evolution, and
driving terms in the kinetic equation. In Sec. VIII we focus
on the positive magnetoconductance quadratic in magnetic
field induced by the chiral anomaly in Weyl and Dirac metals.
Finally, in Sec. IX we discuss our results and comment on
some other potentially interesting applications of our transport
theory.

II. CHIRAL MAGNETOTRANSPORT ANOMALY

The anomalous positive magnetoconductance of Weyl
semimetals was predicted theoretically by observing that
when Berry phase correction to the density of states and
anomalous-velocity correction are included, the theory of
Bloch-state wave-packet dynamics predicts that electrons will
be pumped between Fermi surface pockets when E · B �= 0.
Under disorder-free semiclassical dynamics, the number of
electrons in a given valley changes at the rate [31,45]

∂Ni

∂t
= Qi

e2

4π2h̄2c
E · B, (2)

where i is a valley label and

Qi =
∫

d3k

2πh̄

∂f0
(
εm

k

)
∂εm

k

vm
k · �m

k (3)

is the chirality of the associated band. Here, �m
k is the

momentum-space Berry curvature of band m (a band that
possesses a Fermi surface), vm

k is its Bloch-state group velocity,
and f0(εm

k ) is the Fermi-Dirac distribution function whose
derivative with respect to energy εm

k provides a δ function
at the Fermi energy EF . It is easy to show that the chirality of
each valley is an integer equal to the sum of the chiralities [19]
of all the Weyl (band-crossing) points enclosed by its Fermi
surface, and that the sum of chirality over all Fermi surfaces
vanishes.

The goal of our quantum kinetic theory is to capture
all effects that are captured as Berry phase corrections
in semiclassical wave-packet dynamics, and at the same
time to account for disorder in a systematic fashion. The
chiral-anomaly-related magnetotransport anomalies of Weyl
semimetals are therefore an excellent test case for the theory.
We find that the chiral magnetotransport anomaly survives
disorder in the limit that intervalley scattering is very weak
compared to intravalley scattering. In the following, we take
the direction of the parallel electric and magnetic fields to be
the z direction.

In a solid, magnetic and electric fields perturb electrons in
qualitatively different ways since equilibrium can be estab-
lished in the presence of the former, but not in the presence
of the latter. When disorder-free semiclassical wave-packet
dynamics is used to derive Eq. (2), the origin of the term
on the right-hand side proportional to �z is the change in
the equilibrium electronic density of states induced by the
magnetic field, whereas the terms proportional to �x and �y
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FIG. 1. (a) Pumping of valley population in a Weyl semimetal by parallel electric and magnetic fields oriented along the z direction in
the absence of disorder. When the electronic structure of a Weyl semimetal is approximated by Dirac cones with masses that depend on kz, a
magnetic field induces an anomalous (N = 0) Landau level branch that has only one sign of velocity vz in a given valley. It follows that in each
valley the density of states is increased for states with one sign of velocity and decreased for states with the other sign of velocity, and that the
total current summed over a valley is already nonzero in equilibrium. When an electric field drives states through momentum space (diagonal
red arrows), the total number of states in a valley varies. (b) Scattering within valleys (curved red arrows) can relax the current in each valley
to its equilibrium value, but cannot establish a steady state because the number of states in each valley still changes at a constant rate. A steady
state can be established only when intervalley scattering processes are present.

originate from the anomalous velocity induced by the electric
field. We show in this paper that our quantum kinetic theory is
able to completely account for both effects.

The robustness of the intervalley pumping effect in the pres-
ence of disorder is most easily understood using the Landau
level picture illustrated in Fig. 1, in which the influence of
the magnetic field is accounted for by solving the equilibrium
quantum problem. Note that at nonzero magnetic field, each
valley carries a nonzero current in equilibrium because the
number of Landau levels with positive and negative velocities
along the field direction in an individual valley differs, but this
does not lead to important observable effects. The intervalley
pumping effect central to the chiral anomaly is present only
when the electric field is added. In the semiclassical theory,
the �z contribution to intervalley pumping accounts for the
influence of Landau quantization on the equilibrium density
of states, whereas the �x and �y corrections account for
the changing character of Landau level wave functions as
they are swept through momentum space by the electric field
and appear as anomalous-velocity contribution to the Lorentz
force. Although it is not possible to establish equilibrium in
the presence of an electric field, in the presence of disorder
scattering it is normally possible to establish a steady state with
time-independent values of currents and other observables that
can be measured experimentally. The goal of the transport
theory we present is to describe such a transport steady state
and thereby to make connection with experimental observables
while allowing for the possibility that momentum-space Berry
curvature effects survive disorder. For the chiral anomaly, for
example, it is important to establish the connection between
free Bloch-state dynamics and the transport steady state, and to
distinguish the roles of intervalley and intravalley scattering.
We will show that the chiral magnetotransport anomaly is
observable only when intervalley scattering at the Fermi
energy is very weak compared to intravalley scattering. For
a microscopic toy model of Weyl semimetals we compute
the positive quadratic magnetoconductivity induced by the
chiral anomaly σ CA

zz (B2
z ) in a fully systematic way. In the low-

temperature limit, we find that the contribution to the magne-

toconductivity from a single isotropic Weyl cone is

σ CA
zz

(
B2

z

) = C e2

4π2h̄c2

(eBz)2v3
F

μ2
τ, (4)

where μ is the chemical potential, vF is the Fermi velocity,
τ is the intervalley scattering time, and C ∼ 1 is a coefficient
that depends on electronic structure and disorder details. In the
case of isotropic Weyl points, we find that C = 1 in the limit
of extremely weak intervalley scattering, independent of the
details of the disorder scattering.

III. QUANTUM KINETIC EQUATION

In this section, we derive a quantum kinetic equation for
Bloch electrons in the presence of electric and magnetic
fields. To this end, we start with some general considerations
related to Bloch Hamiltonians and basis function choices.
Throughout this paper, we work in the basis of the disorder-free
Hamiltonian eigenstates, which we refer to as the eigenstate
basis:

H0|m,k〉 = εm
k |m,k〉, (5)

where H0 is the crystal Hamiltonian, εm
k is an eigenvalue of

H0, k is a momentum in the crystal’s Brillouin zone, and m

is a band index. The eigenstates of a crystal Hamiltonian are
Bloch states, products of plane waves with wave vector k and
periodic functions that are eigenfunctions of the k-dependent
k · p Hamiltonian. A Bloch state does not, of course, have to
be an eigenstate of the crystal Hamiltonian. Our formalism
assumes that a good approximation to the Hamiltonian matrix
of the perfect crystal is known in a representation of k-
independent periodic functions. In the following, we assume
that the Hamiltonian is known in a representation of Wannier
functions, but the formalism could be applied with little change
if we used a representation of k · p eigenstates at a particular
Brillouin-zone point of interest.

Given this starting point, we write

H0 =
∑
k,m

εm
k |m,k〉〈m,k| =

∑
LL′αα′

Hαα′
LL′ |α,L〉〈α′,L′| (6)
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with Hαα′
LL′ = 〈α,L|H0|α′,L′〉. Here, |α,L〉 is a Wannier func-

tion associated with orbital α and real-space lattice vector L.
For a particular orbital, the Bloch and Wannier functions are
related by

|α,L〉 = 1√
N

∑
k

e−ik·L |α,k〉,

|α,k〉 = 1√
N

∑
k

e+ik·L |α,L〉, (7)

where N is the number of Bravais lattice sites in the crystal.
|α,k〉 is a Bloch state with wave function

〈r|α,k〉 = eik·ruα
k(r), (8)

where r is position and uα
k (r) is the cell-periodic part of the

Bloch wave function. Our transport theory is formulated in
terms of the single-particle density matrix. The density-matrix
operator can be expressed in either the eigenstate or Wannier
representations using

ρ =
∑

kk′mm′
ρmm′

kk′ |m,k〉〈m′,k′| =
∑

LL′αα′
ραα′

LL′ |α,L〉〈α′,L′|, (9)

where ρmm′
kk′ = 〈m,k|ρ|m′,k′〉 and ραα′

LL′ = 〈α,L|ρ|α′,L′〉.
Since we focus on circumstances in which translational
symmetry is not broken, the nonequilibrium expectation value
of the density-matrix operator ρ will always be diagonal in
Bloch-state wave vector. The eigenstate basis and the Wannier
basis are related to each other through the unitary transfor-
mation related to band eigenvectors in the α representation:
|m,k〉 = ∑

α zm
α |α,k〉 with zm

α = 〈α,k|m,k〉.

A. Introducing disorder

The main result of this paper is a generic quantum kinetic
equation that accounts for disorder and electric and magnetic
fields. Throughout this paper, we take disorder into account
within the Born approximation, implicitly assuming therefore
that disorder is weak. We follow a procedure developed in an
earlier paper [55], generalizing it to allow for magnetic fields.

To establish some notation, we first consider the case
without external electric and magnetic fields. We start with
the quantum Liouville equation

∂ρ

∂t
+ i

h̄
[H,ρ] = 0, (10)

where ρ and H are the density-matrix operator and the
Hamiltonian of the system, respectively. In the absence of
external fields, the total Hamiltonian of the system is H =
H0 + U where U is the disorder potential. We decompose the
density matrix ρ into two parts, writing ρ = 〈ρ〉 + g, where
〈ρ〉 is the density matrix averaged over disorder configurations,
and g is the deviation from this average. The quantum Liouville
equation can then be decomposed into coupled equations for
〈ρ〉 and g:

∂〈ρ〉
∂t

+ i

h̄
[H0,〈ρ〉] + i

h̄
〈[U,g]〉 = 0, (11)

∂g

∂t
+ i

h̄
[H0,g] + i

h̄
[U,g] − i

h̄
〈[U,g]〉 = − i

h̄
[U,〈ρ〉]. (12)

In the Born approximation, we can ignore the last two terms on
the left-hand side of Eq. (12). The equation for g [Eq. (12)] can
then be solved straightforwardly. By substituting the solution
for g into Eq. (11), we obtain

∂〈ρ〉
∂t

+ i

h̄
[H0,〈ρ〉] + K(〈ρ〉) = 0, (13)

where the scattering term K(〈ρ〉) is given by [55]

K(〈ρ〉) = 1

h̄2

∫ ∞

0
dt ′ 〈[U,[e−iH0t

′/h̄UeiH0t
′/h̄,〈ρ(t)〉]]〉,

(14)

where 〈ρ(t)〉 = e−iH0t/h̄〈ρ〉eiH0t/h̄.
In the following, we do not exhibit the explicit time

dependence of 〈ρ(t)〉 in order to simplify the notation. We
separate the density matrix into band-diagonal and band-off-
diagonal parts because these two types of components behave
quite differently using the notation 〈ρ〉 = 〈n〉 + 〈S〉, where
〈n〉 is diagonal in band index and 〈S〉 is off diagonal. The
scattering kernel can be separated into four parts which map 〈n〉
and 〈S〉 to band-diagonal and band-off-diagonal contributions
to ∂〈ρ(t)〉/∂t . This separation is discussed at length later in
connection with magnetotransport. Focusing on the elastic-
scattering case and using the notation of Ref. [55], we find that
the band-diagonal part of K(〈ρ〉) from band-diagonal 〈n〉 is

[I (〈n〉)]mm
k = 2π

h̄

∑
m′k′

〈
Umm′

kk′ Um′m
k′k

〉(
nm

k − nm′
k′

)
δ
(
εm

k − εm′
k′

)
,

(15)

with m and m′ being band indices. This is exactly Fermi’s
golden rule. Similarly, the band-off-diagonal part of K(〈ρ〉)
from band-diagonal 〈n〉 is

[J (〈n〉)]mm′′
k = π

h̄

∑
m′k′

〈
Umm′

kk′ Um′m′′
k′k

〉[(
nm

k − nm′
k′

)
× δ

(
εm

k − εm′
k′

) + (
nm′′

k − nm′
k′

)
δ
(
εm′′

k − εm′
k′

)]
,

(16)

where m �= m′′. The full expression for K(〈ρ〉), including the
contributions from the off-diagonal density matrix 〈S〉, can be
found in Ref. [55].

B. Introducing electric and magnetic fields

Next, we take the effects of magnetic fields into account
using a semiclassical approximation that we expect to be
accurate when the weak magnetic fields condition ωcτ 	 1
is satisfied and Landau quantization can be neglected. Here,
ωc is the cyclotron frequency and τ is the transport relaxation
time discussed at greater length below. In order to derive the
kinetic equation for systems in magnetic fields, we apply the
Wigner transformation to the quantum Liouville equation (10).
We consider a generic single-particle D-dimensional Bloch
Hamiltonian H0( p) with momentum operator p = −ih̄∇. In
the presence of a vector potential A(r,t), minimal coupling
results in p → p + eA and adopt the notation that e > 0 is
the magnitude of the electron charge.
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The Wigner distribution function in the presence of a vector
potential A is defined by [56]

〈ρ〉mn
p (r) =

∫
dD R e−(i/h̄)P ·R〈m,r+|ρ|n,r−〉, (17)

where P = p − eA, r± = r ± R/2, and |n,r〉 =∑
m,k |m,k〉〈m,k|n,r〉 = ∑

k eik·r |n,k〉 is the Fourier
transform of |n,k〉. Note that the sign in front of eA in P is
different from the one in minimal coupling [56]. We project
the quantum Liouville equation (10) onto the {|m,r〉} space.
Let us consider the term

〈m,r+|[H0,ρ]|n,r−〉

=
∫

dD r ′ ∑
m′

[〈m,r+|H0|m′,r ′〉〈m′,r ′|ρ|n,r−〉

− 〈m,r+|ρ|m′,r ′〉〈m′,r ′|H0|n,r−〉]. (18)

Since the Hamiltonian is diagonal in real space,
we have 〈m,r1|H0|m′,r2〉 = (〈m′,r2|H0|m,r1〉)∗ =∑

q,q ′ e−iq·r1eiq ′·r2〈m,q|H0( p1 + eA1)|m′,q ′〉 with p1 =
−ih̄∂r1 . We expand p± and A± up to linear order in R as
p± = −ih̄( 1

2∇ ± ∇R) and A± = A ± 1
2 (R · ∇)A, where

∇R ≡ ∂/∂ R. Finally, we obtain

〈m,q|H0( p+ + A+)|m′,q ′〉
= 〈m,q|H0(q)|m′,q ′〉 − 1

2 ih̄ 〈m,q|∇qH0(q) · ∇|m′,q ′〉
+ 1

2e 〈m,q|∇qH0(q) · [(R · ∇)A]|m′,q ′〉 (19)

with q = −ih̄∇R + eA = p + eA. In reaching Eq. (19) we
have observed that it follows from the definition of the Wigner
distribution function (17) that R = ih̄∇ p and p = −ih̄∇R.

We perform the Wigner transformation on the quantum
Liouville equation (10) as∫

dD R e−(i/h̄)P ·R〈m,r+|
{

∂ρ

∂t
+ i

h̄
[H0,ρ]

}
|n,r−〉 = 0.

(20)

Note that the scattering term K(〈ρ〉) is not changed after the
Wigner transformation. We use the following identities:

e−(i/h̄)P ·R∇ = {∇ − (ie/h̄)[∇(A · R)]}e−(i/h̄)P ·R,

e−(i/h̄)P ·R∂/∂t = [∂/∂t + (ie/h̄)E · R]e−(i/h̄)P ·R, (21)

where E = −∂ A/∂t is the electric field. Note that we can
obtain the same electric-field-dependent term as in Eq. (21) by
taking the electric field into account using a scalar potential
φ(r) = −E · r , i.e., by adding HE = −eφ(r) = eE · r to
the Hamiltonian as H0 → H0 + HE in Eq. (18) [55]. By
multiplying Eq. (19) by e−(i/h̄)P ·R from the left we see that
the second term in the right-hand side of Eq. (19) generates an
additional term proportional to ∇(A · R). Finally, the vector
potential can be replaced by the magnetic field using the
identity

∇(A · R) − (R · ∇)A = R × B, (22)

where B = ∇ × A is the magnetic field. Notice that the matrix
element of ∇qH0(q) in Eq. (19) can be written as

〈m,q|∇qH0(q)|m′,q ′〉 = δ(q − q ′)
[∇qHmm′

0q + 〈
um

q

∣∣∇qu
n′
q

〉
Hn′m′

0q − Hmn′
0q

〈
un′

q

∣∣∇qu
m′
q

〉]
, (23)

where Hmm′
0q = 〈m,q|H0(q)|m′,q〉 = δmm′εm

q and |um
q 〉 is the periodic part of the Bloch function. The magnetic-field-dependent

term in Eq. (19) becomes − 1
2e

∑
n′,q ′′ 〈m,q|∇qH0(q)|n′,q ′′〉 · 〈n′,q ′′|R|m′,q ′〉 × B. Here, the term 〈n′,q ′′|R|m′,q ′〉 (with R =

ih̄∇q) acts on 〈m′,r ′|ρ|n,r−〉 in Eq. (18), which finally results in

〈n′,q ′′|R|m′,q ′〉〈ρ〉m′n
q = ih̄ δ(q ′′ − q ′)δ(q ′ − q)

[∇q〈ρ〉n′n
q + 〈

un′
q

∣∣∇qu
m′
q

〉〈ρ〉m′n
q − 〈ρ〉n′m′

q

〈
um′

q

∣∣∇qu
n
q

〉]
, (24)

where the third term on the right-hand side comes from the Hermiticity of the equation and consistency with the single-band
limit.

Combining Eq. (13) with the analysis above, we arrive at the final form for the quantum kinetic equation in the presence of
disorder, an electric field E, and a magnetic field B:

∂〈ρ〉
∂t

+ i

h̄
[H0,〈ρ〉] + 1

2h̄

{
DH0

Dk
· ∇〈ρ〉

}
+ K(〈ρ〉) = DE(〈ρ〉) + DB(〈ρ〉), (25)

where k = q/h̄ is the crystal wave vector, and the angle
brackets in 〈ρ〉 imply an impurity average. Here and below,
{a · b} ≡ a · b + b · a (with a and b being vectors) denotes
a symmetrized operator product. In Eq. (25), DE(〈ρ〉) and
DB(〈ρ〉) are the electric and magnetic driving terms

DE(〈ρ〉) = eE
h̄

· D〈ρ〉
Dk

(26)

and

DB(〈ρ〉) = e

2h̄2

{(
DH0

Dk
× B

)
· D〈ρ〉

Dk

}
. (27)

Equations (26) and (27) have been simplified by introducing
the covariant derivative notation defined by

D〈ρ〉
Dk

= ∇k〈ρ〉 − i[Rk,〈ρ〉], (28)

where Rk = ∑
a=x,y,z Ra

kea with [Ra
k]mn = i〈um

k |∂ka
un

k〉 be-
ing the generalized Berry connection. From another point of
view, the covariant derivative is simply the derivative evaluated
in the k-independent Wannier state representation.

