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Excess charges as a probe of one-dimensional topological crystalline insulating phases
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We show that in conventional one-dimensional insulators excess charges created close to the boundaries of the
system can be expressed in terms of the Berry phases associated with the electronic Bloch wave functions. Using

this correspondence, we uncover a link between excess charges and the topological invariants of the recently
classified one-dimensional topological phases protected by spatial symmetries. Excess charges can be thus used

as a probe of crystalline topologies.
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I. INTRODUCTION

The electronic properties of both insulating and metallic
crystals are largely characterized by the electronic band struc-
ture: It relates the crystal momentum ¢ to the corresponding
energy E,(q), with n the band index. In an insulator the Fermi
level lies in a band gap separating the conduction from the
valence bands, whereas in metals the Fermi level intersects
an energy-momentum curve. Although the bulk band structure
plays an indispensable role in describing optical, magnetic, and
electrical properties of materials, it does not describe all the
relevant electronic properties, even in a simple single-particle
picture. Edge effects are a notable example.

In topological states of matter the presence of metallic edge
states mandated by topology cannot be extracted from the bulk
band structure [1,2]. Surface Dirac cones in three-dimensional
(3D) topological insulators [3—8] and crystalline topological
insulators [9-13], Fermi arcs in 3D Weyl semimetals [14—19],
and chiral and helical edge states in two-dimensional (2D)
insulators [20-24] are all exceptional features escaping the
conventional bulk band structure picture. These are instead
encoded in the bulk Hamiltonian. Being a completely general
phenomenon, however, edge effects inevitably appear also in
metals as well as in insulating states of matter which are
topologically trivial according to the Altland-Zirnbauer classi-
fication [25-28]. In particular, this applies to one-dimensional
(1D) insulators that do not carry a topological invariant in the
absence of particle-hole and chiral symmetry. In these systems,
the presence of edges does not yield additional localized
metallic modes but the different boundary conditions do affect
the wave function.

Put in simple terms, the electronic wave functions of
infinitely large systems with periodic boundary conditions
correspond to modulated plane waves, whereas a system with
edges exhibits standing waves. Close to the edges, this different
nature of the electronic wave functions leads to fluctuations in
the total electronic charge density. In metals, these fluctuations
are known as Friedel oscillations, which decay algebraically
with a wavelength Agieqer = 1/(2qF), gr being the Fermi
momentum [29]. In insulators instead, the charge deviations
die out exponentially fast [30]. Consider for instance a finite
one-dimensional atomic binary chain at half-filling: very close
to the edges the electronic charge per unit cell p; starts
deviating from its bulk value (cf. Fig. 1). This deviation can be
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quantified by defining the total (excess) edge charge O as the
sum of the local charge deviations [31-33] Ap; = p; — Np,
where Ny denotes the number of filled bands (Ng = 1 for a
half-filled binary chain of Fig. 1), i.e.,

1
Q. = lim Zl Ap;. (1)

In the equation above, the thermodynamic limit [ — oo ex-
plicitly accounts for a semi-infinite system, and we introduced
the subindex L to indicate that we refer to the left edge of the
atomic chain. The edge charge, as defined in Eq. (1), can be
numerically calculated up to 1 /M corrections by considering a
finite chain with a large number M of unit cells, and summing
the local charge deviations in half of it.

It turns out, however, that this edge effect can be exactly
quantified using the geometric phase of the individual bulk
electronic Bloch waves. In complete analogy with, e.g.,
two-dimensional time-reversal symmetry-broken topological
insulators, where the number of chiral edge channels is given
as an integral of the Berry curvature [34], the total edge
charge in conventional insulators can be expressed as an
integral of the Berry potential. Such a relation has been shown
in one-dimensional (1D) systems in Ref. [35]. Specifically,
the integral of the Berry potential over the one-dimensional
Brillouin zone (BZ) yields an intra- and intercellular part, with
the latter corresponding exactly to the (excess) edge charge
0O, while the former quantifies the difference between the
electronic contribution to the charge polarization and the edge
charge itself [36—38]. In this paper we will exploit this relation
to show that the excess charge can be formulated in terms
of the topological invariants that classify insulating states in
one dimension protected by spatial symmetries [39-43]. In
particular, for time-reversal symmetric systems this relation
will be uncovered using the notion of partial Berry phases
originally introduced by Fu and Kane [44].

The paper is organized as follows: In Sec. II we provide
the derivation of the relation between the edge charge and
the geometric (partial) Berry phase in 1D insulating systems.
After reviewing the Z, topology of 1D systems protected by
point-group symmetries, we will show in Sec. III that the
edge charge provides a natural probe for these free-fermion
symmetry-protected topological (SPT) phases. Finally, we will
draw our conclusions in Sec. IV.

©2017 American Physical Society


https://doi.org/10.1103/PhysRevB.96.235130

GUIDO VAN MIERT AND CARMINE ORTIX

pi

] ]ﬂ
AT *,
Ap;
] TEem— e S S S S SR S S S
°
091 n -

77 78 79 80

FIG. 1. Charge density per unit cell p; for a binary chain with
open boundary conditions and M = 80: the green rectangle denotes
the preferred unit cell, the red (blue) sites have on-site energies m
(—m), and the hopping parameter is given by ¢, which we assume to
be positive. Here we used m/t = 0.25.

II. EDGE CHARGE OF 1D SYSTEMS

In this section we will demonstrate that the edge charge
defined in Eq. (1) for an atomic chain can be expressed as

=——Z/ dq (W, (@)lid, [ ¥,(@) = — . (2)

2
n<Np

Here |W,(q)) denotes the entire Bloch wave with band index
n and crystal momentum ¢, and y is the Berry phase of the
Bloch wave function |\, (¢)). The inner product is restricted to
a single unit cell. In Appendix A we prove that the Berry phase
is identical to the intercellular part of the Zak phase identified
in Ref. [35]. We stress that Eq. (2) holds using the periodic
gauge condition |¥,,(q)) = |V,,(q + 27)), where we put the
lattice constant a = 1. Throughout this paper we will always
require that this periodicity condition be obeyed.