Note that the covariant k derivative acting on the density
matrix accounts for changes in the density matrix due to
the fact that its band-eigenstate representation elements are
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k dependent and also due to the fact that the band eigen-
states themselves are k dependent. The latter contributions
capture the momentum-space Berry curvature contributions to
semiclassical wave-packet dynamics, but now in a formalism
that accounts consistently for the scattering terms that are
necessary to establish the transport steady state. The covariant
derivative involving H0 in Eq. (27) is defined in the same way,
simply replacing 〈ρ〉 by H0 in Eq. (28). For our formulation
of magnetotransport, it will be important that DB is linear in
the density matrix. As we see below, the k dependence of
the eigenstates in this derivative plays the essential role in
capturing the chiral anomaly.

The covariant derivatives reduce to simple derivatives in
a spin-independent single-band system, for example, in a
parabolic band system with H0(k) = h̄2k2/2m. In the same
limit, Eq. (25) reduces to the usual semiclassical Boltzmann
equation[

∂

∂t
+ vk · ∇ − e

h̄
(E + vk × B) · ∇k

]
fk = −I (fk), (29)

where we have defined the velocity vk = (1/h̄)∇kH0(k) and
I (fk) is the single-band version of Eq. (15). The quantum
kinetic equation (25) we have derived can therefore be
understood as a generalization of the simple Boltzmann
equation (29) in which the velocity and distribution function
scalars are replaced by matrices, the simple derivatives ∇k are
replaced by covariant derivatives D/Dk, and scalar products
are replaced by symmetrized matrix products 1

2 {. . .}. Equation
(25) is the principal result of this paper.

IV. MAGNETOTRANSPORT THEORY

In this section, we describe a general scheme to apply
the quantum kinetic equation (25) to phenomena in systems
in which the momentum-space Berry connection plays an
important role. We start by obtaining the expression for the
density matrix in linear response to an electric field in the
absence of a magnetic field. Then, we incorporate the effect of a
magnetic field by performing a systematic low-magnetic-field
expansion. Throughout this paper, we assume that the system
is uniform, i.e., that ∇〈ρ〉 = 0.

A. Transport at zero magnetic field

We first briefly summarize the B = 0 limit of our transport
theory. In linear response, we write the electron density
matrix 〈ρ〉 as 〈ρ〉 = 〈ρ0〉 + 〈ρE〉, where 〈ρ0〉 is the equilibrium
density matrix and 〈ρE〉 is the correction to 〈ρ0〉 in linear order
in an electric field E. With this notation we need to solve the
kinetic equation in the form

∂〈ρE〉
∂t

+ i

h̄
[H0,〈ρE〉] + K(〈ρE〉) = DE(〈ρ0〉). (30)

We divide the electron density matrix response 〈ρE〉 into its
diagonal part 〈nE〉 and its off-diagonal part 〈SE〉, writing
〈ρE〉 = 〈nE〉 + 〈SE〉. Note that the equilibrium density matrix
〈ρ0〉 is diagonal in the band index.

When only band-diagonal to band-diagonal terms are
included in the scattering kernel, it is easy to solve for the
steady-state value of 〈nE〉. The kinetic equation (30) in this

limit is

[I (〈nE〉)]mm
k = [DE(〈ρ0〉)]mm

k = eE · vm
k

∂f0
(
εm

k

)
∂εm

k

, (31)

where vm
k = (1/h̄)∇kε

m
k and 〈ρ0〉mm = f0(εm

k ) is the Fermi-
Dirac distribution function. The equation for nE is therefore a
familiar linear integral equation which is discussed at greater
length below and yields 〈nE〉mk = eτm

trk E · vm
k ∂f0(εm

k )/∂εm
k ,

where τm
trk is the transport lifetime which is often nearly

constant across the Fermi surface.
Next, we consider the solution for the off-diagonal part of

the density matrix 〈SE〉, which is independent of weak disorder.
From Eq. (30) the kinetic equation for 〈SE〉 is given by

∂〈SE〉
∂t

+ i

h̄
[H0,〈SE〉] = D′

E(〈ρ0〉) − J (〈nE〉), (32)

where D′
E(〈ρ0〉) is the off-diagonal part of the intrinsic driving

term:

[DE(〈ρ0〉)]mm′
k = i

eE
h̄

· Rmm′
k

[
f0

(
εm

k

) − f0
(
εm′

k

)]
. (33)

The off-diagonal part of the driving term is responsible for the
Berry phase contribution to the Hall conductivity of systems
with broken time-reversal symmetry in the absence of a
magnetic field. As we will see, it also plays an essential role
in the anomalous magnetoconductivity response. The solution
to this equation is [55]

〈SE〉 =
∫ ∞

0
dt ′ e−iH0t

′/h̄[DE(〈ρ0〉) − J (〈nE〉)]eiH0t
′/h̄, (34)

where we have not explicitly exhibited the time dependencies
of 〈ρ0(t − t ′)〉 and 〈nE(t − t ′)〉. It can be further expanded
in the eigenstate basis by inserting an infinitesimal e−ηt ′ and
taking the limit η → 0 to obtain

〈SE〉mm′
k = −ih̄

[DE(〈ρ0〉)]mm′
k − [J (〈nE〉)]mm′

k

εm
k − εm′

k

. (35)

Here, we have written only the principal-value part and omitted
δ-function terms which can be important when bands touch,
giving rise for example to the Zitterbewegung contribution to
the minimum conductivity [55] in graphene. We note that, as
shown in Ref. [55], the contribution from J (〈nE〉) corresponds
to the vertex correction in the ladder-diagram approximation
of perturbation theory.

B. Equilibrium response to a magnetic field

Next, we look closely at the magnetic driving term (27)
by examining linear response to magnetic field in the absence
of an electric field. In this E = 0 limit, we expect that the
steady state is actually an equilibrium state, and not one in
which energy transfer from the external field is balanced by
dissipation. We write the electron density matrix as 〈ρ〉 =
〈ρ0〉 + 〈ρB〉, where 〈ρ0〉 is the B = 0 density matrix, and 〈ρB〉
is the correction to 〈ρ0〉 at linear order in the magnetic field B.
This equilibrium density matrix 〈ρB〉 satisfies

∂〈ρB〉
∂t

+ i

h̄
[H0,〈ρB〉] + K(〈ρB〉) = DB(〈ρ0〉 + 〈ρB〉). (36)

To first order in magnetic field, the right-hand side can
be replaced by DB(〈ρ0〉), where 〈ρ0〉 is the Fermi-Dirac
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distribution function of Bloch states in the absence of a
magnetic field. For B = (0,0,Bz) we have

DB(〈ρ0〉) = eBz

2h̄2

[{
DH0

Dky

,
D〈ρ0〉
Dkx

}
−

{
DH0

Dkx

,
D〈ρ0〉
Dky

}]
,

(37)

where {. . . , . . .} indicates a matrix anticommutator. We will
show in Sec. VII C that DB(〈ρ0〉) describes valley-dependent
electrical equilibrium currents induced by a magnetic field
(i.e., the chiral magnetic effect) that are apparent in the Landau
level representation illustrated in Fig. 1. These currents cancel
when summed over valleys, but will not cancel when the
chemical potentials of the two valleys differ.

We separate the electron density matrix response 〈ρB〉 into
its diagonal 〈ξB〉 and off-diagonal 〈SB〉 parts: 〈ρB〉 = 〈ξB〉 +
〈SB〉. By writing the Hamiltonian and the B = 0 density
matrix operators as H0 = ∑

m,k εm
k |m,k〉〈m,k| and 〈ρ0〉 =∑

m,k f0(εm
k )|m,k〉〈m,k|, where εm

k is an energy eigenvalue
of band m with momentum k and f0(εm

k ) is the Fermi-Dirac
distribution function, it can be shown quite generally that
only band-off-diagonal components in DB(〈ρ0〉) are nonzero,
and hence that for weak disorder that K(〈ρB〉) = 0. (See
Appendix A for a detailed discussion.) This means that unlike
an electric field [Eq. (31)], a magnetic field does not generate
a dissipative current when applied to a conductor, as we know.
However, both fields do alter the band-off-diagonal part of
the density matrix. We find that the solution for the kinetic
equation (36) is

〈SB〉mm′
k = −ih̄

[DB(〈ρ0〉)]mm′
k

εm
k − εm′

k

, (38)

where m �= m′. See Eq. (35) for the corresponding electric
field equation.

There is another contribution to the equilibrium density
matrix linear in magnetic field in the absence of an electric
field. To calculate this, it is convenient to introduce an operator
P for an arbitrary density matrix 〈ρ〉 as

P 〈ρ〉 ≡ i

h̄
[H0,〈ρ〉]. (39)

Note that, in the eigenstate representation, the matrix P is
purely diagonal in both wave vector and in density-matrix
element at a given wave vector, and that it is nonzero only
for off-diagonal density-matrix elements. The notation P

for the Bloch-state evolution term ∂〈ρ〉/∂t in the absence
of fields and disorder is intended to suggest its role as the
many-band generalization of the spin-precession terms in
two-band models which have only a spin- 1

2 degree of freedom
for each momentum. Using Eq. (39), we can rewrite the kinetic
equation (36) as

P 〈ρB〉 = DB(〈ρ0〉), (40)

which can be viewed as a quantum operator.
As mentioned above, [DB(〈ρ0〉)]mm

k = 0. However, it
can also be shown quite generally that the band-diagonal
components of P −1DB(〈ρ0〉) are not zero, i.e., that
[P −1DB(〈ρ0〉)]mm

k �= 0. Here, the operator P −1 acting on a
driving term D is defined by [P −1D]mm′ = −ih̄Dmm′

k /(εm
k −

εm′
k ). See Appendix A for a detailed derivation. We find that

in the weak disorder (Wτtr  h̄ where W is the scale of the
typical energetic separation between Bloch bands)

〈ξB〉mm
k ≡ [P −1DB(〈ρ0〉)]mm

k = e

h̄
f0

(
εm

k

)
B · �m

k , (41)

where �m
k,a = εabc i〈∂kb

um
k |∂kc

um
k 〉 is the Berry curvature of

band m. Note that the magnetic-field-induced change in the
diagonal density matrix 〈ξB〉 is quite distinct in character from
the changes induced by an electric field 〈nE〉 (31) because 〈ξB〉
is intrinsic (independent of disorder effects) and not related
to dissipation. Equation (41) captures the same physics as
the Berry phase correction to the density of states implied
by semiclassical wave-packet dynamics, (2π )−D[1 + (e/h̄)B ·
�m

k ] [57], and can be viewed as an alternate derivation of
that effect. In our quantum kinetic formalism, however, it is
the equilibrium electron density matrix that is modified by
a magnetic field, while the number of states per momentum
space volume is unchanged. From Eq. (41) we can immediately
obtain the Středa formula for the quantum Hall effect with a
magnetic field along the z direction [58]:

σxy = −e
∂

∂Bz

Tr[〈ρB〉] = −e2

h̄

∑
m

∫
dDk

(2π )D
f0

(
εm

k

)
�m

k,z.

(42)

Finally, we note that the same result is obtained
when DB acts on any band-diagonal density matrix 〈n〉 =∑

m,k Fm
k |m,k〉〈m,k|. The calculation details do not appeal

to special properties of the equilibrium density matrix. In the
general case, we find that

〈ξB〉mm
k = [P −1DB(〈n〉)]mm

k = e

h̄
Fm

k B · �m
k . (43)

This property will play an important role in evaluating
contributions to the magnetoconductivity (48). A schematic
comparison between our formalism and semiclassical wave-
packet dynamics is given in Table I.

C. Magnetotransport

Now, we consider a density matrix in the presence of electric
and magnetic fields. We write the electron density matrix as
〈ρ〉 = 〈ρ0〉 + 〈ρ〉F , where 〈ρ0〉 is the density matrix in the
absence of fields, and 〈ρ〉F is the field-induced density matrix.
Then, we can rewrite the steady-state uniform system limit of
Eq. (25) in the form

(L − DE − DB)〈ρ〉F = (DE + DB)〈ρ0〉, (44)

where we have defined an operator L ≡ P + K and have used
the fact that L〈ρ0〉 = 0. It follows that

〈ρ〉F = [1 − L−1(DE + DB)]−1L−1(DE + DB)〈ρ0〉
=

∑
N�0

[L−1(DE + DB)]NL−1(DE + DB)〈ρ0〉. (45)

We then view the four terms P , K , DE , and DB as matrices that
act on vectors formed by all eigenstate-representation density-
matrix components at all wave vectors, both band diagonal and
band off diagonal, ordered in any convenient way. Note also
that the matrix P is purely diagonal in both wave vector and
in density-matrix element at a given wave vector, and that it is
nonzero only for off-diagonal density-matrix elements.
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TABLE I. Schematic comparison of our formalism with semiclassical wave-packet dynamics in the presence of a magnetic field B.
Semiclassical wave-packet dynamics implies the Berry phase correction to the density of states, (2π )−D[1 + (e/h̄)B · �m

k ], while the electron
distribution function Fm

k remains unchanged [57]. In our quantum kinetic formalism, however, it is the equilibrium electron density matrix that
is modified by a magnetic field, while the momentum-space density of states remains unchanged [see Eqs. (41) and (43)]. Arrows in this table
indicate the changes in physical quantities due to the presence of a magnetic field.

Formalism Momentum-space density of states Momentum-space distribution function

Semiclassical wave-packet dynamics [57] (2π )−D → (2π )−D[1 + (e/h̄)B · �m
k ] Fm

k → Fm
k

Our quantum kinetic formalism (2π )−D → (2π )−D Fm
k → Fm

k [1 + (e/h̄)B · �m
k ]

Equation (45) can be used to derive a low-magnetic-field
expansion for the linear response of the density matrix, and
hence of any single-particle observable, to an electric field E.
From Eq. (45) we have

〈ρ〉F =
∑

N,N ′�0

(L−1DB)NL−1DE(L−1DB)N
′ 〈ρ0〉. (46)

Here, the N = N ′ = 0 term is given by Eqs. (31) and (35).
It is convenient to define a density matrix induced solely by
the magnetic field as 〈ρB〉 ≡ ∑

N�1(L−1DB)N 〈ρ0〉. Note that
this expression is the generalized solution for Eq. (36), i.e., for
(L − DB)〈ρB〉 = DB(〈ρ0〉). With this expression for 〈ρB〉 we
have a simple expression for the low-magnetic-field expansion
of the density matrix as

〈ρ〉F =
∑
N�0

(L−1DB)NL−1DE(〈ρ0〉 + 〈ρB〉). (47)

At each order in B, contributions to 〈ρ〉F can quite generally be
organized by their order in an expansion in powers of scattering
strength λ by letting K → λK and identifying terms with a
particular power of λ. The various low-field expansion terms
are generated by repeated action of DB and L−1. In Sec. V we
will take a close look at the properties of L−1, pointing out that
even in systems with weak disorder, the terms that have the
highest power of λ−1 do not necessarily dominate. For states
near the Fermi level, the low-field expansion is an expansion
in powers of ωcτ , where ωc is the cyclotron frequency and τ

is the intravalley scattering time discussed below.
We are now in a position to obtain the magnetoconductivity

of a system, i.e., the electrical conductivity in the presence of a
magnetic field. Since we are assuming that the magnetic field B
is very weak, we may set 〈ρB〉 = 〈ξB〉 in Eq. (47), which means
that the correction to the Fermi-Dirac distribution function due
to B is given by the Berry phase correction 〈ξB〉 [Eq. (41)].
Then, with the use of Eq. (47) the total conductivity σμν

is obtained from the definition σμν = Tr[(−e)vμ〈ρ〉F ]/Eν =∑
N�0 σμν(BN ) (μ,ν = x,y,z). Here, σμν(BN ) (N � 1) is the

magnetoconductivity contribution proportional to BN , which
is given by

σμν(BN ) = Tr[(−e)vμ(L−1DB)NL−1DE(〈ρ0〉)]/Eν

+ Tr[(−e)vμ(L−1DB)N−1L−1DE(〈ξB〉)]/Eν.

(48)

Here, vμ is the μ component of the velocity operator matrix
in the eigenstate representation (i.e., vμ = DH0/Dkμ), and Tr
indicates both a matrix trace and an integration with respect
to k over the Brillouin zone. Note that in Eq. (48) we have
allowed for an arbitrary angle between the directions of the

electric and magnetic fields. In Sec. VIII we will apply Eq. (48)
to the positive magnetoconductivity proportional to B2, which
arises as a consequence of the chiral anomaly, in Dirac and
Weyl semimetals.

V. FERMI SURFACE RESPONSE IN
MULTIVALLEY SYSTEMS

Anomalous transport is often related to band crossings
at energies that are close to the Fermi energy and give
rise to large Berry curvatures. These are often required by
symmetry to have replicas at different Brillouin-zone points,
for example, at points related by time-reversal operations. For
that reason, anomalous transport properties of the type that
the present formalism is intended to describe often occur in
systems with more than one Fermi surface pocket. In what
follows, a pocket refers to a closed Fermi surface segment.
We will follow the common practice in the literature on
Weyl and Dirac semimetals by borrowing terminology from
semiconductor physics and referring to these clearly separated
regions of momentum space that contribute importantly to
the physical properties of interest as valleys. It is common
that scattering between valleys related to each other by time
reversal, or by some approximate crystal symmetry, is often
weaker than scattering within valleys, giving rise to long
intervalley relaxation times. In this section, we explain when
these long relaxation times are physically relevant.

A. Properties of the operator L−1

The scattering term K(〈ρ〉) [Eq. (14)] may be viewed as a
linear operator that acts on the density matrix and is the sum of
four terms categorized by the following separation: processes
that map diagonal 〈ρ〉 to diagonal ∂〈ρ〉/∂t (defined as Kdd ),
processes that map diagonal 〈ρ〉 to off diagonal ∂〈ρ〉/∂t (Kod ),
processes that map off diagonal 〈ρ〉 to diagonal ∂〈ρ〉/∂t (Kdo),
and processes that map off diagonal 〈ρ〉 to off diagonal ∂〈ρ〉/∂t

(Koo). For example, with this notation we can rewrite I (〈n〉)
and J (〈n〉) as

[I (〈n〉)]mm
k =

∑
m′,k′

Kdd [mk; m′k′]nm′
k′ ,

[J (〈n〉)]mm′
k =

∑
m′′,k′

Kod [mm′k; m′′k′]nm′′
k′ (49)

with m �= m′. Explicit expressions for Kdd and Kod can be
read from Eqs. (15) and (16). Those for Kdo and Koo can be
found in Ref. [55].
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When block-diagonalized to separate band-diagonal and
band-off-diagonal components of the density matrix, with this
notation the Liouville operator L is written as

L = P + K =
[
Kdd Kdo

Kod P + Koo

]
. (50)

The disorder (K) contributions to L are proportional to
the disorder strength parameter λ, whereas P is intrinsic
and independent of disorder strength. Our expressions for
magnetoconductivity are formulated in terms of repeated
action of the operator

L−1 =
[

(L−1)dd (L−1)do

(L−1)od (L−1)oo

]
. (51)

The leading terms in the disorder strength expansion of L−1

are ∼λ−1. As discussed in Ref. [55] it follows that, up to the
order of λ0,

L−1 =
[

(Kdd )−1 −(Kdd )−1KdoP −1

−P −1Kod (Kdd )−1 P −1

]
. (52)

Note that the dd block in L−1 is proportional to disorder
strength λ−1 and diverges in the limit of weak disorder,
while all other blocks are proportional to λ0. We see from
Eqs. (35) and (38) that the matrix P −1 is diagonal in the
density-matrix-component wave-vector space. When it acts
on a driving term D, it simply multiplies D by a numerical
factor:

P −1D = −ih̄
Dmm′

k

εm
k − εm′

k

. (53)

A similar expression applies when P −1 acts on any Liouville-
space density-matrix vector with nonzero off-diagonal com-
ponents.

We conclude from these considerations that the leading-
order term in the disorder strength expansion of the contribu-
tion to the response of the diagonal part of the density matrix
〈nN 〉 at N th order in magnetic field strength B is obtained by
setting L−1 in Eq. (47) to

L−1 →
[

(Kdd )−1 0

0 0

]
. (54)

Then, it follows that

〈nN 〉 = (Kdd )−1Dd
B(〈ρN−1〉), (55)

where Dd
B is the diagonal part of the magnetic driving term DB ,

and 〈ρN−1〉 = (L−1DB)N−1L−1DE(〈ρ0〉) is the density matrix
at (N − 1)th order in magnetic field. On the other hand, the
leading-order term in the disorder strength expansion of the
contribution to the response of the off-diagonal part of
the density matrix 〈SN 〉 is obtained by setting

L−1 →
[

0 0

−P −1Kod (Kdd )−1 P −1

]
. (56)

Then, it follows that

〈SN 〉 = P −1Do
B(〈ρN−1〉) − P −1Kod (Kdd )−1Dd

B(〈ρN−1〉)
= P −1

[
Do

B(〈ρN−1〉) − Kod〈nN 〉], (57)

where Do
B is the off-diagonal part of the magnetic driving

term DB . Notice from Eq. (49) that Kod〈nN 〉 = J (〈nN 〉).
Therefore, we see that Eq. (57) is similar to the B = 0
equation 〈SE〉 = P −1[Do

E(〈ρ0〉) − Kod〈nE〉] [see Eq. (35)].
Here, recall that, as shown in Ref. [55], the contribution from
J (〈nE〉) = Kod〈nE〉 corresponds to the vertex correction in
the ladder-diagram approximation of perturbation theory. The
same argument is applied to the case of magnetotransport.
Thus, we conclude that the contribution from Kod〈nN 〉 to
〈SN 〉 corresponds to a vertex correction in the ladder-diagram
approximation of perturbative calculation. Finally, we note
that 〈SN 〉 is accompanied by a diagonal density matrix

〈ξN 〉 = P −1Do
B(〈nN−1〉). (58)

This is the Berry phase correction to the diagonal part of the
density matrix, Eq. (43). 〈nN 〉 will be dominant in the case
where both 〈nN 〉 and 〈ξN 〉 are present since (Kdd )−1 is of the
order of λ−1 while P −1 is of the order of λ0. However, as will
be shown in Sec. VIII A, 〈ξN 〉 can make a large contribution
to the magnetoconductivity in systems with large momentum-
space Berry curvatures.

B. Scattering times and the total number of electrons
in a given valley

We have delayed to this point a discussion of some
important properties of Kdd and (Kdd )−1 that are related to
particle-number conservation and play an important role in
anomalous magnetotransport. The components of these matri-
ces are labeled by band and wave-vector labels. Comparing
with Eq. (15) we see that

Kdd [mk; m′k′] = 2π

h̄

[
δmm′δkk′

∑
n, p

〈∣∣Umn
k p

∣∣2〉
δ
(
εm

k − εn
p

)

− 〈∣∣Umm′
kk′

∣∣2〉
δ
(
εm

k − εm′
k′

)]
. (59)

It follows that
∑

m′k′ Kdd [mk; m′k′] = 0, i.e., that the response
vector corresponding to total particle number is an eigenvector
of Kdd with eigenvalue 0. Scattering does not relax total
particle number. Since the leading diagonal response 〈nE〉 is
given as 〈nE〉 = (Kdd )−1Dd

E with Dd
E the diagonal part of DE

[see Eq. (31)], it might seem that the response is divergent.
However, it is easy to see that the total particle-number
component of the driving term, i.e., the driving term Dd

E

summed over all band and wave-vector labels is also zero.
In fact, a stronger statement is valid, namely, that the sum
of the driving term vanishes when summed over all wave
vectors associated with each individual Fermi surface pocket
surrounding each relevant valley:

∂Nm

∂t
=

∑
k

[DE(〈ρ0〉)]mm
k =

∑
k

eE
h̄

· ∂f0
(
εm

k

)
∂k

= 0, (60)

where Nm is the total particle number in band m of a given
valley. The electric field moves electrons through momentum
space; it does not create or destroy particles. In the matrix
equations we have been using to express response to electric
fields, the total particle-number component of the band-
diagonal response has implicitly been projected out.
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The eigenvalues of (Kdd )−1 have units of time and
characterize the various time scales on which contributions
to nonequilibrium populations on the Fermi surface relax. For
example, the time scale for relaxation of the nonequilibrium
distribution induced by an electric field in a single-valley
system, the transport lifetime τtr, is given approximately by

1

τm
tr

= 2π

h̄Dm(μ)

∑
k,k′

〈∣∣Umm
kk′

∣∣2〉
(1 − cos θkk′)δ

(
μ − εm

k

)
× δ

(
μ − εm

k′
)
, (61)

where Dm(μ) = ∑
k δ(μ − εm

k ) is the density of states at the
Fermi energy μ for valley m, and θkk′ is the angle between
the Bloch-state group velocities in valley m at k and k′
(i.e., cos θkk′ = k · k′/|k||k′|). In multivalley systems with
weak intervalley scattering, it is clear that deviations from
equilibrium in the total number of electrons in a valley will
relax especially slowly. As we have explained above, these are
not driven directly by an electric field, but we will show later
that they can be driven by the combined action of electric and
magnetic fields.

In order to precisely define intervalley relaxation times
explicitly, it is necessary to separate the Bloch-state Hilbert
space into valleys in some precise way. The best way to
do this depends on the system being studied. For the sake
of definiteness, below we use band labels m to distinguish
valleys. When Kdd is expressed in the representation in which
it is diagonal in the absence of intervalley scattering, and
intervalley scattering is parametrically weaker than intravalley
scattering, its smallest eigenvalues (longest relaxation times)
are associated with an M × M block with entries

Kdd
mm′ = δmm′

∑
m′′

1

τmm′′
inter

− 1

τmm′
inter

, (62)

where (m,m′) = 1, . . . ,M and

1

τmm′
inter

= 2π

h̄Dm(μ)

∑
k,k′

〈∣∣Umm′
kk′

∣∣2〉
δ
(
μ − εm

k

)
δ
(
μ − εm′

k′
)
. (63)

Here, M is the number of Fermi surface pockets, and for
simplicity we have assumed that all pockets have the same
Fermi-level density of states because they are related by
symmetry. Note that this total valley population block of the
scattering kernel still has one zero eigenvalue, corresponding
to total population summed over all valleys. In the M = 2
case the nonzero eigenvalue has value 2/τ

1,2
inter, which is the

time scale for relaxing differences in population between the
two valleys.

We are now in a position to explain when the magne-
toresponse of semimetals with atomically smooth disorder is
anomalous, and when it is not, by making the following ob-
servations: (i) When the Fermi surface of a conductor consists
of a few small valleys that are well separated in momentum
space and disorder is smooth, scattering between valleys is
parametrically weaker because it requires large momentum
transfers. (ii) When intervalley scattering is negligible, the
diagonal-component response function (Kdd )−1 is divergent
not only in the total particle-number channel, but also in
the valley-projected particle-number channel. (iii) Because
the electric driving term vanishes separately for each valley,

very weak intervalley scattering does not lead to anomalous
response at B = 0. (iv) But, in Weyl and Dirac semimetals,
DBL−1DE(ρ0) does drive the valley-projected total particle
number. The total particle number in a given valley is not
conserved when the magnetic driving term summed over a
given valley is not zero when it acts on the electric-field
disturbed density matrix:

∂N

∂t
=

∑
m,k

[DB(〈ρE〉)]mm
k �= 0. (64)

Here, 〈ρE〉 = L−1DE(〈ρ0〉) represents a density matrix linear
in electric field. As a consequence of the total particle-number
nonconservation in a given valley, the intervalley scattering
time τinter appears as an eigenvalue of (Kdd )−1.

So far, we have focused on systems where valleys are not
degenerate, i.e., are separated in momentum space, such as
Weyl semimetals. Similar considerations apply to systems
where valleys are degenerate, such as Dirac semimetals.
3D Dirac semimetals such as Cd3As2 and Na3Bi have two
Dirac points which are protected by crystalline symmetry.
The effective Hamiltonian around a Dirac point in such Dirac
semimetals can be written in the block-diagonal form [17]

HDirac(q) =
[HAA HAB

HBA HBB

]
=

[H+(q) 0

0 H−(q)

]
, (65)

where A and B denote two states after a unitary transformation,
and H±(q) is a 2 × 2 Weyl Hamiltonian with chirality ±1. As
is seen from Eq. (65), two Weyl Hamiltonians that belong to
different states A and B are degenerate around the Dirac point.
In other words, two different valleys are degenerate. In general,
atomically smooth disorder does not allow scattering processes
between two different states A and B. Namely, intervalley
scattering is much weaker than intravalley scattering, i.e., we
have τinter  τintra. Thus, we can apply the same argument as
in the case of nondegenerate valleys to the case of degenerate
valleys: the total particle number in a given valley is not
conserved if the magnetic driving term summed over a given
valley is not zero [see Eq. (64)].

We will demonstrate in Sec. VIII that the particle-number
nonconservation in a given valley characterized by Eq. (64)
occurs in the process of calculating the magnetoconductivity
proportional to B2 in Dirac and Weyl semimetals, which is
identified as a consequence of the chiral anomaly.

VI. CHIRAL ANOMALY IN THREE-DIMENSIONAL
SEMIMETALS

In Weyl semimetals the term “chiral anomaly” is sometimes
used to refer to the property that the total number of
electrons in a given valley is not conserved in the presence of
simultaneous electric and magnetic fields, and sometimes to
the enhanced magnetoconductivity that this lack of separate
particle-number conservation produces. In this section we
focus on pumping of charge between valleys without referring
to a specific microscopic model, which leads to observable
effects only when intervalley scattering times are much longer
than intravalley scattering times. For long intervalley scattering
times, anomalous pumping leads to a difference between the
effective chemical potentials of different valleys and thus to a
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enhanced current via the magnetoelectric effect, as explained
in great deal for a Weyl metal toy model in the following
sections. We set h̄ = 1 in the rest of this paper.

We study a general model with the Hamiltonian H0 =∑
m,k εm

k |m,k〉〈m,k| and the equilibrium density matrix
〈ρ0〉 = ∑

m,k f0(εm
k )|m,k〉〈m,k|, where εm

k is an energy eigen-
value of band m with momentum k and f0(εm

k ) is the Fermi-
Dirac distribution function. For concreteness, we choose
E = (0,0,Ez) and B = (0,0,Bz). Let us consider the following
quantity that is linear in both electric and magnetic fields:

∂N

∂t
= Tr[L〈ρ〉]

≡ Tr[DBL−1DE(〈ρ0〉) + DEL−1DB(〈ρ0〉)] (66)

evaluated for a particular Fermi surface pocket associated with
a particular valley. ∂N/∂t is the rate of change of the density
matrix that is balanced by the scattering and free evolution
contributions toL〈ρ〉 to yield the part of the density matrix that
is linear in both electric and magnetic fields; the steady-state
density matrix is therefore obtained by acting on ∂N/∂t with
L−1.

Let us consider the first term in the right-hand side of
Eq. (66), i.e., Tr[DBL−1DE(〈ρ0〉)]. As we have explained
earlier, 〈ρE〉 = L−1DE(〈ρ0〉), the linear-response density
matrix in the absence of a magnetic field, contains both
band-diagonal 〈nE〉 and band-off-diagonal 〈SE〉 contributions:
〈ρE〉 = 〈nE〉 + 〈SE〉. It follows that Tr [DBL−1DE(〈ρ0〉)] =
Tr [DB(〈nE〉)] + Tr [DB(〈SE〉)] since DB is linear in the
density matrix. First, we evaluate the diagonal element
[DB(〈nE〉)]mm

k with 〈nE〉 = eEz

∑
m,k[∂kz

f0(εm
k )]|m,k〉〈m,k|.

In this case, we can use the result of [DB(〈ρ0〉)]mm
k by replacing

f0 by eEz∂kz
f0. Namely, from Eq. (A6) we get

[DB(〈nE〉)]mm
k = e2EzBz

(
∂εm

k

∂ky

∂

∂kx

− ∂εm
k

∂kx

∂

∂ky

)
∂f0

(
εm

k

)
∂kz

.

(67)

It is obvious that this is an odd function of kx , ky , and
kz, which means that Tr [DB(〈nE〉)] = 0. Then, we see that
one of the two contributions to the nonconservation of the
total electron number in a given valley induced by the chiral
anomaly is associated with the action of the DB operator on
the off-diagonal density matrix 〈SE〉 as

Tr[DBL−1DE(〈ρ0〉)] =
∫

FS

d3k

(2π )3

∑
m

[DB(〈SE〉)]mm
k , (68)

where FS represents the integration on the Fermi surface of
the valley. After a calculation we obtain the following general
expression for the Fermi surface contribution which can be
expressed in terms of band velocities and Berry curvatures
alone (see Appendix B for a detailed derivation):∑

m

[DB(〈SE〉)]mm
k

= e2EzBz

∑
m

[
∂f0

(
εm

k

)
∂kx

�m
k,x + ∂f0

(
εm

k

)
∂ky

�m
k,y

]
, (69)

where �m
k,a = εabc i〈∂kb

um
k |∂kc

um
k 〉 is the Berry curvature of

band m. Thus, the right-hand side of Eq. (68) is written as

e2EzBz

4π2

∫
d3k

2π

∂f0
(
εm

k

)
∂εm

k

[
vm

k,x�
m
k,x + vm

k,y�
m
k,y

]
, (70)

where vm
k is the Bloch-state group velocity, and we have

assumed that only the band m intersects the Fermi surface, i.e.,
∂f0(εn

k)/∂εn
k = δmn∂f0(εm

k )/∂εm
k , which can in general apply to

multivalley systems.
Next, let us consider the second term in the right-hand

side of Eq. (66), i.e., Tr[DEL−1DB(〈ρ0〉)]. As we have
explained earlier, 〈ρB〉 = L−1DB(〈ρ0〉), the linear-response
density matrix in the absence of an electric field, contains both
band-diagonal 〈ξB〉 and band-off-diagonal 〈SB〉 contributions:
〈ρB〉 = 〈ξB〉 + 〈SB〉. In this case, the calculation is easier than
that of Tr[DB(〈ρE〉)]. After a calculation we find that only the
contribution from the Berry phase correction 〈ξB〉 survives:

Tr[DEL−1DB(〈ρ0〉)] =
∫

FS

d3k

(2π )3

∑
m

[DE(〈ξB〉)]mm
k

= e2EzBz

4π2

∫
d3k

2π

∂f0
(
εm

k

)
∂εm

k

vm
k,z�

m
k,z.

(71)

Combining Eqs. (70) and (71) we arrive at the final
expression for the rate of pumping of electrons between valleys
due to the chiral anomaly

∂N

∂t

∣∣∣∣
CA

= Tr[DB(〈SE〉)] + Tr[DE(〈ξB〉)]

= e2EzBz

4π2

∫
d3k

2π

∂f0
(
εm

k

)
∂εm

k

vm
k · �m

k , (72)

which is in complete agreement with the expression obtained
by disorder-free semiclassical dynamics [Eq. (2)] [31,45].
When disorder-free semiclassical wave-packet dynamics is
used to derive Eq. (2), the origin of the term on the right-hand
side proportional to �z is quite different from the terms
proportional to �x and �y . The latter are due to the well-known
anomalous velocity of electrons in a magnetic field, which
contributes to the Lorentz force and hence to the rate of motion
of states through momentum space. The anomalous velocity
effect is an interband wave-function polarization effect, akin
to the dielectric screening response of insulators. The �z

contribution, on the other hand, is due to the correction of
the density of states in momentum space in the presence
of a magnetic field. The density-of-states correction is the
semiclassical manifestation of the relationship between Berry
curvatures (Berry phases) and Landau quantization. We have
shown in Eq. (72) that our quantum kinetic theory is able to
completely account for both effects.