A. Notation

Before providing the proof of Eq. (2), we introduce our
notation. In the remainder we will limit ourselves to tight-
binding models. This means that a generic Hamiltonian can be

expressed as
3 Bt
H=3 Y 17" flutiin

i,j a.p

where flTa is the creation operator corresponding to an electron
in unit cell i, and the index o, which runs from 1 to N, refers
to the electronic internal degrees of freedom. It may therefore
correspond to a spin, a sublattice, or an orbital index. In the
example of the binary chain introduced in Sec. I, & corresponds
to the sublattice index. The choice of the unit cell is fixed by
the edge under consideration, see for example Fig. 1, where
the green rectangle denotes a preferred unit cell. To exploit the
translation symmetry of the chain, we introduce the Fourier
transformed creation and annihilation operators

M
fla=Y et VM.
=1

Using these operators we can rewrite the Hamiltonian as

ﬁ:Zﬁ(q) Zqu'a “P(9) fa.p-

qeBZ o, qeBZ
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where H*#(q) = > t?’ﬂeiqj. We refer to H(q) as the second-

quantized Hamiltonian, while H(g) is its first quantized
counterpart. We mention that we will use the same notation
for other operators that we will introduce throughout this
paper. We further denote the eigenstates of the first quantized
Hamiltonian with |W,(q)) = [¥,.1(q), ..., V.. n(¢)]", where
n=1,...,N is the band index. The real-space wave function
with crystal momentum ¢ and band index » within a given unit
cell is of course proportional to |\, (g)).

B. Derivation

Having introduced the notation, we now move on to derive
Eq. (2). In Ref. [35] the correspondence between the excess
charge and the intercellular part of the Zak phase has been
found making use of Wanier orbitals. Here we will take instead
a different approach. Our proof consists of two parts, and
relies on adiabatic deformation of an original Hamiltonian
Ho. In the first part, we show that Eq. (2) holds for a simple
tight-binding model described by the Hamiltonian Hy. In the
second part, we imagine that the tight-binding Hamiltonian
H, is adiabatically changed in time. Hence, we assume that
we are provided with a one-parameter family of Hamiltonians
H,, where A denotes the parameter that varies in time. Then,
we show that AQ; := Q;(Ay) — Q1 (X;) can be expressed as
the difference of the Berry phases [y (4;) — y(A7)]/(2m). All
together, this will prove the validity of Eq. (2).

First, let us define Hy by considering an atomic chain where
all electrons are completely localized within a unit cell and
cannot hop to neighboring unit cells, i.e., t;"ﬂ =0 for j # 0.
This ensures that for all momenta Hy(g) = Hy(0). Therefore,
we find that the corresponding Bloch waves are identical:
|\Il,? (@) = |\IJ,? (0)). As aresult, the integrand on the right-hand
side of Eq. (2) vanishes. Since the edge charge for a system of
perfectly localized electrons must identically vanish, we have
proven that Eq. (2) holds for ﬁo.

Now let us turn to A Q. By using Eq. (1), we can express
the derivative of the edge charge as

dQ[A@)] k(t)] \—dp
S

where m is an arbitrarily large integer and we used that far
away from the edges the charge per unit cell is constant. This
allows us to write % = 0 for j > m. By using the continuity
equation, we then find

d QL [)"(I)] total

d[ Jm—>m+l
= _(Jm—>m+l + Jm—>1n+2 + Jm—l—>m+l + et )
3)
Jm—)m—l—l
I 2 {3 Jevssesesssccee m— {_m_plm+ Qef g 2T e[ Jesesss

Jm—1—>m+1 Jm—>m+2

FIG. 2. One-dimensional chain. The green rectangles denote the
unit cells. The current that flows out of the red rectangular box is
given by Ji = Tt + Juciomat + Inomaz + oo

235130-2



EXCESS CHARGES AS A PROBE OF ONE-DIMENSIONAL ...

In the equation above, J!* . is the total current flowing

through a wall put between unit cells m and m + 1 (cf. Fig. 2).
It can be also written as the sum of the currents J;_,; flowing
between two unit cells j and k, with j < m < k. Note that this

J
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current does not capture any charge redistributions within the
unit cell. These internal charge distributions are important for
the charge polarization, but are irrelevant for the edge charge.
The corresponding operator can be written as

Jyty?talm-kl(t) — Z f [V Hx(t)(CI)]fq > )

qeBZ

where the - - -

indicate terms of the form f(j f4 that couple different momentum states, i.e., ¢ # ¢’, and are completely irrelevant

for a translational invariant bulk system. We refer the reader to Appendix B, for a derivation of Eq. (4). Next, we consider the
case in which A varies adiabatically slowly in time. This allows us to use the near-adiabatic approximation [45,46], and express

the wave function at time ¢ as

W, (q.1)) = /@O W (q)) +

£y |WAO (@) WD) |3, %20 (g))

&)

EN(q) — EN(q)

Here |W(¢)) denotes the “snapshot” Bloch wave function corresponding to H,(q), E(q) its instantaneous eigenenergy, and f
is an arbitrary real-valued function. Combining Egs. (3), (4), and (5), we then obtain that the change in edge charge reads

AQL = — Z > / dt / dq({V 0 @)| [V Hio/@1 | WO (@) WAO(9)] 8,9 @))(EL (q) — EX(¢)) ™" + H.e.,

n<NF mstn ¥l

where we have replaced the sum over g by an integral. To
make further progress, we eliminate the sum over m by using

3 (W2 ()| [V, B @)]| W2 (g))
sl Exq) — Ej(q)
+ig(@)| ¥, (@),

where g is an arbitrary real-valued function that does not
contribute to the integral. Hence, we find

AQ, = — Z / dt/dq 22 (q)|0, W, (q)) + Hee.
n<NF
(6)

Using Stokes theorem we can rewrite the right-hand side of
the equation above as a line integral. By further imposing
the periodic gauge for the wave function |V (¢)) = |V} (g +
21)), Eq. (6) assumes the following form:

3|V (q) = | W (@)

AQL =5 Z/dqw (@09 (@)

n<NF
i ) ) 1
T / dg(¥ @]9} @) = 5Ty 0~y Ol

With this, we have shown that the edge charge is indeed
given by Eq. (2). We note that the Berry phase y can be
conveniently expressed in terms of the trace of the non-Abelian
Berry potential A, ,(q) = (Vi (q)]idy|W,(q)), with m,n =
l, ...N F-

14 =/ dq Tr A(q). (7

This expression is invariant under a U(Np) gauge trans-
formation |W¥,,(q)) — U™"(q)|V,(q)), for which Eq. (7) is

(

transformed accordingly to
Tr A(q) — Tr A(q) + i Trid ' (q)d,U(q). )
Since U is a unitary matrix, we find
iTrUT(q)BqU(q) = id, logdetU(q). ©)]

With this, it follows that y — y 4 27j, with j the winding
number W (UA) of the determinant of U/(g), which is given by

i (" d
Wah =5 / dqglogdetmq).