Here, let us consider the case of Weyl semimetals. As de-
picted in Fig. 1, a magnetic field induces an anomalous (N = 0)
Landau level branch that has only one sign of velocity vz in a
given valley. It follows that in each valley the density of states is
increased for states with one sign of velocity and decreased for
states with the other sign of velocity, and that the total current
summed over a valley is already nonzero in equilibrium. When
an electric field drives states through momentum space, the
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total number of states in a valley varies. Scattering within
valleys can relax the current in each valley to its equilibrium
value, but cannot establish a steady state because the number
of states in each valley still changes at a constant rate. A
steady state can be established only when scattering processes
between valleys are present. When Bloch-state scattering
between valleys is much weaker than scattering within valleys,
the anomalous E · B pumping leads to differences between the
chemical potentials of different valleys.

VII. CHIRAL ANOMALY IN WEYL SEMIMETALS

So far, we have (i) formulated a general theory of low-
field magnetotransport that accounts for the wave-vector
dependence of Bloch states in multiband systems, (ii) shown
that the Berry phase related density of states and anomalous
velocities of semiclassical wave-packet dynamics are fully
captured by our theory, and (iii) demonstrated that Bloch-state
scattering, which is consistently described in our transport
theory, can alter theoretical predictions made by introducing
Berry phase effects in semiclassical wave-packet dynamics
into the transport theory in an ad hoc manner. In this section,
we present an analysis of the magnetotransport properties of
a specific toy model of a Weyl semimetal which illustrates
in more detail the interplay between intrinsic dynamics,
scattering, and external field driving terms in the kinetic
equation.

A. Theoretical model

We start with the 4 × 4 continuum toy model Hamiltonian
for two-node Weyl semimetals with broken time-reversal
symmetry [35,36,59,60]

H0(k) = vF τzk · σ + �τx + bσz, (73)

where the Pauli matrices τi and σi are Weyl node and spin
degrees of freedom, respectively, vF is the Dirac velocity, and
� is the mass of 3D Dirac fermions. The term bσz can be
regarded as a magnetic interaction of the z component of spin
such as s-d coupling and Zeeman coupling. Therefore, it can be
said that the above Hamiltonian represents a 3D (topological
or normal) insulator doped with magnetic impurities. As
will be shown just below, a Weyl semimetal is realized
when |b/�| > 1. The time-reversal T and spatial inversion
(parity) P operators are given by T = −iσyC with C the
complex-conjugation operator and P = τx . Here, we have the
following relations: T −1 = iσyC, P−1 = τx , T 2 = −1, and
P2 = 1. Then, it is easily seen that time-reversal symmetry
of the system is broken such that T H0(k)T −1 �= H0(−k),
but inversion symmetry of the system is preserved such that
PH0(k)P−1 = H0(−k).

Performing a canonical transformation such that σx,y →
τzσx,y and τx,y → σzτx,y , Eq. (73) can be rewritten as H̃0(k) =
vF (kxσx + kyσy) + (b + vF τzkz + �τx)σz. In the representa-
tion of eigenstates of b + vF τzkz + �τx , Eq. (73) is block-
diagonal with two 2 × 2 Hamiltonians given by [35]

H±(k) = vF (kxσx + kyσy) + m±(kz)σz (74)

with m±(kz) = b ±
√

v2
F k2

z + �2. The two Weyl nodes are lo-
cated at W± = (0,0, ± k0) with k0 = √

b2 − �2/vF . Near the

Weyl nodes, we have m−(qz) ≈ ∓v2
F (k0/b)qz with momentum

q = k − W± (q2 	 1). The eigenvectors of Ht (k) (t = ±) with
eigenvalues ε±

tk = ±εtk = ±
√

v2
F (k2

x + k2
y) + m2

t are given by

|u±
tk〉 = 1√

2

⎡
⎣

√
1 ± mt (kz)

εtk

±eiθ
√

1 ∓ mt (kz)
εtk

⎤
⎦, (75)

where eiθ = (kx + iky)/k⊥ with k⊥ =
√

k2
x + k2

y . We see that

H−(k) describes a subsystem with two Weyl nodes, while
H+(k) has a fully gapped spectrum. For convenience, we omit
the subscripts t = ± at intermediate steps of the calculations
below and restore them in the final results.

The generalized Berry connection in the eigenstate repre-
sentation is given by [Rk,α]mn = i〈um

k |∂kα
un

k〉 with α = x,y,z

and m,n = ±. The individual components are given explicitly
by

Rk,x = 1

2k⊥
sin θ − σ̃z

1

2k⊥

m

εk
sin θ

− σ̃y

vF m

2ε2
k

cos θ − σ̃x

vF

2εk
sin θ,

Rk,y = − 1

2k⊥
cos θ + σ̃z

1

2k⊥

m

εk
cos θ (76)

− σ̃y

vF m

2ε2
k

sin θ + σ̃x

vF

2εk
cos θ,

Rk,z = σ̃y

vF k⊥
2ε2

k

∂m

∂kz

,

where σ̃α are the Pauli matrices in the eigenstate basis. Also,
the individual components of the Berry curvature, �±

k,a =
εabc i〈∂kb

u±
k |∂kc

u±
k 〉, are given by

�±
k,x = ∓ ∂m

∂kz

v2
F kx

2ε2
k

, �±
k,y = ∓ ∂m

∂kz

v2
F ky

2ε3
k

, �±
k,z = ∓v2

F m

2ε3
k

.

(77)

Here, we briefly review the derivation of the θ term from
the microscopic four-band model (73). In order to describe a
more generic Weyl semimetal, we add the term μ5τz to the
Hamiltonian, which generates a chemical potential difference
2μ5 between the two Weyl nodes, and replace bσz by b · σ .
Note that this term breaks inversion symmetry. Figure 2 shows
a schematic diagram of a two-node Weyl semimetal. We set
� = 0 for simplicity. The action of the system in the presence
of an external electromagnetic potential Aμ = (A0,−A) is
given by

S =
∫

dt d3r ψ†{i(∂t − ieA0) − [H0(k + eA) − μ5τz]}ψ

=
∫

dt d3r ψ̄iγ μ(∂μ − ieAμ − ibμγ 5)ψ, (78)

where e > 0, ψ is a four-component spinor, γ̄ = ψ†γ 0,
γ 0 = τx , γ j = τxτzσj = −iτyσj , γ 5 = iγ 0γ 1γ 2γ 3 = τz, and
bμ = (μ5, − b). After applying the Fujikawa method [61], i.e.,
applying an infinitesimal gauge transformation such that ψ →
e−idφθ(r,t)γ 5/2ψ with θ (r,t) = −2xμbμ = 2(b · r − μ5t) and
φ ∈ [0,1] for infinite times, the action of the system becomes
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FIG. 2. Schematic illustration of a Weyl semimetal with two Weyl
points with chiralities Q± = ±1. 2b and 2μ5 are the momentum-
space distance and the chemical potential difference between the
Weyl nodes, respectively. The dashed line indicates the Fermi level
of the system, which can have different values in different valleys
when the system is driven from equilibrium, for example, by the
combined effect of electric and magnetic fields.

[30,35]

S =
∫

dt d3r ψ̄[iγ μ(∂μ − ieAμ)]ψ + Sθ , (79)

where Sθ is the θ term [Eq. (1)] with θ (r,t) = 2(b · r − μ5t).
Note that the first term in Eq. (79) represents the (trivial) action
of massless Dirac fermions.

In general, regardless of whether the system is gapless
or gapped, the four-current density jν can be obtained from
the variation of the θ term with respect to the four-potential
Aν as jν = δSθ/δAν = −(e2/4π2)εμνρλ[∂μθ (r,t)]∂ρAλ [28].
The induced current density in the presence of external electric
and magnetic fields is given by

j (r,t) = e2

4π2
[∇θ (r,t) × E + θ̇(r,t)B], (80)

where θ̇ = ∂θ (r,t)/∂t , E = −∇A0 − ∂ A/∂t , and B = ∇ ×
A. In the present case of Weyl semimetals with θ (r,t) = 2(b ·
r − μ5t), we obtain in the ground state a static current of the
form

j = e2

2π2
(b × E − μ5 B), (81)

where the electric-field-induced and magnetic-field-induced
terms are the anomalous Hall effect and chiral magnetic effect,
respectively [29–36,43].

The anomalous Hall effect in Weyl semimetals can be
understood straightforwardly. It is well known that the Hall
conductivity of 2D massive Dirac fermions (such as those
on the surface of 3D topological insulators) of the form (74)
is given by σ±

xy(kz) = sgn[m±(kz)]e2/2h, when the chemical
potential lies in the energy gaps. This (half-)quantized value
holds valid even in the presence of disorder [62,63]. We see that
the 3D Hall conductivity is nonzero only in the region −k0 �
kz � k0, which gives σ 3D

xy = ∫ k0

−k0
(kz/2π )σ±

xy(kz) = k0e
2/πh.

This value is exactly the same as the first term in Eq. (81).

On the other hand, the chiral magnetic effect in Weyl
semimetals looks like a peculiar phenomenon. The chiral
magnetic effect indicates a direct current generation along a
static magnetic field (without electric fields) in the presence
of a chemical potential difference between the two nodes,
as is seen from the second term in Eq. (81). If the static
chiral magnetic effect exists in real materials, there will be
substantial possible applications. Discussions on the existence
of the static chiral magnetic effect in Weyl semimetals
have continued theoretically [36–42]. However, the existence
of the static chiral magnetic effect would be ruled out
in crystalline solids (i.e., lattice systems) as discussed in
Ref. [36], which is consistent with our understanding that static
magnetic fields do not generate equilibrium currents.

Lastly, we refer to these two phenomena from the sym-
metry viewpoint. The term b · σ breaks time-reversal sym-
metry but preserves inversion symmetry: T σiT −1 = −σi and
PσiP−1 = σi (i = x,y,z). This indicates that the occurrence
of the anomalous Hall effect in Weyl semimetals requires
the breaking of time-reversal symmetry, which is consistent
with the generic requirement for the realization of the
anomalous Hall effect. On the other hand, the term μ5τz breaks
inversion symmetry but preserves time-reversal symmetry:
T τzT −1 = τz and PτzP−1 = −τz. This indicates that the
occurrence of the chiral magnetic effect in Weyl semimetals
requires the breaking of inversion symmetry. Note that both
the anomalous and chiral magnetic effects are possible (at
least theoretically) in systems with broken time-reversal and
inversion symmetries.

B. Anomalous Hall effect in Weyl metals

Let us see that the electric driving term (26) properly
describes the anomalous Hall effect in Weyl metals. As
described in Sec. IV, the diagonal part of the electric driving
term DE results in usual Drude conductivity. Hence, we need
the explicit matrix expression for the off-diagonal part of the
electron density matrix 〈SE〉 to obtain the anomalous Hall
conductivity. As is seen from Eq. (35), there are contributions
from the electric driving term DE(〈ρ0〉) and the anomalous
driving term J (〈nE〉) to the off-diagonal part of the density
matrix 〈SE〉. Let us denote the resultant total anomalous Hall
conductivity of the system as

σxy = σ I
xy + σ II

xy, (82)

where σ I
xy is the Hall conductivity from DE(〈ρ0〉) and σ II

xy

is that from J (〈nE〉). In the following, we consider the case
where an electric field is applied along the y direction as E =
Eyey , and set μ5 = 0. Also, we add a positive small chemical
potential μ which lies sufficiently close to the Weyl nodes.
Note that the sign of μ is not essential since the Hamiltonian
(74) has particle-hole symmetry.

First, we evaluate the intrinsic contribution σ I
xy , which

originates from the Fermi sea of the electronic band. Using the
expression for DE(〈ρ0〉) [Eq. (33)] and the Berry connection
(76), the off-diagonal part of the electron density matrix 〈SE〉
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is given by

〈SE〉 = eEy

f0(ε+
k ) − f0(ε−

k )

2εk

[
0 R+−

k,y

R−+
k,y 0

]

= eEy

f0(ε+
k ) − f0(ε−

k )

4ε2
k

vF

(
σ̃x cos θ − σ̃y

m

εk
sin θ

)
,

(83)

where f0(ε±
k ) = 1/[e(ε±

k −μ)/T + 1] is the Fermi-Dirac dis-
tribution function. The velocity operator is given by vx =
∂Ht /∂kx = vF σx . We work in the eigenstate basis, in which
the matrix element [vx]mn = vF 〈um

k |σx |un
k〉 (m,n = ±) is

given by

vx = vF

(
σ̃z

vF k⊥
εk

cos θ + σ̃y sin θ − σ̃x

m

εk
cos θ

)
. (84)

The anomalous Hall conductivity σ I
xy is calculated from the

definition σ I
xy = Tr[(−e)vx〈SE〉]/Ey . Combining the above

ingredients, we obtain

σ I
xy = 2e2

∑
t=±

∫ ∞

−∞

d3k

(2π )3

v2
F mt

4ε3
tk

[f0(ε+
tk) − f0(ε−

tk)]

= e2

2

∫ ∞

−∞

d3k

(2π )3

[
v2

F m−
ε3
−k

f0(ε+
−k) −

∑
t=±

v2
F mt

ε3
tk

]

≈ e2

2

∫ δ

−δ

d3q

(2π )3

k0
b
qz − k0

b
qz

ε3−q
− e2

4π2

∑
t=±

∫ ∞

0
dkz

mt

|mt |

= − e2

2π2
k0, (85)

where we have used the fact that m−(kz) ≈ ∓v2
F (k0/b)qz

around the Weyl nodes with q = k − W± (q2 	 1). Then, we
see that the contribution from ε+

tk always vanishes as long as the
chemical potential μ lies sufficiently close to the Weyl nodes.
Also, it should be noted that the quantity �tk,z = v2

F mt/2ε3
tk

is the z component of the Berry curvature of the two-band
Hamiltonian (74). The anomalous Hall conductivity (85) is
exactly the same as the value obtained from a field-theoretical
approach, the first term in Eq. (81).

Next, we need to evaluate the extrinsic contribution σ II
xy ,

which originates from the Fermi surface and the presence of
disorder. As described in Sec. III, we treat disorder within
the Born approximation. We consider a short-range (onsite)
disorder potential of the form U (r) = U0

∑
i δ(r − r i), and

assume that the correlation function satisfies 〈U (r)U (r ′)〉 =
nimpU

2
0 δ(r − r ′) with nimp the impurity density. Then, we

obtain

〈U++
kk′ U+−

k′k 〉

= nimpU
2
0

2

[
k⊥
εk

m(k′
z)

εk′
+

(
i sin γ − m(kz)

εk
cos γ

)
k′
⊥

εk′

]
,

(86)

where γ = θ ′ − θ with eiθ ′ = (k′
x + ik′

y)/k′
⊥. We also have

the relations 〈U+−
kk′ U−−

k′k 〉 = −〈U++
kk′ U+−

k′k 〉, 〈U−−
kk′ U−+

k′k 〉 =
−〈U++

kk′ U+−
k′k 〉∗, and 〈U−+

kk′ U++
k′k 〉 = 〈U++

kk′ U+−
k′k 〉∗. From the

expression for J (〈nE〉) [Eq. (16)] with 〈nE〉 = diag[n+
Ek,n

−
Ek],

we get

[J (〈nE〉)]+−
k =π

∑
k′

〈U++
kk′ U+−

k′k 〉[n+
Ekδ(ε+

k − ε+
k′)

− n+
Ek′δ(ε+

k − ε+
k′)], (87)

where n+
Ek = eτ+Ey∂f0(ε+

k )/∂ky with τ+ ∝ 1/nimpU
2
0 the

scattering time for the band ε+
k . Here, we have used δ(ε+

k −
ε−

k′) = δ(ε−
k − ε+

k′) = 0 and the fact that n−
Ek = n−

Ek′ = 0 be-
cause we have considered the case of μ > 0. Similarly, we
obtain [J (〈nE〉)]−+

k = {[J (〈nE〉)]+−
k }∗. Then, the off-diagonal

density matrix resulting from J (〈nE〉) is given by

〈S ′
E〉 = −σ̃y

Re{[J (〈nE〉)]+−
k }

2εk
− σ̃x

Im{[J (〈nE〉)]+−
k }

2εk
, (88)

where Re and Im represent the real and imaginary parts,
respectively. The calculation of the conductivity from the
definition σ II

xy = Tr[(−e)vx〈S ′
E〉]/Ey is somewhat long. See

Appendix C for a detailed calculation. Finally, we find that
σ II

xy = 0 when the chemical potential μ lies sufficiently close
to the Weyl nodes.

In the end, the total anomalous Hall conductivity of the
Weyl metal reads as

σxy = σ I
xy + σ II

xy = − e2

2π2
k0, (89)

which means that the anomalous Hall conductivity of Weyl
metals is purely intrinsic, i.e., is determined by the Berry
curvature of the filled band, as long as the chemical potential
μ lies sufficiently close to the Weyl nodes. This plateaulike
behavior of the anomalous Hall conductivity is consistent with
a calculation by Burkov [46]. As mentioned in Sec. IV A,
the contribution from J (〈n〉), i.e., σ II

xy , corresponds to the
vertex correction in the ladder approximation. Therefore, it
can be said that the vertex correction to the anomalous Hall
conductivity of Weyl metals described by the Hamiltonian (73)
is absent, as long as the chemical potential μ lies sufficiently
close to the Weyl nodes.

C. Chiral magnetic effect in Weyl metals

Let us see that the magnetic driving term (27) properly
describes the chiral magnetic effect in Weyl metals. The chiral
magnetic effect, the second term in Eq. (81), is written as

j = e2

4π2
B

∑
ν

Qνμν, (90)

where Qν and μν are the chirality and chiral chemical potential
of a Weyl node, respectively. In two-node Weyl semimetals,
we have Q± = ±1 and 2μ5 = μ+ − μ− (see Fig. 2). As
is obvious, the chiral magnetic effect does not occur when
there is no chemical potential difference between the nodes as
μ+ = μ−.

1. Case of μ+ = μ−

First, it is informative to check the absence of the chiral
magnetic effect in our formulation when μ+ = μ−. Since there
are no electric fields, we start from the diagonal density matrix
〈ρ0〉 = diag[f0(ε+

k ),f0(ε−
k )] with f0(ε±

k ) = 1/[e(ε±
k −μ)/T + 1].
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Without loss of generality, we can consider the case of B =
(0,0,Bz) and can set μ > 0. Explicit matrix expression for
DB(〈ρ0〉) can be found in Appendix D. Using Eqs. (38) and
(D9), the linear-response off-diagonal electron density matrix
induced by the magnetic field is obtained as

〈SB〉 = e

2
Bz

{
∂[f0(ε+

k ) + f0(ε−
k )]

∂kx

[
0 R+−

k,y

R−+
k,y 0

]

− ∂[f0(ε+
k ) + f0(ε−

k )]

∂ky

[
0 R+−

k,x

R−+
k,x 0

]}
. (91)

By substituting the Berry connections (76) into this equation,
we get a concrete expression for 〈SB〉. Also, the intrinsic
diagonal density matrix induced by the magnetic field (41)
is given by

〈ξB〉 = eBz

[
f0(ε+

k )�+
k,z 0

0 f0(ε−
k )�−

k,z

]
. (92)

The velocity operator is written in the eigenstate basis as

vz = ∂m

∂kz

(
m

εk
σ̃z + vF k⊥

εk
σ̃x

)
. (93)

We are in a position to calculate the electric current. Since the
chemical potential μ lies sufficiently close to the Weyl nodes,
we do not need to take into account the contribution from the
t = + band. Finally, we find that the electric current along the
magnetic field B vanishes as expected:

jz = Tr[(−e)vz〈SB〉] + Tr[(−e)vz〈ξB〉]

= −e2

2
Bz

∫
d3k

(2π )3

v4
F kz

m− − b

1

ε2
−k

∑
a=x,y

ka

∂f0(ε+
−k)

∂ka

+ e2Bz

∫
d3k

(2π )3

v4
F kz

m− − b

m2
−

2ε4
−k

[f0(ε+
−k) + f0(ε−

−k)]

= 0, (94)

where we have used the fact that the integrand is an odd
function of kz. This shows that the chiral magnetic effect
does not occur when there is no chemical potential difference
between the Weyl nodes, i.e., when μ+ = μ−.

2. Case of μ+ �= μ−

Next, let us consider the case where there is a chemical po-
tential difference between the two nodes as 2μ5 = μ+ − μ−.
As is shown above, the expression for the chiral magnetic effect
(90) is derived analytically from the four-band model (73) with
nonzero μ5τz term. However, it is difficult to obtain analyti-
cally the eigenvalues and eigenstates in the presence of the μ5τz

term, unlike in the case of the bσz term where we can obtain the
eigenstates analytically as Eq. (75). To determine whether the
magnetic driving term (27) can describe the chiral magnetic
effect, we consider two-band Hamiltonians around each Weyl
node separately and sum each contribution to the electric
current. The Hamiltonian around each Weyl node reads as

H̃ν(q) = vF (qxσx + qyσy + Qνqzσz), (95)

which gives the eigenvalues ε±
q = ±εq =

±vF

√
q2

x + q2
y + q2

z . Here, ν = ± is the node index and

Q± = ±1 is the chirality of each Weyl node. The Fermi-Dirac
distribution function around each node is given by f ν

0 (ε±
q ) =

1/[e(ε±
q −μ̃ν )/T + 1] with μ̃ν = μ + μν , where μ is a uniform

chemical potential and μν is a chiral chemical potential such
that μ+ �= μ−. Without loss of generality, we can set μ̃ν > 0.
In linear response, the diagonal part 〈ξB,ν〉 and the off-diagonal
part 〈SB,ν〉 of the density matrix induced by the magnetic field
are given, respectively, by Eqs. (92) and (91), with f0(ε±

q )
replaced by f ν

0 (ε±
q ). The velocity operator is given by

vz,ν = QνvF

(
QνvF qz

εq
σ̃z + vF q⊥

εq
σ̃x

)
. (96)

In the present case, we may approximate the total electric
current by the sum of the contributions from each node.
Then, the total electric current along the magnetic field
B is calculated as jz = ∑

ν=±(jS
z,ν + j

ξ
z,ν), where jX

z,ν ≡
Tr[(−e)vz,ν〈XB,ν〉] (X = S,ξ ). The contribution from 〈SB,ν〉
is calculated to be

jS
z,ν = −e2

2
BzQν

∫
δ�ν

d3q

(2π )3

v3
F

ε2
q

∑
a=x,y

qa

∂f ν
0 (ε+

q )

∂qa

= e2BzvF

8π2
Qν

∫ π

0
dθ

∫ δqν

0
dq q sin3 θδ(q − μ̃ν/vF )

= 2

3

e2

4π2
BzQνμ̃ν, (97)

where δ�ν is a small momentum space around each node, q =√
q2

x + q2
y + q2

z , and we have used ∂f ν
0 (ε+

q )/∂ε+
q = −δ(εq −

μ̃ν). The contribution from 〈ξB,ν〉 is calculated to be

j ξ
z,ν = e2BzQν

∫
d3q

(2π )3

v5
F q2

z

2ε4
q

[
f ν

0 (ε+
q ) + f ν

0 (ε−
q )

]

= e2Bz

8π2
Qν

∫ π

0
dθ

[∫ μ̃ν

0
dq +

∫ �

0
dq

]
sin θ cos2 θ

= 1

3

e2

4π2
BzQν(μ̃ν + �), (98)

where � is the cutoff of the Fermi sea of Weyl cones.
Combining Eqs. (97) and (98), we arrive at the final

expression for the chiral magnetic effect:

jz = e2

4π2
Bz

∑
ν

Qνμν, (99)

where we have used
∑

ν=± Qνμ̃ν = ∑
ν=± Qνμν and∑

ν=± Qν� = 0. This is in full agreement with the result
by a field-theoretical approach (90). Here, we comment on
an important observation in this study. The portion 2

3 comes
from the Fermi surface contribution, as seen from Eq. (97).
The portion 1

3 comes from the Fermi sea contribution, as seen
from Eq. (98). This observation is in contrast to a derivation
by semiclassical wave-packet dynamics [45,48] in which the
chiral magnetic effect comes entirely from the Fermi surface
contribution.
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FIG. 3. Schematic illustration of longitudinal quadratic magnetoconductivity contributions σzz(B2
z ) [Eq. (101)] for E ‖ B in a Weyl metal

described by the Hamiltonian (73). 〈n〉 and 〈ξ〉 indicate band-diagonal density-matrix components, and 〈S〉 indicates band-off-diagonal
density-matrix components. See Eqs. (55), (57), and (58), respectively, for the formal expressions for 〈n〉, 〈S〉, and 〈ξ〉 in a magnetic
field. τ and τintra are the intervalley and intravalley scattering times, respectively. σzz(B2

z ) is given by the sum of the contribution from the
chiral anomaly σ CA

zz (B2
z ) and that from the Lorentz force σ LF

zz (B2
z ) as σzz(B2

z ) = σ CA
zz (B2

z ) + σ LF
zz (B2

z ). The other contributions to the quadratic
magnetoconductivity vanish. Note that the contribution from the Lorentz force vanishes when the energy bands are isotropic in the (kx,ky)
plane [see the discussion below Eq. (120)].

VIII. NEGATIVE MAGNETORESISTANCE IN WEYL
AND DIRAC METALS

So far, we have shown that the electric driving term DE

(26) and magnetic driving term DB (27) properly describe
the chiral-anomaly-induced phenomena in Weyl metals, the
anomalous Hall effect, and chiral magnetic effect, respectively.
Another phenomenon manifested by the chiral anomaly
is a negative magnetoresistance (or equivalently positive
magnetoconductance) quadratic in magnetic field for parallel
electric and magnetic fields in Weyl and Dirac metals [45–48].
Such an unusual negative magnetoresistance has recently
been experimentally observed in Dirac semimetals Na3Bi
[49], Cd3As2 [50,51], and ZrTe5 [52], and in the Weyl
semimetals TaAs [53] and TaP [54]. Here, note that the usual
magnetoresistance due to Lorentz force is positive. As denoted
in the Introduction, the chiral anomaly is described by the θ

term Sθ = ∫
dt d3r (e2/4π2)θ (r,t)E · B. As we can see from

this expression for the θ term, the E · B contribution becomes
largest in the case of parallel electric and magnetic fields. The
positive quadratic magnetoconductivity arising from the chiral
anomaly first derived by Son and Spivak reads as [45]

σzz

(
B2

z

) = e2

4π2

(eBz)2v3
F

μ2
τ, (100)

where μ is the chiral potential and τ is the intervalley scattering
time. Since their derivation is based on semiclassical wave-
packet dynamics alone, it is difficult to take disorder scattering
into account, and the microscopic origin of the intervalley
scattering time in Eq. (100) is not precisely clear.

In this section, we apply the theory we have developed
so far to the positive quadratic magnetoconductivity, starting
from the microscopic continuum model of Weyl semimetals
(73). It should be mentioned that the positive quadratic
magnetoconductivity has been experimentally observed in the
low-magnetic-field regime. Thus, our semiclassical treatment
of magnetic fields can be justified. In our theory, the formal

expression for the μν component of the quadratic magneto-
conductivity is written from Eq. (48) in the form

σμν(B2) = Tr[(−e)vμ(L−1DB)2L−1DE(〈ρ0〉)]/Eν

+ Tr[(−e)vμL−1DBL−1DE(〈ξB〉)]/Eν. (101)

Here, note that the angle between the electric and magnetic
fields is arbitrary in this formalism.

Our evaluation of Eq. (101) involves a number of subtleties.
It is informed by noting (i) that the expression of σzz(B2

z )
[Eq. (100)] has a linear dependence on τ , and (ii) that this
expression is derived via the chiral magnetic effect [45–48,52].
We use the fact that a magnetic driving term obtained from
an off-diagonal density matrix is purely diagonal, and that
a magnetic driving term obtained from a diagonal density
matrix has diagonal and off-diagonal components that lead
to the chiral magnetic effect as we have seen in Sec. VII C
(see Appendix D for explicit expressions for the magnetic
driving term). Indeed, our explicit calculations summarized
schematically in Fig. 3 confirmed that among all the possible
contributions that are second order in magnetic field, only
magnetoconductances originating from the chiral anomaly and
the usual Lorentz force survive.

To obtain the quadratic magnetoconductivity, we divide
the calculation of the matrices (L−1DB)2L−1DE(〈ρ0〉) and
L−1DBL−1DE(〈ξB〉) in Eq. (101) into four steps as follows:

〈SE〉 = L−1DE(〈ρ0〉) = [DE(〈ρ0〉)]mm′
k /i

(
εm

k − εm′
k

)
∝ eEz,

〈nEB〉 = L−1[DB(〈SE〉) + DE(〈ξB〉)]
= τ [DB(〈SE〉) + DE(〈ξB〉)]mm

k

∝ e2EzBzτ,

〈SEB2〉 = L−1DB(〈nEB〉) = [DB(〈nEB〉)]mm′
k /i

(
εm

k − εm′
k

)
∝ e3EzB

2
z τ,
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〈ξEB2〉 = P −1DB(〈nEB〉) = e 〈nEB〉mm B · �m
k

∝ e3EzB
2
z τ, (102)

where 〈ρ0〉 = diag[f0(ε+
k ),f0(ε−

k )] with f0(ε±
k ) =

1/[e(±εk−μ)/T + 1] being the Fermi-Dirac distribution
function, 〈n〉 and 〈ξ 〉 indicate diagonal density matrices,
〈S〉 indicates an off-diagonal density matrix, and τ is the
intervalley scattering time. See Eqs. (55), (57), and (58) for
the formal expressions for 〈n〉, 〈S〉, and 〈ξ 〉, respectively, in a
magnetic field. As we shall show below, the appearance of the
intervalley scattering time τ is due to that the driving terms
DB(〈SE〉) and DE(〈ξB〉) have nonzero values when integrated
over a given valley (Weyl cone). In the following, we consider
the low-temperature case where T 	 μ, with T and μ > 0
being the temperature and chemical potential of the system,
respectively.

A. Quadratic magnetoconductivity for �E ‖ �B
1. Contribution from the chiral anomaly

Let us consider the case of parallel electric and magnetic
fields E = (0,0,Ez) and B = (0,0,Bz). We start by obtaining
the off-diagonal part of the density matrix induced solely
by the electric field, 〈SE〉 in Eq. (102). As we have seen
in Sec. VII B, this off-diagonal density matrix results in an
intrinsic effect, i.e., the anomalous Hall effect. Using the
expression for the electric driving term DE(〈ρ0〉) [Eq. (33)]
and the Berry connection (76), we get

〈SE〉 = σ̃yeEz[f0(ε+
k ) − f0(ε−

k )]
vF k⊥
4ε3

k

∂m

∂kz

. (103)

At this stage, we recall from Eq. (35) that there exists
an extrinsic contribution to the off-diagonal density ma-
trix 〈SE〉 from the anomalous driving term J (〈nE〉). Here,
〈nE〉 = diag[n+

Ek,n
−
Ek] with n±

Ek = eτintraEz∂f0(ε±
k )/∂kz (τintra

is the intravalley scattering time). Let us consider the same
setup as in the evaluation of the anomalous Hall conduc-
tivity in Sec. VII B. Namely, we consider the case of a
short-range (onsite) disorder potential of the form U (r) =
U0

∑
i δ(r − r i), and assume that the correlation function sat-

isfies 〈U (r)U (r ′)〉 = nimpU
2
0 δ(r − r ′) with nimp the impurity

density. In this case, we can show explicitly from Eqs. (C2)
and (C3) that

Re{[J (〈nE〉)]+−
k } = Im{[J (〈nE〉)]+−

k } = 0, (104)

and hence [J (〈nE〉)]+−
k = [J (〈nE〉)]−+

k = 0, as long as the
chemical potential μ lies sufficiently close to the Weyl nodes.
Hence, the expression for 〈SE〉 [Eq. (103)] remains valid even
after the anomalous driving term is taken into account in the
case of sufficiently small μ.

Second, we compute the diagonal density matrix 〈nEB〉
proportional to EzBz in Eq. (102). This 〈nEB〉 is the most im-
portant quantity in our derivation of the magnetoconductivity
induced by the chiral anomaly, as is understood from its form
similar to E · B. As described in Appendix D, the magnetic
driving term obtained from an off-diagonal matrix is purely
diagonal. Using the expressions for the magnetic driving term
DB(〈SE〉) [Eqs. (D15) and (D16)] and the Berry connection

(76), we have

DB(〈SE〉) = e2EzBzFk1 (105)

with

Fk = −v3
F k⊥
ε2

k

ck − vF m2

ε2
kk⊥

ck − vF cos θ
∂ck

∂kx

− vF sin θ
∂ck

∂ky

,

(106)

where 1 is the 2 × 2 identity matrix and ck =
[f0(ε+

k ) − f0(ε−
k )](vF k⊥/4ε3

k)∂m/∂kz. Also, using the
expressions for the electric driving term [Eqs. (31) and (33)]
and the Berry phase contribution (41), we have

DE(〈ξB〉) = e2EzBz

∂

∂kz

[
f0(ε+

k )�+
k,z 0

0 f0(ε−
k )�−

k,z

]
+ 〈SEB〉,

(107)

where 〈SEB〉 is a purely off-diagonal matrix obtained by
replacing 〈ρ0〉 by 〈ξB〉 in Eq. (103).

Now, we show that these DB(〈SE〉) and DE(〈ξB〉) have
a special property which is not present when the system
is driven by an electric field alone. Around a Weyl node
with momentum q = k − W± (q2 	 1), m−(kz) is approxi-
mated as m−(qz) ≈ ∓v2

F (k0/b)qz. Then, we find that Fq and
∂f0(ε±

q )�±
q,z/∂qz are both even functions of qx , qy , and qz.

Accordingly, we find that the integral of DB(〈SE〉) + DE(〈ξB〉)
over the Fermi surface of a given valley has a nonzero value:∫

FS
d3q

(2π)3

∑
m[DB(〈SE〉) + DE(〈ξB〉)]mm

q �= 0. As discussed in
Sec. V, this is a consequence of the total particle-number
nonconservation in a given Weyl cone. Namely, we obtain the
rate of pumping

∂N

∂t
= e2EzBz

4π2

∫
FS

d3q

2π

(
2Fq +

∑
m=±

∂f0
(
εm

q

)
∂qz

�m
q,z

)
.

(108)

In the case of isotropic Weyl fermions [i.e., m−(qz) ≡ vF qz],
Eq. (106) can be simplified to be

F iso
q =

∑
a=x,y

[
1

2
�+

q,a

∂

∂qa

+ 3q (�+
q,a)2

]
[f0(ε+

q ) − f0(ε−
q )],

(109)

where �+
q,a = −qa/(2q3) is the Berry curvature and q =√

q2
x + q2

y + q2
z . Integrating this over the Fermi surface we

have ∫
FS

d3q

2π

(
2F iso

q +
∑
m=±

∂f0
(
εm

q

)
∂qz

�m
q,z

)

=
∑
m=±

∫
d3q
2π

∂f0
(
εm

q

)
∂εm

q
vm

q · �m
q = 1, (110)

which is indeed consistent with the general expression (72).
It follows from Eq. (55) that the intervalley scattering time

τ appears when L−1 acts on DB(〈SE〉) and DE(〈ξB〉). When
intravalley scattering is much stronger than intervalley scatter-
ing, L−1 acting on DB(〈SE〉) and DE(〈ξB〉) will also change
the way in which the pumped charge is distributed across
the Fermi surface, altering it so that it is equally distributed
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across the Fermi surface and corresponds simply to a change
in chemical potential. In that limit, the remaining steps in the
calculation correspond precisely to the magnetoelectric effect
calculation outlined in the previous section. In general, though,
some anisotropy remains whenL−1 acts on the pumped charge.
To illustrate its potential role, we continue the calculation
here considering the opposite limit in which only intervalley
scattering is present. Then, the diagonal density matrix 〈nEB〉
is obtained as

〈nEB〉 =L−1[DB(〈SE〉) + DE(〈ξB〉)]

= e2EzBzτ

[
F̃++

k 0

0 F̃−−
k

]
, (111)

where

F̃mm
k = 1

2

∑
m′=±

[
∂f0

(
εm′

k

)
∂kx

�m′
k,x + ∂f0

(
εm′

k

)
∂ky

�m′
k,y

]

+ ∂f0
(
εm

k

)
∂kz

�m
k,z (112)

is the component which represents the Fermi surface response
in Eqs. (105) and (107). Note that we have neglected the Fermi
sea response in Eqs. (105) and (107).