'

Moreover we point out that the edge charges at the two opposite
edges of a one-dimensional chain must compensate each other
modulo 1. Note that this is only true if the chain consists of an
integer number of unit cells. Hence, we can generally write

0=+, (10)
2
where + (—) refers to a right (left) edge. We stress that Eq. (10)
is completely generic, and can be used to calculate the edge
charge for any 1D crystalline insulator.

Let us now take into account the binary chain introduced
above to illustrate this result. First we have to choose a
termination, which fixes the preferred unit cell. The binary
chain can only be terminated in two ways, either with a blue site
or with a red site. For the blue (red) termination the preferred
unit cell is denoted with a solid (dashed) box in the inset of
Fig. 3. The corresponding Fourier transformed Hamiltonians
H™(g) and H""¢(g) are given by

red m t(1 + e7i9)
H (Q) - (t(l +eiq) —m
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FIG. 3. The edge charge Q; for the binary chain. In the inset
we display the two possible terminations. The solid and dashed line
correspond to the Berry phase result for the red and blue termination,
respectively. The red dots denote the values for the edge charge for
the red termination, which are obtained by numerical diagonalization
for a chain of 200 unit cells at half-filling, using Eq. (1).

and

~ - 1 +e7i9)
Hb]ue — m t( .
(C]) <[(1 + eiq) m

At half-filling the left edge charges corresponding to the
blue and red termination are plotted as a function of m/t
in Fig. 3. Note that both vanish in the limit |m/¢| — oo. This
is expected, as it corresponds to the atomic limit in which the
hopping amplitude goes to zero. Moreover, from Fig. 3 we
immediately notice that Q®""¢ = — Q™ This follows from the
fact that the red and blue termination are related by inversion
symmetry. The same symmetry yields a 7 jump in the Berry
phase at m = 0. We will discuss this in more detail in Sec. III.
The red dots in Fig. 3 are obtained by numerically calculating
the left edge charge for a chain with 200 unit cells using Eq. (1).

C. Termination dependence

We next investigate how the edge charges for two different
terminations are related. For this purpose we consider a generic
tight-binding model, see Fig. 4, for a sketch. In addition, we
have depicted solid and dashed unit cells, which we refer to as

unit cells 1 and 2, respectively. Next, let us analyze how the
corresponding creation operators ffa’l and fiJ,[oc,Z are related.
To this end, we partition the unit cell into two parts, called .4
and B, see Fig. 4. We relabel the creation operators in partition
AB)asa),, (b, ) anda,, (bl ,,). Then, it immediately
follows that the creation 0pér’at0rs’ for the two different unit

=100 d sda+l
s Y Y Y Y Y )
[.AQ#ia»*T.AOiJQ)METOAQﬁlu»#T.AQﬁla»*TOAQilu»*TOAQ£JO#%ﬂOAQﬂj
—
A B G- i >d+D

FIG. 4. One-dimensional chain with two different unit cells solid
and dashed. The solid (dashed) ellipses denote the corresponding
labeling of the unit cells. Sites within partition A are completely
black, whereas the sites in partition 3 have a white center.
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FIG. 5. Two spectra for the binary chain with 80 unit cells, with
different edge potentials. In (a) all red sites are at on-site energy +m,
whereas in (b) the first red site is at on-site energy —m. In (b) the
edge potential gives rise to an edge state.

cells are related by

1 _ T 1 A
o1 =142 big1=0b;

By performing a Fourier transformation and writing f;,1 =
(@) b} yand £, = ] ,.a! ;). we find that

qu,l = ffizﬁ(ﬁl),

where the matrix U(q) is given by

i) — 0 1
(q)—<eiq ())'

From this, it follows that the Bloch waves for the two unit cells
are related by 0(q)|\ll,1 (@) = |\Il,f(q)). This, in turns, implies
that y!' = y2 — 2 pp, where pgs denotes the total charge in
the B partition. The knowledge of the Berry phase for one unit
cell and of the charge distribution within that particular unit
cell then allows us to compute the Berry phase for all possible
unit cells. For the binary chain we have explicitly verified
this relation for the edge charges considering the blue and red
terminations.

Finally, let us address the bulk nature of the edge charge.
Since the Berry phases are only well defined up to integer mul-
tiples of 27, we can only predict the fractional part of the edge
charge. We emphasize that this is not a limitation of the Berry
phase approach, but an intrinsic property of the edge charge.
Specifically, the integer part of the edge charge depends on
microscopic details of the termination as well as on the Fermi
level E . For instance, the edge spectrum may host edge states
depending on the details of the edge potential. The occupancy
of these states, which is controlled by Er, changes the edge
charge by £1. To illustrate this, we consider the binary chain
terminated with the red site. If we put the first site at an on-site
energy —m instead of +m, we find that the spectrum exhibits an
in-gap state, see Fig. 5. Equation (1) gives Q; = (—0.18)0.82
if this state is (un)-occupied, which agrees with the result of
Eq. (2) modulo an integer (see Fig. 3). This result corroborates
the fact that only the fractional part of the excess charge is a
bulk quantity, and can be thus expressed as a geometric phase.

D. Time-reversal symmetry

So far we have considered the edge charge without
explicitly invoking time-reversal symmetry. For spin one-half
fermions, Kramer’s theorem guarantees that every state is
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necessarily doubly degenerate. In particular, this applies to
the in-gap edge states. Using the result above, this also
implies that the edge charge can only change by multiples
of 2 upon changing the Fermi level, thereby suggesting that
the relation between excess charges and quantum-mechanical
geometric phases can be refined when explicitly accounting
for time-reversal symmetry.

We start out by considering that time-reversal symmetry
imposes the following constraints:

H(q)=TH(-¢)T™' and 7?=-1,
with 7 the antiunitary time-reversal symmetry operator. This
constraint ensures that the band structure consists of pairs of
bands, which touch at the time-reversal invariant momenta,
see Fig. 6(b). We label the different pairsbyn =1, ...,Ng/2.
Moreover, for a given pair with index n and momentum ¢, we
refer to the two states as [¥/(g)) and |¥!/(g)). Let us for the
moment assume that we have found a smooth time-reversal
symmetric gauge, i.e.,
W (@) = T |9, (—q). D

Where T is the first-quantized antiunitary operator correspond-
ing to 7. Using this decomposition, we can rewrite Eq. (6) as

J

AQL =5 Z / di / dq (3, W, ()19, W, (q)) —

T N2

n<Np/2

where in the final line we have employed Stokes’ theorem
to rewrite the surface integral as a contour integral, and
introduced the partial Berry phase [44] y! which is defined
modulo 2. This confirms that the edge charge in time-reversal
symmetric systems is indeed well-defined modulo 2, and
expressed in terms of the partial Berry phase by

QiZ/

n<Np/2 -

dq(V(@)]id,| ¥} (@) = £y /7.