Third, we compute the off-diagonal density matrix
〈SEB2〉 proportional to EzB

2
z in Eq. (102). Before doing

this, notice from Eq. (D7) that there also are the diag-
onal components in DB(〈nEB〉) as [DB(〈nEB〉)]++

k = e3Ez

B2
z τ ( ∂εk

∂ky

∂F̃++
k

∂kx
− ∂εk

∂kx

∂F̃++
k

∂ky
) and [DB(〈nEB〉)]−−

k = −e3EzB
2
z τ

( ∂εk
∂ky

∂F̃−−
k

∂kx
− ∂εk

∂kx

∂F̃−−
k

∂ky
), which represent the Lorentz force

contribution. Since these components are odd functions
of kx and ky around a Weyl node, DB(〈nEB〉) does
not drive the total particle number in a given Weyl
cone. Hence, the diagonal density matrix 〈n′

EB2〉 ob-
tained from these [DB(〈nEB〉)]mm

k contains the intraval-
ley scattering time as 〈n′

EB2〉mm
k = τintra[DB(〈nEB〉)]mm

k =
me3EzB

2
z ττintra( ∂εk

∂ky

∂F̃mm
k

∂kx
− ∂εk

∂kx

∂F̃mm
k

∂ky
). However, we see that

〈n′
EB2〉 does not contribute to the magnetoconductivity pro-

portional to B2
z since it is an odd function of kx and ky and

thus vanishes when integrated over momentum space. From
Eqs. (57) and (D9), we obtain the relevant off-diagonal density
matrix as

〈SEB2〉

= e3EzB
2
z τ

2

×
[

∂(F̃++
k + F̃−−

k )

∂kx

(
σ̃x

vF

2εk
cos θ − σ̃y

vF m

2ε2
k

sin θ

)

+ ∂(F̃++
k + F̃−−

k )

∂ky

(
σ̃x

vF

2εk
sin θ + σ̃y

vF m

2ε2
k

cos θ

)]
.

(113)

Here, let us recall that there exists an extrinsic contribution
to the off-diagonal density matrix 〈SEB2〉 from the anomalous
driving term J (〈n′

EB2〉), as in the case of 〈SE〉. We can show
explicitly by replacing 〈nE〉 in Eqs. (C2) and (C3) by 〈n′

EB2〉

that

Re{[J (〈n′
EB2〉)]+−

k } = Im{[J (〈n′
EB2〉)]+−

k } = 0, (114)

and hence [J (〈n′
EB2〉)]+−

k = [J (〈n′
EB2〉)]−+

k = 0, as long as the
chemical potential μ lies sufficiently close to the Weyl nodes.
Hence, the expression for 〈SEB2〉 [Eq. (113)] remains valid
even after the anomalous driving term is taken into account in
the case of sufficiently small μ.

Notice from Eqs. (43) and (58) that 〈SEB2〉 is accompanied
by an intrinsic Berry phase contribution to the diagonal part
of the density matrix proportional to EzB

2
z . From Eq. (43) we

readily obtain

〈ξEB2〉 = −e3EzB
2
z τ

v2
F m

2ε3
k

[
F̃++

k 0

0 −F̃−−
k

]
. (115)

We are now in a position to evaluate the zz component
of the magnetoconductivity proportional to B2

z , σ CA
zz (B2

z ) =
Tr{(−e)vz[〈SEB2〉 + 〈ξEB2〉]}/Ez. Since we have considered
the scattering of electrons at the Fermi surface, we do not need
to take into account the contribution from the t = + band.
From Eqs. (93), (113), and (115), an explicit expression for
σzz(B2

z ) at low temperatures such that T 	 μ is obtained as

σ CA
zz

(
B2

z

) = −e4B2
z τ

2

∫
d3k

(2π )3

∂m−
∂kz

v2
F

ε2
−k

×
∑

a=x,y

ka

∂(F̃++
k + F̃−−

k )

∂ka

+ e4B2
z τ

2

∫
d3k

(2π )3

∂m−
∂kz

v2
F m2

−
ε4
−k

(F̃++
k + F̃−−

k )

≡ e2

4π2
C(b,�,T )

(eBz)2v3
F

μ2
τ, (116)

which takes a positive value. We numerically find that σ CA
zz (B2

z )
is proportional to 1/μ2 and v3

F . This is consistent with the
result by Son and Spivak [Eq. (100)]. We also find that, as in
the case of the chiral magnetic effect (99), the contributions
from 〈SEB2〉 and 〈ξEB2〉 to σ CA

zz (B2
z ) are, respectively, 2

3 and 1
3

of the total value (116).
C(b,�,T ) in Eq. (116) is a dimensionless parameter of order

1. In Fig. 4(a), we show the k0 dependence of C(b,�,T ) with
� = 0, where 2k0 = 2

√
b2 − �2/vF is the distance between

the two Weyl nodes in momentum space. We find that C is
an increasing function of k0 and that it saturates when k0

is sufficiently large. As shown in Figs. 4(b)–4(d), a single
Weyl cone splits into two Weyl cones when k0 �= 0. The two
Weyl cones partly overlap at the Fermi level and therefore
there is only one Fermi surface in the region where C is
increasing as k0 becomes larger. The separate contributions
from the two Weyl cones are therefore incomplete in this
region. When two Fermi surfaces are present, the value of
C saturates to the contributions from the two independent
Weyl cones. In the present case, the value of k0 at which
the saturation begins is given by k0 = μ/vF . Here, note that
we have not considered the k0 dependence of the intervalley
scattering time τ . Although it is not easy to take into account
such a k0 dependence in τ , it is expected that the value of τ

will become larger as the value of k0 becomes larger, i.e., as
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(a)

(b) (c) (d)

FIG. 4. (a) k0 dependence of C(b,�,T ) in Eq. (116) for � = 0,
vF = 1 eV Å, T = 0.005 eV, and μ = 0.1 eV. In our model Hamil-
tonian for a two-node Weyl metal (73), the distance between the two
Weyl nodes in momentum space is given by 2k0 = 2

√
b2 − �2/vF .

Here, k0 is given in units of eV/h̄vF (∼Å−1). The value of C with
b = � = 0 (with large b and � = 0) approaches C = 1

2 (C = 1) in
the low-temperature limit T/μ → 0. Also, the kz dependencies of
the energy bands ±ε−k at kx = ky = 0 for k0 = 0, k0 = 0.05, and
k0 = 0.15 in (a) are shown in (b)–(d), respectively. The dashed lines
indicate the Fermi level, μ = 0.1 eV. There exists a single isotropic
Weyl cone when k0 = 0, and it splits into two isotropic Weyl cones
when k0 �= 0.

the distance between the two Weyl nodes becomes longer. This
is because the strength of intervalley scattering processes will
decrease as the value of k0 becomes larger since intervalley
scattering processes with large k0 require large momentum
transfer. Thus, based on these viewpoints, we conclude that
the value of σ CA

zz (B2
z ) in Weyl metals becomes larger as the

distance between the two Weyl nodes becomes longer.
Finally, we note that the contribution to σ CA

zz (B2
z ) from

a single isotropic Weyl cone in the low-temperature limit
T/μ → 0 is obtained by setting C(b,�,T ) = 1

2 and b = � =
0 in Eq. (116) (see Fig. 4) since our Hamiltonian (74) with
b = � = 0 (i.e, k0 = 0) possesses a single isotropic Weyl
cone. Also, the saturated value C = 1 obtained at large k0

with T/μ → 0 is the contribution from two isotropic Weyl
cones. The value from a single isotropic Weyl cone, C = 1

2 ,
is smaller than the value obtained by invoking semiclassical
wave-packet dynamics and neglecting scattering [Eq. (100)]
that corresponds to C = 1. This result can be interpreted as
follows. The rate of pumping into a valley (110), ∂N/∂t =
e2EzBz/4π2, is the same as that obtained by invoking
semiclassical wave-packet dynamics and neglecting scattering
[Eq. (2)]. When intravalley scattering is dominant (i.e., in the
limit of extremely weak intervalley scattering), by following
the chiral magnetic effect we will find that C = 1. In general,
however, the electron distribution on the Fermi surface F̃mm

k

(130) can be anisotropic due to intravalley scattering. The
numerical results in Fig. 4, obtained neglecting intravalley
scattering, demonstrate that the precise value of C can be
depend on the details of disorder.

2. Case of Dirac semimetals

Here, we briefly discuss the case of Dirac semimetals. To
this end, let us consider the contribution from a single Dirac
cone, i.e., two degenerate Weyl cones. Time-reversal symmetry
is preserved in Dirac metals, and therefore we have to set
b = 0. Also, for the existence of a Dirac point we have to
set � = 0. As mentioned above, Eq. (116) with b = � = 0
represents the contribution from a single Weyl cone. Hence,
the value of σ CA

zz (B2
z ) coming from a single Dirac cone in the

low-temperature limit T/μ → 0 is obtained by setting b =
� = 0 (i.e., C = 1

2 ) and multiplying a factor 2 in Eq. (116):

σ CA
zz

(
B2

z

)
Dirac = e2

4π2

(eBz)2v3
F

μ2
τDirac, (117)

where τDirac is the intervalley scattering time between the
two Weyl cones that are degenerate in momentum space. As
discussed in Sec. V, the effective Hamiltonian around a Dirac
point in Dirac semimetals which are protected by crystalline
symmetry can be written in the block-diagonal form [17]

HDirac(q) =
[HAA HAB

HBA HBB

]
=

[H+(q) 0

0 H−(q)

]
, (118)

where A and B denote two states after a unitary transformation,
and H±(q) is a 2 × 2 Weyl Hamiltonian with chirality ±1. In
general, atomically smooth disorder does not allow scattering
processes between two different states A and B. Therefore, the
intervalley scattering time τDirac is much larger than intravalley
scattering time.

3. Contribution from the Lorentz force

Next, we compute the magnetoconductivity proportional
to B2

z due to the Lorentz force. Such a magnetoconductivity
does not originate from the intrinsic (i.e., the Berry curvature)
contribution but originates solely from the Fermi surface
contribution. Thus, only the diagonal components in the
electric and magnetic driving terms are relevant to obtaining
it. We start by obtaining the diagonal part of the density
matrix induced by the electric field. It is easily seen that
the integral of DE(〈ρ0〉) over the Fermi surface of a given
Weyl cone is zero. Then, from the discussion in Sec. V,
the diagonal density matrix obtained from DE(〈ρ0〉) contains
the intravalley scattering time as 〈nE〉 = τintraDE(〈ρ0〉), where
n+

Ek = eEzτintra[∂f0(ε+
k )/∂kz] and n−

Ek = 0 (since we consider
the case of μ > 0). From Eq. (D7), the diagonal components
in DB(〈nE〉) are given by

[DB(〈nE〉)]++
k = eBz

(
∂εk

∂ky

∂n+
Ek

∂kx

− ∂εk

∂kx

∂n+
Ek

∂ky

)
(119)

and [DB(〈nE〉)]−−
k = 0. We see that Eq. (119) indeed rep-

resents the Lorentz force term, as [DB(〈nE〉)]++
k = e(vk ×

B) · ∇kn
+
Ek with vk = ∇kεk. Here, note that Eq. (119) can be
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rewritten as

[DB(〈nE〉)]++
k

= e2EzBzτintra

(
∂εk

∂ky

∂2εk

∂kxkz

− ∂εk

∂kx

∂2εk

∂kykz

)
∂f0(εk)

∂εk
,

(120)

from which we see clearly that [DB(〈nE〉)]++
k = 0 for the

present case of the isotropic energy band εk in the (kx,ky)

plane εk =
√

v2
F k2

x + v2
F k2

y + m±(kz)2. Namely, there are no

contributions from the Lorentz force in the present case, as
is also understood from the fact that the Lorentz force does
not act when the velocity is along the magnetic-field direction.
However, when the energy band εk is anisotropic in the (kx,ky)
plane, we see that in general [DB(〈nE〉)]++

k �= 0. See, for
example, Ref. [64] for a detailed discussion on the conditions
for nonzero contributions from the Lorentz force in the case
of E ‖ B.

The Weyl cones in real materials will be anisotropic.
In the following, let us assume that there is an
anisotropy in εk, for example, by replacing m±(kz) by
m±(kx,kz) = b ±

√
v2

F k2
z + αk2

x + �2 . In such as case we
have [DB(〈nE〉)]++

k �= 0. Again, we find that the integral of
DB(〈nE〉) over the Fermi surface of a given Weyl cone is
zero. Then, we see from Eq. (55) the diagonal density matrix
obtained from DB(〈nE〉) contains the intravalley scattering
time as 〈n′

EB〉 = τintraDB(〈nE〉). The same procedure can
be applied to obtain the diagonal density matrix propor-
tional to EzB

2
z , and we obtain 〈nEB2〉 = τintraDB(〈nEB〉) =

diag[(eBz)2τ 2
intra( ∂εk

∂ky

∂
∂kx

− ∂εk
∂kx

∂
∂ky

)2n+
Ek,0]. Finally, noting that

only the t = − band is relevant, the magnetoconductivity
proportional to B2

z induced by the Lorentz force at low
temperatures such that T 	 μ is calculated to be

σ LF
zz

(
B2

z

) = − e4B2
z τ

3
intra

∫
d3k

(2π )3

∂m−
∂kz

m−
ε−k

×
(

∂ε−k

∂ky

∂

∂kx

− ∂ε−k

∂kx

∂

∂ky

)2
∂f0(ε−k)

∂kz

∼ − σ 0
zz(ωcτintra)2, (121)

which takes a negative value. Here, σ 0
zz ≈ e2(μ2/vF )τintra is

the Drude conductivity, and ωc = eBzv
2
F /μ is the cyclotron

frequency.

4. Total magnetoconductivity of the system

We have seen that the contribution from the Lorentz force
is absent when the Weyl cones are isotropic. In this case, the
total quadratic magnetoconductivity for parallel electric and
magnetic fields is written in the low-field limit as

σzz

(
B2

z

) = σ CA
zz

(
B2

z

)
> 0. (122)

On the other hand, when the Weyl cones are anisotropic, the
contribution from the Lorentz force is present. In this case,
from Eqs. (116) and (121), the total quadratic magnetocon-
ductivity for parallel electric and magnetic fields is written
in the low-field limit as σzz(B2

z ) = σ CA
zz (B2

z ) + σ LF
zz (B2

z ). The
ratio of these two contributions to the magnetoconductivity is

estimated as ∣∣∣∣ σ LF
zz

σ CA
zz

∣∣∣∣ ∼ τintra

τ
(μτintra)2. (123)

In general, the intervalley scattering time τ is much larger than
the intravalley scattering time τintra, i.e., τintra/τ 	 1, since the
intervalley scatterings require large momentum transfers, i.e.,
the number of intervalley scattering processes is much smaller
than that of intravalley scattering processes. On the other
hand, in usual high-mobility semiconductors the condition
(μτintra)2  1 is satisfied. When the contribution from the
chiral anomaly dominates that from the Lorentz force, we
have the total magnetoconductivity in the low-field limit as

σzz

(
B2

z

) ≈ σ CA
zz

(
B2

z

)
> 0. (124)

We have confirmed that the magnetoconductivity linear in B

vanishes in our formalism. Namely, the magnetoconductivity
that has the lowest B dependence is the one proportional
to B2, which is in agreement with experimental results on
the magnetoconductivity in the low-field limit in the Dirac
semimetal Cd3As2 [51]. On other hand, note that in this
study we have not considered the contribution from the weak
antilocalization such that ∼a

√
B with a < 0 in the low-field

limit which is observed in the Weyl semimetal TaAs [53].

B. Quadratic magnetoconductivity for �E ⊥ �B
Let us consider the case of perpendicular electric and

magnetic fields as E = (0,0,Ez) and B = (Bx,0,0). Even in
this case, the intrinsic contribution to the magnetoconductivity
proportional to B2

x , which resembles that from the chiral
anomaly (116), takes nonzero value in our formalism. How-
ever, it is not characterized by the intervalley scattering time τ

which appeared in the case of parallel fields, but characterized
by the intravalley scattering time τintra. We show that as the
result the contribution from the Lorentz force dominates the
intrinsic contribution, which is consistent with experimental
results.

We compute the intrinsic contribution to the quadratic
magnetoconductivity. The exactly same calculation as in the
case of parallel electric and magnetic fields can be applied
here. After a calculation, we obtain the magnetic driving term
which is proportional to EzBx as

DB(〈SE〉) = e2EzBxGk1 (125)

with

Gk = vF cos θ
∂

∂kz

{
[f0(ε+

k ) − f0(ε−
k )]

vF k⊥
4ε3

k

∂m

∂kz

}
. (126)

We also have the electric driving term which is proportional to
EzBx as

DE(〈ξB〉) = e2EzBx

∂

∂kz

[
f0(ε+

k )�+
k,x 0

0 f0(ε−
k )�−

k,x

]
+〈SEB〉,

(127)

where 〈SEB〉 is a purely off-diagonal matrix. Here, we show
that these DB(〈SE〉) and DE(〈ξB〉) have the opposite property
of the case of parallel electric and magnetic fields. Around
a Weyl node with momentum q = k − W± (q2 	 1), we
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find that Gq and ∂f0(ε±
q )�±

q,x/∂qz are odd functions of qx

and qz. Accordingly, we find that the integral of DB(〈SE〉) +
DE(〈ξB〉) over the Fermi surface of a given valley is zero:∫

FS
d3q

(2π)3

∑
m[DB(〈SE〉) + DE(〈ξB〉)]mm

q = 0. As discussed in
Sec. V, this is a consequence of the total particle-number
conservation in a given Weyl cone. Namely, we obtain

∂N

∂t
= e2EzBx

4π2

∫
FS

d3q

2π

(
2Gq +

∑
m=±

∂f0
(
εm

q

)
∂qz

�m
q,x

)
= 0.

(128)

Then, it follows from Eq. (55) that the intravalley scattering
time τintra appears when L−1 acts on DB(〈SE〉) and DE(〈ξB〉).
In the end, the diagonal density matrix 〈nEB〉 is obtained as

〈nEB〉 = L−1[DB(〈SE〉) + DE(〈ξB〉)]

= e2EzBxτintra

[
G̃++

k 0

0 G̃−−
k

]
, (129)

where

G̃mm
k = 1

2
�−

k,x

∂

∂kz

[f0(ε+
k ) − f0(ε−

k )] + ∂f0
(
εm

k

)
∂kz

�m
k,x (130)

is the component which represents the Fermi surface response
in Eqs. (125) and (127). The off-diagonal part 〈SEB2〉 and
diagonal part 〈ξEB2〉 of the density matrix proportional to EzB

2
x

can be obtained in a similar way as Eqs. (113) and (115),
respectively.

Finally, noting that only the t = − band is relevant, the
zz component of the quadratic magnetoconductivity from the
intrinsic contribution at low temperatures such that T 	 μ is
obtained as

σ In
zz

(
B2

x

) = e4B2
x τintra

2

∫
d3k

(2π )3

∂m−
∂kz

v2
F kx

ε2
−k

∂(G̃++
k + G̃−−

k )

∂kz

+ e4B2
x τintra

2

∫
d3k

(2π )3

∂m−
∂kz

v3
F kxm−
ε4
−k

(G̃++
k + G̃−−

k )

≡ e2

4π2
C ′(b,�,T )

(eBz)2v3
F

μ2
τintra, (131)

which takes a positive value with C ′(b,�,T ) ∼ O(0.1). As
mentioned above, this form resembles that from the chiral
anomaly (116). However, the appearance of the intravalley
scattering time indicates that the total particle number in a
given valley is conserved, while the chiral anomaly requires
nonconservation of the total particle number in a given valley.
Thus, the magnetoconductivity (131) does not originate from
the chiral anomaly.

The quadratic magnetoconductivity due to the Lorentz force
in the case of perpendicular electric and magnetic fields can be
evaluated in the same way as Eq. (121). At low temperatures
such that T 	 μ we have

σ LF
zz

(
B2

x

) = − e4B2
x τ

3
intra

∫
d3k

(2π )3

∂m−
∂kz

m−
ε−k

×
(

∂ε−k

∂kz

∂

∂ky

− ∂ε−k

∂ky

∂

∂kz

)2
∂f0(ε−k)

∂kz

≈ − σ 0
zz(ωcτintra)2, (132)

which takes a negative value. Here, σ 0
zz ≈ e2(μ2/vF )τintra is

the Drude conductivity, and ωc = eBxv
2
F /μ is the cyclotron

frequency. Note that, in contrast to the case of parallel electric
and magnetic fields, σ LF

zz (B2
x ) is nonzero even when the Weyl

cones are isotropic.
Therefore, from Eqs. (131) and (132), the total quadratic

magnetoconductivity for perpendicular electric and magnetic
fields is written in the low-field limit as σzz(B2

x ) = σ In
zz (B2

x ) +
σ LF

zz (B2
x ). The ratio of these two contributions to the magneto-

conductivity is estimated as∣∣σ LF
zz

/
σ In

zz

∣∣ ∼ (μτintra)2  1, (133)

where we have used that in usual high-mobility semiconduc-
tors the condition (μτintra)2  1 is satisfied. Thus, we have the
total magnetoconductivity in the low-field limit as

σzz

(
B2

x

) ≈ σ LF
zz

(
B2

x

)
< 0, (134)

which is in agreement with experimental results in Dirac
and Weyl semimetals [49–54]. As in the case of parallel
electric and magnetic fields, we have confirmed that the
magnetoconductivity linear in B vanishes in our formalism.

IX. DISCUSSIONS

We have derived a multiband quantum kinetic equation for
the Bloch-state density matrix of a crystal that includes driving
terms related to both electric and magnetic fields. The magnetic
driving term DB has a simple form that elegantly generalizes
the well-known Lorentz force driving term of the scalar
single-band Boltzmann quantum kinetic equation, −e(∇kεk ×
B) · ∇kfk, to a multiband matrix form. We have also shown
that our quantum kinetic equation captures two effects that
have been previously identified by examining Bloch-state
wave-packet dynamics in multiband systems, namely, an
anomalous contribution to velocity that is proportional to
k̇ × � and a relative change in the momentum-space density
of states associated with a particular band that is proportional
to B · �, where B is an external magnetic field and � is
the momentum-space Berry phase curvature associated with
the band. In transport the former effect is responsible for the
intrinsic anomalous Hall effect of magnetic crystals. When
disorder scattering is neglected [45], the two effects combine
to yield a remarkable condensed matter realization of the
chiral anomaly in which charge is pumped between Fermi
surfaces surrounding different Weyl points. As an illustration
of the physics that can be captured using our quantum
kinetic equation, we have examined how the chiral anomaly
is observably manifested in the magnetoconductance of Weyl
semimetals, discovering a complex interplay between electric
and magnetic field driving terms, free-particle dynamics, and
scattering contributions to the quantum kinetic equations. We
have found that the charge-pumping effect survives only when
intervalley scattering is very weak compared to intravalley
scattering.

The free-evolution (P ), scattering (K), and electric and
magnetic driving term (DE and DB) contributions to the
quantum kinetic equation can all be viewed as operators
that act on the Bloch-state density matrices that characterize
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the transport steady state. Only band-off-diagonal elements
of this density matrix have time dependence in the absence
of external fields and disorder, i.e., the projection of P

onto the band-diagonal part of the Liouville density-matrix
vector space is zero. For this reason, the roles of diagonal
and off-diagonal density-matrix components in the quantum
kinetic equations are quite distinct. The magnetic driving term
maps the equilibrium density matrix 〈ρ0〉 (i.e., the Fermi-Dirac
distribution function), which is diagonal in a band-eigenstate
representation, to a purely band-off-diagonal density matrix.
In other words, DB(〈ρ0〉) is a purely band-off-diagonal matrix.
On the other hand, the matrix P −1DB(〈ρ0〉) has diagonal
components 〈ξB〉. Similar diagonal components are obtained
whenever P −1DB acts on any band-diagonal density-matrix
components. These magnetic-field-induced changes in the
occupation probabilities of Bloch states capture the Berry
phase related density-of-states changes in magnetic field
of semiclassical wave-packet dynamics. As is shown in
Sec. VII C, 〈SB〉 and 〈ξB〉 combine to produce a magnetic-field-
driven current when the local chemical potentials of Fermi
surface pockets near different Weyl points are different, thus
capturing what is referred to as the chiral magnetic effect. As
shown in Sec. VIII A, the density matrices 〈SEB2〉 and 〈ξEB2〉,
which result in the positive quadratic magnetoconductivity in
Weyl and Dirac metals, are closely related 〈SB〉 and 〈ξB〉.
In the limit of extremely weak intervalley scattering, the
chemical potential difference of the chiral magnetic effect
is established by balancing charge pumping between valleys
and intervalley relaxation. Although our calculations show
that the precise numerical value of the positive quadratic
magnetoconductivity can be quite complex and depend subtly
on the details of specific systems, it is still true, as explained in
earlier theoretical work [45–48,52], that the positive quadratic
magnetoconductivity is basically a simple consequence of
the chiral magnetic effect. It is important to emphasize that
the anomalous Hall effect and the chiral magnetic effect
arise essentially from band-off-diagonal parts of the electric
and magnetic driving terms, respectively. This indicates that
transport phenomena induced by the chiral anomaly are
an important example of interband coherence response in
conductors.

This study is an extension of Ref. [55], which developed a
quantum kinetic theory for crystals that is sensitive to recent
developments in electronic structure theory that allow accurate
Wannier representations of the Bloch-state Hamiltonian which
are convenient for transport theory to be constructed, and also
sensitive to recent awareness of the importance of momentum-
space Berry phase effects in a number of different contexts.
The aim of the theory is to be able to account for intrinsic
effect related to Bloch-state wave-function properties and
extrinsic effects related to disorder scattering to be accounted
for on a consistent footing in real materials with complicated
electronic structure. The quantum kinetic theory in Ref. [55],
which is the B = 0 limit of the theory presented in this
paper, conveniently captures effects that appear in Kubo
formula formulations of transport theory with disorder treated
as a perturbation, as ladder-diagram vertex corrections, for
example, the well-known absence of a spin Hall conductivity
[65] and anomalous Hall conductivity [66] in certain Rashba
models. An important aspect of the detailed calculations we

have presented for the simplified Weyl semimetal toy model is
its demonstration that the corresponding vertex corrections are
absent in the anomalous Hall conductivity (89) and positive
quadratic magnetoconductivity (116) of Weyl metals, as long
as the chemical potential lies sufficiently close to the Weyl
points.

We briefly discuss other possible applications of our theory.
In this connection, we emphasize that although our theory is
formulated as an independent particle theory, we really intend
it as a theory of independent quasiparticles in a mean field
approximation to an interacting electron theory. For example,
the mean field quasiparticles can be viewed as the Kohn-Sham
quasiparticles of density functional theory. Because our theory
calculates the density-matrix response to electric and magnetic
fields, it can be used to determine the response of any crystal
observables, including observables like the spin density that
can feed back into the steady-state crystal Hamiltonian. All
single-particle observables O maintain their crystal period-
icity when they respond to spatially constant electric and
magnetic fields and therefore have expectation values of the
form

〈O〉 = Tr[O〈ρ〉], (135)

where 〈ρ〉 is a density matrix we have calculated. The evalu-
ation of field-induced spin currents and spin densities, which
are related to the current-induced torques of spintronics, is one
practically important problem to which our quantum kinetic
theory can be applied. Our theory can be flexibly applied to
metals, insulators, nodal-line semimetals, and to systems with
many other types of electronic structure. It can be applied to
toy models that capture the essence of different phenomena
or to realistic models of specific materials. We anticipate,
for example, that it will have interesting implications for
the properties of 2D multivalley systems such as graphene
and transition-metal dichalcogenides. The kinetic equation
approach can also be applicable to interacting systems that
are described at a mean field theory level [67–69]. It will
be interesting to investigate from the quantum kinetic theory
viewpoint the interplay between nontrivial band topology and
interactions in the presence of electric and magnetic fields.

X. SUMMARY

In summary, we have developed a general quantum ki-
netic theory of low-field magnetotransport in weakly disor-
dered multiband systems. Our theory naturally incorporates
momentum-space Berry phase effects, which are often dis-
cussed in the context of semiclassical wave-packet dynamics,
into transport theory. By applying the Wigner transformation
to the quantum Liouville equation, we have derived a quantum
kinetic equation (25), which is the principal result of this study.
From this equation we have obtained a generic expression
for the magnetoconductivity that is applicable for arbitrary
angle between electric and magnetic fields. We note that the
purely band-diagonal contributions in our theory describe all
the regular Fermi surface dominated effects that are familiar
from textbooks. Our theory is able to simply explain and
predict when large momentum-space Berry curvatures yield
important corrections to the standard Boltzmann theory of
Fermi surface dominated magnetotransport.
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We have applied our theory to study transport phenomena
induced by the chiral anomaly in a toy model of two-node Weyl
metals (73). We have shown that the anomalous Hall effect in
the model is purely intrinsic, which means that the vertex
correction in the ladder-diagram approximation is absent. We
have also shown, by constructing the linear-response theory
to a magnetic field in the absence of electric fields, that the
magnetic driving term we have introduced describes properly
the chiral magnetic effect in a continuum model of Weyl
metals. We have obtained an explicit expression for the positive
quadratic magnetoconductivity that includes the intervalley
scattering time in parallel electric and magnetic fields. In the
process of obtaining this expression, we have shown that
the vertex correction in the ladder-diagram approximation
is absent. Our study indicates that the positive quadratic
magnetoconductivity is a consequence of the chiral magnetic
effect. On the other hand, in the case of perpendicular electric
and magnetic fields, we have obtained a negative quadratic
magnetoconductivity due to the Lorentz force that includes
the intravalley scattering time, which is in agreement with
experimental results. We have clarified that the chiral anomaly
is observable only when intervalley scattering at the Fermi
energy is very weak compared to intravalley scattering.
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APPENDIX A: GENERAL PROPERTIES OF THE
MAGNETIC DRIVING TERM DB

In this Appendix, we consider general properties of the
magnetic driving term (27). We write the Hamiltonian and the
density matrix of a system as H0 = ∑

m εm|m〉〈m| and 〈ρ0〉 =∑
m f0m|m〉〈m| with m a band index and f0m a Fermi-Dirac

distribution function, where we have omitted the wave-vector
dependencies in these equations to simplify the notation. For
concreteness, we consider the case of B = (0,0,Bz). Then, the
driving term (27) is written as

DB(〈ρ0〉) = e

2h̄2

{(
DH0

Dk
× B

)
· D〈ρ0〉

Dk

}
= eBz

2h̄2

[{
DH0

Dky

,
D〈ρ0〉
Dkx

}
−

{
DH0

Dkx

,
D〈ρ0〉
Dky

}]
. (A1)

First, we consider a diagonal component of DB(〈ρ0〉), i.e., 〈m|DB(〈ρ0〉)|m〉. We immediately get

DH0

Dky

=
∑
m′

∂yεm′ |m′〉〈m′| +
∑
m′

εm′ [|∂ym
′〉〈m′| + |m′〉〈∂ym

′|],

D〈ρ0〉
Dkx

=
∑
n′

∂xf0n′ |n′〉〈n′| +
∑
n′

f0n′ [|∂xn
′〉〈n′| + |n′〉〈∂xn

′|], (A2)

where ∂a = ∂/∂ka . Then, we have

DH0

Dky

D〈ρ0〉
Dkx

=
∑
m′

∂yεm′∂xf0m′ |m′〉〈m′| +
∑
m′n′

∂yεm′f0n′ |m′〉〈m′|∂xn
′〉〈n′| +

∑
m′

∂yεm′f0m′ |m′〉〈∂xm
′|

+
∑
m′

εm′∂xf0m′ |∂ym
′〉〈m′| +

∑
m′n′

εm′f0n′ |∂ym
′〉〈m′|∂xn

′〉〈n′| +
∑
m′

εm′f0m′ |∂ym
′〉〈∂xm

′|

+
∑
m′n′

εm′∂xf0n′ |m′〉〈∂ym
′|n′〉〈n′| +

∑
m′n′

εm′f0n′ |m′〉〈∂ym
′|∂xn

′〉〈n′| +
∑
m′n′

εm′f0n′ |m′〉〈∂ym
′|n′〉〈∂xn

′|, (A3)

from which a diagonal component is obtained as

〈m|DH0

Dky

D〈ρ0〉
Dkx

|m〉 = ∂yεm∂xf0m +
∑
m′

εm′f0m〈m|∂ym
′〉〈m′|∂xm〉 +

∑
m′

εm′f0m′ 〈m|∂ym
′〉〈∂xm

′|m〉

+ εmf0m〈∂ym|∂xm〉 +
∑
n′

εmf0n′ 〈∂ym|n′〉〈∂xn
′|m〉, (A4)

where we have used 〈m′|∂an
′〉 + 〈∂am

′|n′〉 = ∂a(δm′n′) = 0. Similarly, we have

〈m|D〈ρ0〉
Dkx

DH0

Dky

|m〉 = ∂yεm∂xf0m +
∑
n′

f0n′εm〈m|∂xn
′〉〈n′|∂ym〉 +

∑
n′

f0n′εn′ 〈m|∂xn
′〉〈∂yn

′|m〉

+ f0mεm〈∂xm|∂ym〉 +
∑
m′

f0mεm′ 〈∂xm|m′〉〈∂ym
′|m〉. (A5)

Then, we see that

〈m|DB(〈ρ0〉)|m〉 = eBz(∂yεm∂xf0m − ∂xεm∂yf0m) = 0. (A6)
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Next, we consider a diagonal component of P −1DB(〈ρ0〉), i.e., 〈m|P −1DB(〈ρ0〉)|m〉. Here, the matrix P is defined by
P 〈ρ〉 ≡ i

h̄
[H0,〈ρ〉], i.e., P is the precession term that accounts for the time dependence of the density matrix in the absence

of fields and disorder. Recall from Eq. (35) that when the matrix P −1 acts on a driving term D, it simply multiplies D by a
numerical factor:

P −1D = −ih̄
Dmn

k

εm
k − εn

k

. (A7)

Let us take a closer look at the second term in the third line of Eq. (A3). Noticing the fact that ∂a(
∑

m′ |m′〉〈m′|) = 0, we can
replace εm′ by (εm′ − εn′) in Eq. (A2). Then, we can rewrite it as

DH0

Dky

D〈ρ0〉
Dkx

=
∑
m′n′

(εm′ − εn′)f0n′ |m′〉〈∂ym
′|∂xn

′〉〈n′|, (A8)

from which we have

P −1 DH0

Dky

D〈ρ0〉
Dkx

= −ih̄
∑
m′n′

εm′ − εn′

εm′ − εn′
f0n′ |m′〉〈∂ym

′|∂xn
′〉〈n′| = −ih̄

∑
m′n′

f0n′ |m′〉〈∂ym
′|∂xn

′〉〈n′|. (A9)

Then, a diagonal element of this matrix is obtained as 〈m|P −1 DH0
Dky

D〈ρ0〉
Dkx

|m〉 = −ih̄f0m〈∂ym|∂xm〉. Similarly we have

〈m|P −1 D〈ρ0〉
Dkx

DH0
Dky

|m〉 = +ih̄f0m〈∂xm|∂ym〉. In the end, we see that

〈m|P −1DB(〈ρ0〉)|m〉 = (e/h̄)f0mBz�
m
z , (A10)

where �m
z = i〈∂xm|∂ym〉 − i〈∂ym|∂xm〉 is the z component of the Berry curvature of band m. Note that only the terms of the

form of (A8) give rise to nonzero contributions to the diagonal component of P −1DB(〈ρ0〉).