12)

In the equation above, the + (—) refers again to the right (left)
edge.

Since it is not always an easy task to find a smooth gauge
in time-reversal symmetric systems, we next wish to find a
formulation of Eq. (12), which is invariant under an arbitrary
gauge transformation. First, let us point out that the time-
reversal symmetric gauge Eq. (11) assures that

(W, @]idy | W, (@) = (¥, (=)|id-y | ¥, (=q).

This allows us to express the partial Berry phase as an integral
of the trace of the non-Abelian Berry potential over half the

PHYSICAL REVIEW B 96, 235130 (2017)
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FIG. 6. Spinfull binary chain. (a) Spin-orbit coupling terms are
schematically depicted with arrows. (b) Typical band structure for
a system consisting of spin one-half electrons in the presence of
time-reversal symmetry. Note the Kramer’s degeneracies at ¢ =0
and ¢ = 7. (c¢) The edge charge for the spin-full binary chain. The
solid line corresponds to the partial Berry phase result, whereas the
red dots are obtained by numerical diagonalization for an open chain
of 200 unit cells. Here we have chosen Ajso/f = Arso/t = 1/10.

Iy / dt / dq (8,910 (g[8, 91D (g)) + H.c.
t; —T

n<N /2

= ; / dr/ dq (3, V" ()|8, ¥V (g)) + Hec. = —[y ) =y Ol

(

Brillouin zone
T
y! =f dq Tr A(q). (13)
0

Next, we introduce the sewing matrix Sj(q) whose entries are
given by
[SF@OI™" = (Vu(—)| T W, (q)).

The sewing matrix is antisymmetric at the time-reversal
invariant momenta ¢ = 0,7, and as such can be characterized
by its Pfaffian. As long as Eq. (11) is obeyed, we find that

Pf S7()/ PfS7(0) = 1. (14)

Since the log of 1 is zero, we can freely add Eq. (14) to Eq. (13),
M2
yl = / dq Tr A(g) + i log [Pf S7()/ PESF(0)].  (15)
0

The advantage of this expression is that it is invariant under an
arbitrary U (Nf) gauge transformation. Using Egs. (8) and (9),
we find that under a gauge transformation the first term in the
right-hand side of the equation above changes by

i logdetU(m)/ dettf(0).

235130-5
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The sewing matrices instead transform as
S7(0) = UNO)SHOUO)",
Si() = U) Sp(U()*.

Using the fact that Pf XAXT = Pf Adet X, we find that the
second term in the right-hand side of Eq. (15) changes by

i log[detU!(r)/ dettd'(0)] = —i log [detU()/ detU(0)].

Hence, this proves that the right-hand side of Eq. (15) is gauge
invariant and does not necessitate Eq. (11) to be fulfilled.

To numerically confirm these results, let us consider a
spinful version of the binary chain. Assuming that the orbitals
are real, we find that the time-reversal operator T=1®i0k,
where the identity acts on the orbital and sublattice degrees
of freedom, the second Pauli matrix o, on the spin and K
corresponds to complex conjugation. In addition to the spinless
part, we add both intrinsic and Rashba spin-orbit coupling. The
former manifests itself through complex next-nearest neighbor
hoppings, see Fig. 6(a). The corresponding Hamiltonian reads

2 sin(q) 0
. & o3.
0 —2sin(q)

The Rashba spin-orbit coupling is given instead by

N 0 1 V3 1
H, =i\ R _
Rso(q) =i RSO(_l O) ® < 5 02 + 201>

0 eiiq \/g 1
—iA . —0y — =01 ).
i RSO( ol 0 >®( 7 % 201)

It is easily verified that Hiso(g) = T Hiso(—¢)T and
I:IRso(q) = TﬁRSO(—q)T. The corresponding band structure
is depicted in Fig. 6(b), where we used m/t = 0.25 and
Arso/t = Aso/t = 1/10. Note that apart from the time-
reversal invariant momenta the bands are completely spin
split. The edge charge is calculated using the partial Berry
phase y for various values of m/t, see Fig. 6(c). The red dots
denote the values obtained for the edge charges by numerical
diagonalization for a chain of 200 unit cells at half-filling. And
indeed we find that the partial Berry phase correctly predicts
the edge charges mod 2.

Hiso(q) = Mso(

E. Numerical considerations

To compute a (partial) Berry phase one should find a
smooth gauge. In practice, this requires us to impose a certain
gauge-fixing condition. For example, one might fix the gauge
by requiring that the wave function is strictly real and positive
at a certain site. However, such a gauge-fixing condition
becomes ill-defined if the wave function vanishes at this site.
Fortunately, there is an easier method to calculate (partial)
Berry phases, see for example Ref. [37]. Here we briefly
discuss these methods.

Suppose that |\W,,(¢)) is a smooth gauge. Then we can define
the Ny x N overlap matrix

Sm,n(ql qu) = (‘I’m(611)|‘1’n(612))

PHYSICAL REVIEW B 96, 235130 (2017)

This yields
S(q.q + €)= NP + 0(e?).

Now let g; := j2x /N, with j =0,1,...,N, be a discretiza-
tion of the 1D BZ. If we use that det[S(g,q +€)] =
e I€TTA@I we find

N-1
NILH;O det |:1_[ S(Qi»ql‘+1):| =e .

i=0

Note that the left-hand side of the equation above is invariant
under an arbitrary U(Np) gauge transformation |\WV,,(g;)) —
um’n(qi)|\ljn(Qi))a as IOIlg as the periodicity |\Ijm(q0)> =
|W,,(gn)) is respected. This removes the necessity to find
a smooth gauge. More importantly, it provides a practical
method to calculate the Berry phase.

Similarly, one can calculate the partial Berry phase y'.
Following the same steps as above we find

N-1
. Pf Sf (7'[) il

lim det S(Gi g —— =",

N € [UO @-q “)] PISF0) ¢

where we introduced the mesh §; = jm/N. The left-hand side
of the equation above provides a practical method to calculate
the partial Berry phase.

III. EDGE CHARGE AS A PROBE OF BAND
STRUCTURE TOPOLOGY

In this section we will discuss the Z, classification of
1D crystalline insulators that are invariant under spatial
symmetries interchanging the left and right edges of a chain
[47-51], and show that the edge charge can be used to probe
the corresponding crystalline topological invariants. We will
restrict our analysis to inversion, twofold rotation, and mirror
symmetry, and, as before, we will first not explicitly invoke
the fermionic time-reversal symmetry.

When one considers a point-group symmetry in a crystal,
one should always specify the symmetry center. In particular,
an inversion-symmetric one-dimensional chain exhibits two
points of inversion per unit cell, to which we refer to as A and
B, see Fig. 7. Without loss of generality, we consider the case
in which B sits to the right of A within the unit cell. Now let us
consider how the canonical creation operators f;a transform
under inversion. To be as general as possible, we allow for a
noninversion-symmetric unit cell. We partition this unit cell
into two parts, called A and B, centered around the inversion
points A and B, respectively, see Fig. 7. We denote the creation
operators corresponding to orbitals and spin in part A (B)

with a/, (b] ), such that f' = (af |, ... a4}, .b] b!

L S TRERR) i,ng)'

| .H[;.vﬂ TP
A

FIG. 7. Generic inversion-symmetric crystal. The symmetry cen-
ters are denoted with A and B .
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Next, we consider how the electrons transform under inversion.
Inspection of Fig. 7 shows that under inversion through A (B)
the electrons in partition .4 within unit cell i transform to
partition A in unit cell —i (—i 4 1). Hence, if I4 (I) denotes
the corresponding inversion operator, then we find

IAAa}L’aIA;l = aii’ﬂfﬁ’a

and

R e B 7B,
Ipa; 1g —a_l._H’ﬁIA .

Similarly, we find that the electrons in partition B and unit cell
i are sent to partition I3 within the (—i — 1)th (—ith) unit cell,
upon inverting through point A (B). Hence, we find

fabl i =l

=B,
lfl,ﬂIB

and

Igbl, 05" =", ;15
Next we apply a Fourier transformation, and combine the
above equations by writing [ f) ./ = fiq,ﬂif‘“(q), with

- I4 0
Ia(g) = (O e"“’f>'
B

Similarly, we find IABfJ,O,IAEI = fiq,ﬁig’a(q), with

~ eiin 0
Ip(q) = ( 0 I~>'
B

Since inversion symmetry squares to one, we find
I @)a(—q) =1 = Ip(q)p(—q). (16)

In addition, we like to point out that I, (q)=eM I (g)-Hence,
all properties of I(g) can be obtained from 74(g). Therefore
we limit ourselves in the following to I4(q).

The fact that the Hamiltonian is inversion symmetric
ensures that the Fourier transformed Hamiltonians H (@)
H(—q) are related by

ILWH@I = H(—q),
which reduces to
IW(H @I (q) = H(—q), (17)

using the first-quantized Hamiltonians. Armed with this
structure, one can consider the sewing matrix Sy, (¢g), given
by

[S7,@]"" = (W= 4(@)|Wa(q)). (18)

Here Eq. (17) guarantees that Sy, (¢g) is a unitary matrix.
Together with the fact that Sj (g) is 27 periodic, we can
consider, assuming a smooth gauge for the Bloch wave
functions, the winding number W (S 7,) of the determinant of
the sewing matrix

b4

i d
W(SiA) = Z/_ dqalogdetSiA(q) eZ. (19)

Naively, one might believe that W(Sy,) yields a Z clas-
sification of 1D inversion-symmetric insulators. However,
this winding number is not gauge invariant. Under a

PHYSICAL REVIEW B 96, 235130 (2017)

gauge transformation |, (q)) — U™"(q)|V,.(q)), we find
that det Sy, (g) — detU'(—q) detSiA(q)detI;{(q). It follows
that W(S;,) — W(S;,) + 2, where j is the winding number
of the determinant of /(¢ ). Hence, the winding number W(l4)
represents a Z, invariant, instead of a Z invariant. To simplify
this expression, we use that Eq. (16) implies

d

— [ det Sz, (¢) det S, (—q)] = 0.

dq

Hence, the integrand in Eq. (19) is even. As a result, we can
write

w(S;,) = :T—[logdetSfA(n) — log det Sz, (0)].

This drastically simplifies the calculation of the Z, invariant,
since it frees us from the task of finding a smooth gauge over
the full Brillouin zone. To define a Z, invariant that takes
values in the set {—1,1}, we introduce

£, = oW
= det 53, (7r)/ det Sy, (0)
= (=DM det Sj, (r)/ det S;,(0)
= (=)Nrg, .

In the third line we used that det Sy, () = det —Sj, (7). We
stress that these invariants do not depend in any way on the
choice of unit cell or origin, and can therefore be considered
as proper bulk invariants.

We can repeat the same analysis for mirror- and rotation-
symmetric insulators. The difference compared to inversion
symmetry is that M3 = M3 = (=1)* = C3 , = €2 ;. Here
M, (C‘zq ) and My (C’z, p) are the mirror- (rotation)-symmetry
operators corresponding to mirror planes (rotation axes) A and
B, and s is the total spin. However, this does not affect any of
the above derivations. Hence, for mirror-symmetric systems
the winding number of the determinant of the sewing matrix
Sjz, yields a Z classification. We characterize the parity of
the winding number using the invariants &), and &j,, which
are given by

£y, = e iTW(H)
= det Sy, ()/ det Sz, (0)
= (=DM det Sy, ()/ det Sz, (0)
= (=) &y,

Similarly, we define the invariant &c,, corresponding to
rotation symmetry. With this, we have seen that the sewing
matrices play a key role within the topological classification
of inversion-, rotation-, or mirror-symmetric crystalline insu-
lators.

Let us now explore how the edge charge is related to these
invariants. Considering inversion-symmetric systems and from
the definition of the sewing matrices, it follows that

m,n

[Wn(=)) = [S}, @] 1a(@)|¥4(9)).-

235130-7
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Therefore, we obtain

TrA(—q) = Y _(Wa(—q)lid_q|¥u(—q))

n

PHYSICAL REVIEW B 96, 235130 (2017)

= = > (U@ @[S, @] i8,[S} @] Ta(@)| (@)

l,m,n

Next, we note that

noin = "
q)i q) = .
4 1 A O ]In[anB

As a result, we find

Tr A(=q) = —Tr A(q) — Tr [S7,(@)i9,S] (@)] = ps(@)

d
= —TrA(q) —i 7 log [det S, (@] = po(@).
(20)

Here pp(q) is the charge contained in partition B. After
integrating over all momenta, we finally obtain

y =ilog (51A) — TPB.