APPENDIX B: GENERAL EXPRESSION FOR Tr [DB(〈SE〉)] IN PARALLEL ELECTRIC AND MAGNETIC FIELDS

In this Appendix, we derive an explicit expression for the diagonal matrix element [DB(〈SE〉)]mm in a general system with
H0 = ∑

m εm|m〉〈m| and 〈ρ0〉 = ∑
m f0m|m〉〈m| with m a band index and f0m a Fermi-Dirac distribution function, where we

have omitted the wave-vector k dependencies in these equations to simplify the notation. For concreteness, we consider the case
of E = (0,0,Ez) and B = (0,0,Bz). An off-diagonal component of the electric driving term (26) reads as

〈n|DE(〈ρ0〉)|n′〉 = eEz

∑
m′

f0m′ 〈n|[|∂zm
′〉〈m′| + |m′〉〈∂zm

′|]|n′〉 = eEz(f0n′ − f0n)〈n|∂zn
′〉 (B1)

with ∂a = ∂/∂ka , from which we obtain the off-diagonal part of the density matrix induced by the electric field

〈SE〉 = (−i)eEz

∑
nn′

f0n′ − f0n

εn − εn′
|n〉〈n|∂zn

′〉〈n′|, (B2)

where n �= n′. On the other hand, the magnetic driving term (27) is written as

DB(〈SE〉) = e

2

{(
DH0

Dk
× B

)
· D〈SE〉

Dk

}
= eBz

2

[{
DH0

Dky

,
D〈SE〉
Dkx

}
−

{
DH0

Dkx

,
D〈SE〉
Dky

}]
. (B3)

Since we are focusing on the Fermi surface response, we consider only the terms proportional to ∂xf0 in D〈SE〉/Dkx :
D〈SE〉
Dkx

= (−i)eEz

∑
nn′

∂xf0n′ − ∂xf0n

εn − εn′
|n〉〈n|∂zn

′〉〈n′|. (B4)

We also have the relevant term
DH0

Dky

=
∑
m′

(εm′ − εn′ )[|∂ym
′〉〈m′| + |m′〉〈∂ym

′|], (B5)

where we have used ∂a(
∑

m′ |m′〉〈m′|) = 0. Note that the terms proportional to ∂yε in DH0/Dky do not contribute to the diagonal
part of DB(〈SE〉). Then, we obtain

〈m|DH0

Dky

D〈SE〉
Dkx

|m〉 = (−i)eEz

∑
nn′

∑
m′

(εm′ − εn′ )
∂xf0n′ − ∂xf0n

εn − εn′
δn′m[δm′n〈m|∂yn〉〈n|∂zm〉 + δmm′ 〈∂ym|n〉〈n|∂zm〉]

= (−i)eEz

∑
n

(∂xf0m − ∂xf0n)〈m|∂yn〉〈n|∂zm〉

= ieEz∂xf0m〈∂ym|∂zm〉 − ieEz

∑
n

∂xf0n〈∂zn|m〉〈m|∂yn〉. (B6)

235134-24



QUANTUM KINETIC THEORY OF THE CHIRAL ANOMALY PHYSICAL REVIEW B 96, 235134 (2017)

Similarly, we have

〈m|D〈SE〉
Dkx

DH0

Dky

|m〉 = −ieEz∂xf0m〈∂zm|∂ym〉 + ieEz

∑
n

∂xf0n〈∂yn|m〉〈m|∂zn〉. (B7)

Finally, we arrive at a general expression for the rate of pumping from the Fermi surface contribution:

∂N

∂t
= Tr[DB(〈SE〉)] = e2EzBz

∑
m,k

[
∂xf0m�m

x + ∂yf0m�m
y

]
, (B8)

where �m
a = εabc i〈∂bm|∂cm〉 is the Berry curvature of band m.

APPENDIX C: EVALUATION OF THE ANOMALOUS HALL CONDUCTIVITY σ II
x y

In this Appendix, we calculate explicitly the anomalous Hall conductivity σ II
xy which results from the extrinsic (i.e., Fermi

surface) contribution, and show that it vanishes when the chemical potential μ lies sufficiently close to the Weyl points. We have
considered the case where an electric field is applied along the y direction as E = Eyey . In this case, the diagonal part of the
density matrix induced by the electric field 〈nE〉 = diag[n+

Ek,n
−
Ek] is given by

n+
Ek = −eτ+ E · ∂ε+

k

∂k

∂f0(ε+
k )

∂ε+
k

= −eτ+Eyv
2
F

k⊥
εk

sin θ δ(εk − μ) and n−
Ek = 0, (C1)

where we have used ε±
k = ±εk = ±

√
v2

F (k2
x + k2

y) + m2 and considered the case of μ > 0. Then, from Eq. (87) we obtain the

imaginary part of [J (〈nE〉)]+−
k as

Im{[J (〈nE〉)]+−
k } = π

nimpU
2
0

2

∑
k′

[sin θ ′ cos θ − cos θ ′ sin θ ]
k′
⊥

εk′
[n+

Ekδ(ε+
k − ε+

k′) − n+
Ek′δ(ε+

k − ε+
k′)]

= π
nimpU

2
0

2
eτ+Eyv

2
F cos θ

∑
k′

sin2 θ ′ k
′
⊥

εk′
δ(εk′ − μ)δ(εk − εk′), (C2)

where we have used that the contribution from n+
Ek vanishes since sin θ ′ = k′

y/k′
⊥ and cos θ ′ = k′

x/k′
⊥ are odd functions. Similarly,

we obtain the real part of [J (〈nE〉)]+−
k as

Re{[J (〈nE〉)]+−
k } = π

nimpU
2
0

2

∑
k′

[
k⊥
εk

m′

εk′
− cos(θ ′ − θ )

m

εk

k′
⊥

εk′

]
[n+

Ekδ(ε+
k − ε+

k′ ) − n+
Ek′δ(ε+

k − ε+
k′)]

= −π
nimpU

2
0

2
eτ+Eyv

2
F sin θ

[
k⊥
εk

δ(εk − μ)
∑

k′

m′

εk′
δ(εk − εk′) + m

εk

∑
k′

sin2 θ ′ k
′
⊥

εk′
δ(εk′ − μ)δ(εk − εk′)

]
.

(C3)

Finally, the extrinsic contribution to the anomalous Hall conductivity σ II
xy is calculated from the definition σ II

xy =
Tr[(−e)vx〈S ′

E〉]/Ey . Using Eqs. (84) and (88), in the case of small chemical potential μ we obtain

σ II
xy = 2e

∑
t=±

∑
k

{
1

2εtk
Re{[J (〈nE〉)]+−

k } sin θ − mt

2ε2
tk

Im{[J (〈nE〉)]+−
k } cos θ

}

= − πe2 nimpU
2
0

2
τ+v2

F

∑
k,k′

[
m−
ε2

k

sin2 θ ′ k
′
⊥

εk′
δ(εk′ − μ) + k⊥

ε2
k

sin2 θ
m′

−
εk′

δ(εk − μ)

]
δ(εk − εk′ )

≈ − πe2 nimpU
2
0

2
τ+v4

F

∫ δ

−δ

d3q

(2π )3

∫ δ

−δ

d3q ′

(2π )3
δ(εq − εq ′)

×
[

k0
b
qz − k0

b
qz

ε2
q

sin2 θ ′ q
′
⊥

εq ′
δ(εq ′ − μ) + q⊥

ε2
q

sin2 θ

k0
b
q ′

z − k0
b
q ′

z

εq ′
δ(εq − μ)

]

= 0, (C4)

where we have omitted the subscript − in ε−k in the third through last lines. Note that the contributions only from t = − survive
since the chemical potential μ lies at ε+

−k. Also, we have used the fact that m−(kz) ≈ ∓v2
F (k0/b)qz around the Weyl nodes, where

q = k − W± = (kx,ky,kz ∓ k0) with k0 = √
b2 − �2/vF and q2 	 1.
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APPENDIX D: EXPLICIT MATRIX FORMS OF THE MAGNETIC DRIVING TERM DB

In this Appendix, we show the explicit matrix forms of the magnetic driving term (27) obtained from arbitrary diagonal and
off-diagonal density matrices. For concreteness, let us consider the case of a two-band model with the two eigenvalues ε± and
the density matrix 〈ρ〉. We define the diagonal and off-diagonal parts of 〈ρ〉 as 〈n〉 and 〈S〉, respectively. The total density matrix
of the system is given by 〈ρ〉 = 〈n〉 + 〈S〉. In the eigenstate basis, we have

H0 =
[
ε+

k − μ 0

0 ε−
k − μ

]
, 〈n〉 ≡

[
n+

k 0

0 n−
k

]
, 〈S〉 ≡

[
0 ak

bk 0

]
, (D1)

where μ is a chemical potential. We immediately get

[Rα,H0] =
[

0 R+−
α (ε−

k − ε+
k )

−R−+
α (ε−

k − ε+
k ) 0

]
, [Rα,〈n〉] =

[
0 R+−

α (n−
k − n+

k )

−R−+
α (n−

k − n+
k ) 0

]
, (D2)

[Rα,〈S〉] =
[ R+−

α bk − R−+
α ak (R++

α − R−−
α )ak

−(R++
α − R−−

α )bk −(R+−
α bk − R−+

α ak)

]
, (D3)

where R = ∑
α=x,y,z Rαeα is the Berry connection vector.

First, let us calculate explicitly the magnetic driving term originating from the diagonal part of the density matrix 〈n〉. For
concreteness, we consider the case of B = (0,0,Bz). Then, the driving term (27) is written as

DB(〈n〉) = 1

2
e

{(
DH0

Dk
× B

)
· D〈n〉

Dk

}
= 1

2
eBz

[{
DH0

Dky

,
D〈n〉
Dkx

}
−

{
DH0

Dkx

,
D〈n〉
Dky

}]
. (D4)

After a straightforward calculation, we obtain

DH0

Dky

D〈n〉
Dkx

=
⎡
⎣ ∂ε+

k
∂ky

−iR+−
y (ε−

k − ε+
k )

iR−+
y (ε−

k − ε+
k ) ∂ε−

k
∂ky

⎤
⎦

⎡
⎣ ∂n+

k
∂kx

−iR+−
x (n−

k − n+
k )

iR−+
x (n−

k − n+
k ) ∂n−

k
∂kx

⎤
⎦

=
⎡
⎣ ∂ε+

k
∂ky

∂n+
k

∂kx
+ R+−

y R−+
x (ε−

k − ε+
k )(n−

k − n+
k ) −i

∂ε+
k

∂ky
R+−

x (n−
k − n+

k ) − i
∂n−

k
∂kx

R+−
y (ε−

k − ε+
k )

i
∂n+

k
∂kx

R−+
y (ε−

k − ε+
k ) + i

∂ε−
k

∂ky
R−+

x (n−
k − n+

k ) ∂ε−
k

∂ky

∂n−
k

∂kx
+ R−+

y R+−
x (ε−

k − ε+
k )(n−

k − n+
k )

⎤
⎦, (D5)

D〈n〉
Dkx

DH0

Dky

=
[

∂n+
k

∂kx
−iR+−

x (n−
k − n+

k )

iR−+
x (n−

k − n+
k ) ∂n−

k
∂kx

]⎡
⎣ ∂ε+

k
∂ky

−iR+−
y (ε−

k − ε+
k )

iR−+
y (ε−

k − ε+
k ) ∂ε−

k
∂ky

⎤
⎦

=
⎡
⎣ ∂ε+

k
∂ky

∂n+
k

∂kx
+ R−+

y R+−
x (ε−

k − ε+
k )(n−

k − n+
k ) −i

∂ε−
k

∂ky
R+−

x (n−
k − n+

k ) − i
∂n+

k
∂kx

R+−
y (ε−

k − ε+
k )

i
∂n−

k
∂kx

R−+
y (ε−

k − ε+
k ) + i

∂ε+
k

∂ky
R−+

x (n−
k − n+

k ) ∂ε−
k

∂ky

∂n−
k

∂kx
+ R+−

y R−+
x (ε−

k − ε+
k )(n−

k − n+
k )

⎤
⎦, (D6)

which results in{
DH0

Dky

,
D〈n〉
Dkx

}
=

⎡
⎣ 2 ∂ε+

k
∂ky

∂n+
k

∂kx
+ g++

xy −iR+−
y (ε−

k − ε+
k ) ∂

∂kx
(n+

k + n−
k ) + g+−

xy

iR−+
y (ε−

k − ε+
k ) ∂

∂kx
(n+

k + n−
k ) + g−+

xy 2 ∂ε−
k

∂ky

∂n−
k

∂kx
+ g−−

xy

⎤
⎦,

{
DH0

Dkx

,
D〈n〉
Dky

}
=

⎡
⎣ 2 ∂ε+

k
∂kx

∂n+
k

∂ky
+ g++

yx −iR+−
x (ε−

k − ε+
k ) ∂

∂ky
(n+

k + n−
k ) + g+−

yx

iR−+
x (ε−

k − ε+
k ) ∂

∂ky
(n+

k + n−
k ) + g−+

yx 2 ∂ε−
k

∂kx

∂n−
k

∂ky
+ g−−

yx

⎤
⎦, (D7)

where

g++
xy = R+−

y R−+
x (ε−

k − ε+
k )(n−

k − n+
k ) + R−+

y R+−
x (ε−

k − ε+
k )(n−

k − n+
k ),

g−−
xy = R−+

y R+−
x (ε−

k − ε+
k )(n−

k − n+
k ) + R+−

y R−+
x (ε−

k − ε+
k )(n−

k − n+
k ),

g+−
xy = −iR+−

x (n−
k − n+

k )
∂

∂ky

(ε+
k + ε−

k ),

g−+
xy = iR−+

x (n−
k − n+

k )
∂

∂ky

(ε+
k + ε−

k ). (D8)

Here, note that g++
xy = g++

yx and g−−
xy = g−−

yx . In the case of n±
k = f0(ε±

k ) where f0(ε±
k ) is the Fermi-Dirac distribution function,

we have ∂ε±
k

∂ky

∂f0(ε±
k )

∂kx
− ∂ε±

k
∂kx

∂f0(ε±
k )

∂ky
= 0. Namely, the magnetic driving term (D4) is purely off diagonal in this case. Furthermore, in
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the case of ε±
k = ±εk, which applies to Weyl semimetals, we have g+− = g−+ = 0. Then, in such a case the magnetic driving

term is simplified to be

DB(〈n〉) = eBz

[
0 −iεk

(
R+−

x
∂

∂ky
− R+−

y
∂

∂kx

)
[f0(ε+

k ) + f0(ε−
k )]

iεk
(
R−+

x
∂

∂ky
− R−+

y
∂

∂kx

)
[f0(ε+

k ) + f0(ε−
k )] 0

]
. (D9)

Next, let us calculate explicitly the magnetic driving term originating from the off-diagonal part of the density matrix 〈S〉. For
concreteness, we consider the case of B = (0,0,Bz). Then, the driving term (27) is written as

DB(〈S〉) = 1

2
e

{(
DH0

Dk
× B

)
· D〈S〉

Dk

}
= 1

2
eBz

[{
DH0

Dky

,
D〈S〉
Dkx

}
−

{
DH0

Dkx

,
D〈S〉
Dky

}]
. (D10)

After a straightforward calculation, we obtain

DH0

Dky

D〈S〉
Dkx

=
⎡
⎣ ∂ε+

k
∂ky

−iR+−
y (ε−

k − ε+
k )

iR−+
y (ε−

k − ε+
k ) ∂ε−

k
∂ky

⎤
⎦[

−iF −i�a + ∂a
∂kx

i�b + ∂b
∂kx

iF

]

=
⎡
⎣−i

∂ε+
k

∂ky
F − iR+−

y (ε−
k − ε+

k )
[
i�b + ∂b

∂kx

] ∂ε+
k

∂ky

[−i�a + ∂a
∂kx

] + R+−
y (ε−

k − ε+
k )F

R−+
y (ε−

k − ε+
k )F + ∂ε−

k
∂ky

[
i�b + ∂b

∂kx

]
iR−+

y (ε−
k − ε+

k )
[−i�a + ∂a

∂kx

] + i
∂ε−

k
∂ky

F

⎤
⎦, (D11)

D〈S〉
Dkx

DH0

Dky

=
[

−iF −i�a + ∂a
∂kx

i�b + ∂b
∂kx

iF

]⎡
⎣ ∂ε+

k
∂ky

−iR+−
y (ε−

k − ε+
k )

iR−+
y (ε−

k − ε+
k ) ∂ε−

k
∂ky

⎤
⎦

=
⎡
⎣−i

∂ε+
k

∂ky
F + iR−+

y (ε−
k − ε+

k )
[ − i�a + ∂a

∂kx

] ∂ε−
k

∂ky

[ − i�a + ∂a
∂kx

] − R+−
y (ε−

k − ε+
k )F

−R−+
y (ε−

k − ε+
k )F + ∂ε+

k
∂ky

[
i�b + ∂b

∂kx

] −iR+−
y (ε−

k − ε+
k )

[
i�b + ∂b

∂kx

] + i
∂ε−

k
∂ky

F

⎤
⎦, (D12)

where � = R++
x − R−−

x and F = (R+−
x b − R−+

x a). In the case of ε±
k = ±εk, which applies to Weyl semimetals, we have

1

2

{
DH0

Dky

,
D〈S〉
Dkx

}
=

[
Ak 0
0 Ak

]
,

1

2

{
DH0

Dkx

,
D〈S〉
Dky

}
=

[
Bk 0
0 Bk

]
(D13)

with

Ak = −i
∂εk

∂ky

(R+−
x bk − R−+

x ak) + iR+−
y εk

[
i(R++

x − R−−
x )bk + ∂bk

∂kx

]
− iR−+

y εk

[
−i(R++

x − R−−
x )ak + ∂ak

∂kx

]
,

Bk = −i
∂εk

∂kx

(R+−
y bk − R−+

y ak) + iR+−
x εk

[
i(R++

y − R−−
y )bk + ∂bk

∂ky

]
− iR−+

x εk

[
−i(R++

y − R−−
y )ak + ∂ak

∂ky

]
. (D14)

Especially in the case of ak = −ick and bk = ick, i.e., 〈S〉k = ckσy , we have

Ak = (R+−
x + R−+

x )
∂εk

∂ky

ck − i(R+−
y − R−+

y )(R++
x − R−−

x )εkck − (R+−
y + R−+

y )εk
∂ck

∂kx

,

Bk = (R+−
y + R−+

y )
∂εk

∂kx

ck − i(R+−
x − R−+

x )(R++
y − R−−

y )εkck − (R+−
x + R−+

x )εk
∂ck

∂ky

. (D15)

Finally, we obtain the magnetic driving term which is purely diagonal:

DB(〈S〉) = 1

2
eBz

[{
DH0

Dky

,
D〈S〉
Dkx

}
−

{
DH0

Dkx

,
D〈S〉
Dky

}]
= eBz

[
Fk 0
0 Fk

]
(D16)

with Fk = Ak − Bk.
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