Analogous expressions hold for rotation- and mirror-
symmetric insulators. Hence, in these systems we can express
the edge charge as the sum of a topological and a nontopo-
logical part. Since the latter can be measured independently in
the bulk, we conclude that the edge charge can indeed probe
the topological Z, invariant discussed above. Moreover, we
stress that pp depends continuously on external parameters,
and therefore any discontinuity in the edge charge can be only
ascribed to a change in the band structure topology. Finally, we
note that the edge charge can assume any value, except when
the preferred unit cell is inversion symmetric. Then, B = &,
which implies that the excess charge is quantized and given by
Q =ilog(x,)/2n, with X = I,M, or C;.

Let us now elucidate these results by considering two
examples. First, we study the binary chain. Here we choose
the unit cell with the red site at on-site energy +m. Note that
both the red and blue sites are inversion centers. We refer to
the inversion center corresponding to the red sites as A. For
this choice of unit cell, the Hamiltonian is given by

Fo) — m tH(1 4 e79)
D=4y —m |

Moreover, the inversion operator corresponding to the inver-
sion center A reads

- 1 0
Ia(q) = 0 eit)’

Hence, at half-filling we find that det Sy (0)=1, since the in-
version operator is the identity matrix at g = 0. Forg = m, we
have 74(0) = o3. Therefore, we find det Si () = —sgn(m/1).
Combining these results, we have that §;, = —sgn(m/t), and

= 3 (W (@)i8 W) — Tr [S7,@)i 8y S} @] — D (@)l T} (9)i g T (@) W ().

n

(
therefore the edge charge Q is given by

1/2+ pp/2 ifsgn(m/t) > 0,
N oB/2 if sgn(m/t) < 0.

This result implies that the jump in the edge charge encoun-
tered in Fig. 3 follows from a change in the topology of the
band structure.

Next, let us consider another well known toy model that
is inversion symmetric: the Su-Schrieffer-Heeger (SSH) chain
[52], depicted in Fig. 8. This chain consists of alternating solid
and dashed bonds. These bonds are centers of inversion, which
is in sharp contrast with the binary chain where the sites are
inversion centers. We choose a unit cell with the dashed bond
as its center. Since, the unit cell itself is inversion symmetric we
find that B = &. Hence, for this chain we expect a quantized
edge charge. We refer to the solid bond as A, and the dashed
bond joining the unit cells as bond B. The corresponding
hopping parameters are denoted with 74 and fg. Using this
notation, the Hamiltonian is given by

) 0 th +tge 4
V= tA+[B€iq 0 '

Under inversion, we find that the left and right sites are
interchanged. Hence, the inversion operator is given by

i _ 0 1
A(CI)—<1 O>'

Note that the inversion operator is momentum independent,
because all electrons belong to partition .A. At half-filling we
find that &;, = sgn(l — tlzg / ti). Here we have used that the
lowest energy state, assuming f4 to be a positive energy, at
g = Ois givenby [1, — sgn(1 + 13/14)]" /~/2 and at ¢ = 7 by
[1, —sgn(1 — t5/14)]" /+/2. Hence, the edge charge is given
by

0— 0 ifsgn(l — tﬁ,/ti) > 0,
|12 ifsgn(1-13/13) <o.

ta

Y\
tp

FIG. 8. Sketch of the SSH chain, the inter- (intra) unit cell
hopping is denoted with a dashed (solid) bond.
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We have numerically confirmed this result by computing the
edge charge in a finite chain consisting of 100 unit cells, with
IA/Z‘B =2 (%-IA = 1) and tA/lB = 1/2 (E[A =—1).

Having established the generic relation between the excess
charges and Z, topological crystalline invariants, let us now
consider the specific case of spin one-half systems with
time-reversal symmetry. First, we show that time-reversal
symmetry implies that the topological invariants &;,, éc,,,
and &y, introduced above are guaranteed to be trivial. When
considering inversion-symmetric systems we can indeed write

Nr
=[]¢@.
j=1

where ¢;(g) denotes the eigenvalues of the sewing matrix
and [W;(0)) is the corresponding eigenstate. Then we find
IA(O)T|\IJ ) =c* (0)T|\IJ (0)), and Kramer’s theorem guar-
antees that these states are orthogonal. Hence, it follows that
det S7,(0) = 1. We can repeat the same argument for g = 7.
Therefore, we find &§;, =1 =§&;,. This argument can be
repeated for systems with twofold rotation or mirror symmetry.

Fortunately, this also offers new possibilities. Due to the
m periodicity of the determinant, for inversion-symmetric
crystals we might consider the winding number W}A/ 2ofdetS A
over half of the Brillouin zone, i.e., from O to 7,

Nr
[ [ @ 1a@)1¥;(9))

j=1

det S7,(q) =

i [T d
W(S;) = 5/0 qulog[detSiA(q)] eZ. (21)
When considering an arbitrary gauge transformation, however,
this winding number changes by an arbitrary integer. As
such W'/2(S;,) has no meaning at all. However, if one
imposes the time-reversal symmetric gauge, Eq. (11), then
this winding number can only change by integer multiples
of 2. To see this, let us suppose that we have found such a
smooth time-reversal symmetric gauge. Then under a gauge
transformation |¥%(q)) — L[;’f;s”(q)hllf (¢)). To respect the
time-reversal symmetry constraint, one requires

U(@) == aylys' (—q)es p. (22)
y.,8

Where €,3 = —€go and €;;; =1. This implies that

detU'(q) = det —U(—q) = detU(—q). Hence, under
this gauge transformation we have detS; (¢) —
det 7, (¢)[det U (q)]z. Moreover, Eq. (22) ensures that

detU(0) = detU(r) = 1. Combining these relations, we
find W~1/2 — W1/2—|—2], with j the winding number of
the determmant of U over half of the Brillouin zone [53].
Analogously, to &;, and &,,, we can then finally introduce the
invariants x;, and xy,:

urWl/2

X1, = ¢
_ i
= (="
These considerations also allow us to define the Z, topolog-
ical crystalline invariants for rotation- and mirror-symmetric

systems. However, there is a fundamental difference between
these symmetries. Namely, for rotation- and mirror-symmetric
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systems we find (RT)? = (MT)? = 1, whereas for inversion-
symmetric systems we find (/7)> = —1. As a consequence,
in inversion-symmetric and time-reversal symmetric systems
the bands are twofold degenerate, whereas the band struc-
ture of mirror-symmetric and rotation-symmetric crystals
generally exhibits degeneracies only at the time-reversal
symmetric momenta 0 and w. Kramer’s theorem therefore
ensures that in inversion-symmetric insulators the sewing
matrix is block diagonal, i.e., (W!/(g)|Ia(—=)|¥ (q)) =
0, provided the time-reversal constraint Eq. (11) is ful-
filled. Since the determinant of a block-diagonal matrix is
the product of the determinants of the individual blocks,
we have det S; (q) = det S[{A (q) det S’ (g), which when us-

ing that (W) (=) Ta(|¥! (q)) = (\If (—IA@IV ] (@),
yields det S7,(q) = det S7 (q)°. Using Eq. (21) we now find

W) = ¢ [ da g on s @)

= L[logdetS! () — logdet L. (0)],
7-[ A A

which finally allows to express the Z, topological invariant as
1, = det S} (7)/ det S} (0).

As a result, the crystalline topological invariant for inversion-
symmetric atomic chains can be computed using only the
knowledge of the eigenstates at ¢ =0 and ¢ = w. This is
different from rotation- and mirror-symmetric insulators where
one has to find a smooth gauge in the full BZ.

Let us now prove that the crystalline topological invariants
X1, and x;, can be related to the partial Berry phase, which
encodes the excess charge in time-reversal symmetric systems.
Let us consider the time-reversal symmetric gauge, Eq. (11).
This ensures that A(g) = A(—gq). If we combine this with
Eq. (20) we then find

Tr A(g) = — Tr A(g) — L log [ det ST (@)] — p5(q).

dg 4
which, when integrated from 0 to m yields the following

relation between the partial Berry phase and the Z, topological
invariants:

y! = —ilog(xs,) — 7ps/2-

We now apply this result to a toy model that can be seen
as a spinful SSH atomic chain. In the absence of spin-orbit
coupling the Hamiltonian is given by

(@) 0 ty +tge 4 o
= ) 00,
o ta + tpe'd 0 0

where oy is the identity operator acting in spin space. Let
us in addition assume that the electrons are described by p,
orbitals pointing out of the plane. We then find that the intrinsic
spin-orbit coupling induces complex next-nearest neighbor
hoppings, see Fig. 9. The corresponding Fourier transformed
Hamiltonian term reads

2sin(q) 0

H = )
1so(q) ISO( 0 5 sin(q)) ® 03
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Z)\Rso fUQ + U1>

(™

1ARSO <\/_02 - 501>

+ iAs003

N e

—iAI1S003

FIG. 9. Spinfull SSH chain, with C, symmetry. Spin-orbit cou-
pling terms are schematically depicted with arrows.

Consequently, the full Hamiltonian reads H(q) = Hoy(g) +
Hiso(g). Since inversion symmetry acts trivially in spin space,
we find

i B 0 1
A(Q)—(] 0>®00~

Using that Hs0(0) = Hiso(r) = 0, we find that the invariants
for the spinful and spinless SSH chain are identical, i.e.,
X1, = sgn(l — tlzg / ti). Hence, the edge charge is given by
Q =ilog[sgn(l — t3/t3)]/7. We have numerically verified
this result by computing the edge charge of atomic chains of
100 unit cells for the cases r4 = 2tp = 10 ;g0 and tp = 2f4 =
10A150.

We can also analyze the situation in which the SSH chain
lies on a substrate that breaks the out-of-plane reflection
symmetry. This leaves us with a twofold rotational symmetry
around A and B. The corresponding rotation operator is given
by

) 0 1y
Cralg) = 1 0 ®ios,

where we used that a twofold rotation around the Z axis can
be represented as i o in spin space. This rotation symmetry is
preserved when we include a Rashba spin-orbit coupling due
to the broken mirror symmetry in the Z direction. The Rashba
spin-orbit coupling indeed yields nearest-neighbor hoppings
accompanied by spin flips (see Fig. 9) with an Hamiltonian

term:
7 0 1 NI
Hgrso(q) = Arsoa (_1 0) ® <702 4 501)
0 e N
A ) - — ,
+ ArsoB (—e’q 0 ) ® ( 5 02 + 201>

such that the full Hamiltonian is given by Hy(g) +
Hlso(q) + HRso(q) Now it is easily verified that
C2 A(q)H(q)Cz a(g)” ! FI(—q). Hence, we can then com-
pute the Z, invariant xc,,. Here we find that for 14 =
2tp = 10A1s0 = 5Arso,A = SArsop a trivial invariant xc,, =
1, whereas for 13 = 2t4 = 10750 = SARSO,A S SARSO,B we
find xc,, = —1. Indeed we find that in the former case the
edge charge is trivial, whereas in the latter case a full electron
is missing.

Finally, let us consider the spinful binary chain discussed
in Sec. IID. Inspection of Fig. 6(a) reveals that this system
is mirror symmetric. The corresponding symmetry operator is

PHYSICAL REVIEW B 96, 235130 (2017)

O .
i ®ioy.

Next, we calculate the Zj-invariant . At half-filling
we find (—1)m/t = 10)\.]50 = 10)‘RSO = 1, XMy = (+1) — 1.
Since the bulk band gap only closes for m = 0, we find that
the edge charge is given by

|1+ ps/2
| es/2

Hence, the discontinuity in Fig. 6(c) can be attributed to a
change in the crystalline topology.

given by

N 1
Ma(q) = (0

if sgn(m/t) > 0,
if sgn(m/t) < 0.

IV. CONCLUSIONS

To wrap up, we have shown that the excess charge in
one-dimensional insulators, which do not carry a topological
invariant according to the Altland-Zirnbauer classification, can
be expressed in terms of the Berry phases of the bulk electronic
Bloch waves. In presence of time-reversal symmetry, this
relation can be conveniently expressed using the notion of
the partial Berry phases. For atomic chains possessing spatial
symmetries interchanging the chain ends, excess charges
always contain a “topological” contribution directly related to
the Z, invariants that can be associated with spatial-symmetric
one-dimensional systems. Considering that one-dimensional
topological crystalline insulating phases cannot be character-
ized by the presence of protected end modes—these can be
only stabilized by an additional nonspatial symmetry—one can
conclude that the bulk-boundary correspondence can be only
formulated in terms of excess charges and that the latter can be
then be used to probe one-dimensional crystalline topologies.
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APPENDIX A: RELATION BETWEEN THE Zak
PHASE AND THE BERRY PHASE

Here we briefly show that the Berry phase as defined in
Egq. (2) corresponds to the intercellular part of the Zak phase
)/Z“;‘fr The Zak phase yz, is expressed in terms of the cell-

periodic part of the Bloch wave function, which is given by

Uno(q) = €W, 4(q). (A1)

Here r, denotes the position of the «th orbital (spin, sublattice)
within the unit cell with respect to some reference point. With
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this we find
y= 2 f dqu, o(q)e™ i 9,e" " uy o (q)

n<Np,a

> / dqu} ,(q)idgun a(q)

n<Np,a

-y /f dqpn.o(q)re

n<Np,a

intra __, _inter

= Yzak — Yzak = Vzak - (A2)

APPENDIX B: CURRENT OPERATOR
Starting point is the Heisenberg equation of motion:
ah
dt

Let us work out the commutator on the right-hand side.

Keeping only terms in the Hamiltonian that contain fiT or
fi» we find

=i[H,p]. (B1)

[H.pi]= Z t?’ﬂfi]jafi-ﬁ-jqﬂilai

Ji. B

B2.1

+ | Y P hesi | (B
J#0:. B

B2.2

Next, we work out both terms on the right-hand side by making
use of the product rule:

B21) = > 1P iy o] + ULy i1 fri )
Jie B
= D P u8i0 finis = flafieie)
Jj i,a%j,0Ji+).B iaJitj.B
Jep

DR (B3)
J#0, B
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and
B22)= Y P i)+ U pi) frp)
J#0a, 8
= > T i (B4)
J#0, B

Combining Egs. (B1), (B3), and (B4), we find

dlai . o, B 1 N
=iy Uit = flafivisl = =) Jimiv.
j

VEN:
(BS)
Here we have defined the current operator as
Jsigy =i Y 5P fl fivp + He (B6)

a.p

Next, we express this operator in terms of the Fourier
transformed creation and annihilation operators

Jsivy =i Y Y 1Pl f s+ He o (BT)

qeBZ a.p

The dots correspond to term f,j fo With ¢ # q'. Now we turn
to Eq. (4), and write using the above result

j total

m—m-+1 m—sm+1 + In—15m+1 + Imomi2 + -+

=i Yy Y > e fl fyp+He

geBZ a,f j>0

=iy Y > ittt flufus (BS)

geBZ a.p j

The third equality follows from the Hermiticity of the Hamil-
tonian, i.e., t;”ﬂ =’ ’;1)*. We recognize that the summand is
the derivative of the Hamiltonian H(q), i.e.,

Arzoilm-i—l = Z fj’avqﬁa’ﬁ(q)fq,ﬂ' (B9)
qeBZ
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arbitrary gauge transformation it can only change by an integer
multiple of 2.

235130-12


https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1103/PhysRevLett.119.076801
https://doi.org/10.1103/PhysRevLett.119.076801
https://doi.org/10.1103/PhysRevLett.119.076801
https://doi.org/10.1103/PhysRevLett.119.076801
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1080/14786440208561086
https://doi.org/10.1080/14786440208561086
https://doi.org/10.1080/14786440208561086
https://doi.org/10.1080/14786440208561086
https://doi.org/10.1103/PhysRevB.73.085108
https://doi.org/10.1103/PhysRevB.73.085108
https://doi.org/10.1103/PhysRevB.73.085108
https://doi.org/10.1103/PhysRevB.73.085108
https://doi.org/10.1103/PhysRevB.94.075416
https://doi.org/10.1103/PhysRevB.94.075416
https://doi.org/10.1103/PhysRevB.94.075416
https://doi.org/10.1103/PhysRevB.94.075416
https://doi.org/10.1103/PhysRevLett.108.136803
https://doi.org/10.1103/PhysRevLett.108.136803
https://doi.org/10.1103/PhysRevLett.108.136803
https://doi.org/10.1103/PhysRevLett.108.136803
https://doi.org/10.1103/PhysRevB.93.245308
https://doi.org/10.1103/PhysRevB.93.245308
https://doi.org/10.1103/PhysRevB.93.245308
https://doi.org/10.1103/PhysRevB.93.245308
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevB.95.035421
https://doi.org/10.1103/PhysRevB.95.035421
https://doi.org/10.1103/PhysRevB.95.035421
https://doi.org/10.1103/PhysRevB.95.035421
https://doi.org/10.1103/PhysRevB.48.4442
https://doi.org/10.1103/PhysRevB.48.4442
https://doi.org/10.1103/PhysRevB.48.4442
https://doi.org/10.1103/PhysRevB.48.4442
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevB.83.245132
https://doi.org/10.1103/PhysRevB.83.245132
https://doi.org/10.1103/PhysRevB.83.245132
https://doi.org/10.1103/PhysRevB.83.245132
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevLett.115.216805
https://doi.org/10.1103/PhysRevLett.115.216805
https://doi.org/10.1103/PhysRevLett.115.216805
https://doi.org/10.1103/PhysRevLett.115.216805
https://doi.org/10.1103/PhysRevB.94.165164
https://doi.org/10.1103/PhysRevB.94.165164
https://doi.org/10.1103/PhysRevB.94.165164
https://doi.org/10.1103/PhysRevB.94.165164
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevA.78.052508
https://doi.org/10.1103/PhysRevA.78.052508
https://doi.org/10.1103/PhysRevA.78.052508
https://doi.org/10.1103/PhysRevA.78.052508
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1103/PhysRevB.32.2218
https://doi.org/10.1103/PhysRevB.32.2218
https://doi.org/10.1103/PhysRevB.32.2218
https://doi.org/10.1103/PhysRevB.32.2218
https://doi.org/10.1103/PhysRevB.33.5368
https://doi.org/10.1103/PhysRevB.33.5368
https://doi.org/10.1103/PhysRevB.33.5368
https://doi.org/10.1103/PhysRevB.33.5368
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.89.155114
https://doi.org/10.1103/PhysRevB.89.155114
https://doi.org/10.1103/PhysRevB.89.155114
https://doi.org/10.1103/PhysRevB.89.155114
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698



