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We consider a possibility of the topological Kosterlitz-Thouless (KT) transition in the two-dimensional
Pokrovsky-Talapov model with a finite misfit parameter and discuss its relevance to the theory of critical
behavior in thin films of monoaxial chiral helimagnets. For this purpose, the initial model is reformulated in
terms of the two-dimensional relativistic model of massive Thirring fermions and the Wetterich’s functional
renormalization-group (RG) approach is employed. In the new formalism, the misfit parameter corresponds to
an effective gauge field that can be included in the RG scheme on an equal footing with the other parameters
of the theory. Our main result is that the presence of the misfit parameter, which may be attributed to the
Dzyaloshinskii-Moriya interaction in the magnetic system, rules out the KT transition. To support this finding,
we provide an additional intuitive explanation of the KT scenario breakdown by using the mapping onto the
Coulomb gas model. In the framework of the model, the misfit parameter has a meaning of an effective in-plane
electric field that prevents a formation of bound vortex-antivortex pairs.
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I. INTRODUCTION

In noncentrosymmetric magnetic materials, the intrinsic
spin-orbit coupling may appear on a macroscopic level in
the form of the asymmetric Dzyaloshinskii-Moryia interaction
(DMI) that can stabilize topologically nontrivial magnetic
phases. In some chiral magnets, such as, for example, MnSi
[1–3], Fe1−xCoxSi [4], FeGe [5,6], and Cu2OSeO3 [7] be-
longing to the cubic space group P213 and CrNb3S6 with
the hexagonal space group P6322 [8–11], the ground state
in the form of a long-periodic helical magnetic modulation
appears due to competition between the ferromagnetic ex-
change coupling and the DMI. By applying a magnetic field
perpendicular to the helical axis in the compound CrNb3S6,
the helix transforms into the soliton lattice state where a
periodic array of helical twists within the same plane is
formed. The evolution of the soliton lattice state in bulk
crystals is well consistent with the effective one-dimensional
(1D) model for classical spins addressed by Dzyaloshin-
skii in his seminal papers [12–14]. Recently, it has been
demonstrated that thin films of CrNb3S6 exhibit essentially
different intrinsic properties in comparison with bulk sam-
ples [15–17]. These experimental findings strongly motivate
us to explore the nature of the soliton lattice phase in two
dimensions (2D).

Being a particular case of the Frank and Van der Merwe
(FVdM) theory [18], the 1D version of the Dzyaloshinskii’s
model cannot be applied to two-dimensional (2D) solids at
nonzero temperatures because of the roughness transition [19].
However, the basic concept of FVdM theory, namely, domain
walls formed by kinks, may be extended to 2D systems.
The classical 2D sine-Gordon model with a misfit parameter
giving a periodic modulation along a fixed direction is a good
candidate to describe the situation at finite temperatures. This

approach was developed by Pokrovsky and Talapov [20,21]
being based on the assumption that the walls are roughly
parallel and cross the whole sample from the top to the bottom
neither crossing each other nor coming backwards. At T = 0,
the results of the Pokrovsky-Talapov (PT) model are identical
to the Dzyaloshinskii theory [22–24]. However, this model
demonstrates a quite different behavior at finite temperatures
predicting an existence of the commensurate-incommensurate
(C-IC) transition [19]. The key features of the C-IC transition
are conditioned by dynamics of the domain walls which mean-
der entropically and interact with each other [25]. The model
has been widely discussed in the context of the C-IC transition
of adsorbates on a periodic potential [26] and was applied to a
variety of commensurate-incommensurate systems, including,
for instance, the ANNNI model [27], Josephson junctions
in high-temperature superconductors [28], bilayer quantum-
Hall junctions with an in-plane field [29], superconducting
films [30], cold atoms [31], and fermionic atoms [32] in an
optical lattice and graphene [33].

Phase transitions in the two-dimensional PT model have
already been extensively discussed in the literature. In a low-
temperature regime, where the walls destabilize the commen-
surate phase, the PT model can be exactly transformed into the
1D free spinless fermion problem and exactly solved [34,35].
Nonetheless, a detailed picture of phase transitions in this
system at finite temperatures was proven to be quite nontrivial.
The C-IC transition in the PT model was discussed in the
context of the Wilsonian-type renormalization-group (RG)
analysis, which was found to be dependent on how precisely
RG procedure is set up [36,37]. It was established that the
C-IC phase transition described by this formalism belongs
to the Kosterlitz-Thouless universality class [38–40] with a
peculiar feature: the RG flow changes when a lattice scaling
parameter reaches a soliton separation. This corresponds to a
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succession of phase transitions above the critical temperature
for the C phase and gives rise to the floating modulated phase
(the “floating devil’s staircase”), which is characterized by a
power-law decay of correlation functions [41].

At higher temperatures, a transition into the fluid phase
occurs when the domain wall pattern disappears, and the
transition between the floating and the fluid phases is triggered
by the vortices [42–45]. This transition can be captured
as the vortex separation in the XY model at some critical
temperature. Thus, the overall phase diagram, where the
floating phase separates the commensurate phase from the
fluid phase, is determined by the stability of two types of
relevant topological excitations, domain walls and vortices.
The former launch the C-IC transition, the latter trigger the
transition between the floating and the fluid phases [41].

This hierarchical picture of phase transitions succeeded
in the physics of the surface adsorbates [41]. However, in
our opinion, application of this scheme to the temperature
evolution of the soliton lattice order in thin films of the chiral
helimagnets should be taken with care. In the adsorbates, one
deals with an interface interaction between two subsystems,
where the misfit parameter of the atomic arrangement is
conditioned by an extraneous potential of the substrate. In
contrast, in the chiral magnets, the intrinsic antisymmetric
exchange acts along with the symmetric counterpart that
can make the XY model inappropriate for the paramagnetic
regime, since it ignores the effects of the DMI. Thus, the
PT model with the misfit parameter being attributed to the
antisymmetric exchange arises as a plausible candidate for
description of the fluid phase in the 2D chiral helimagnets.

The primary aim of this paper is to find out whether the
KT transition due to the vortices takes place in the situation
when the DMI is fully taken into account. For this purpose,
we map the PT model to the 2D massive Thirring (MT)
fermion model [46,47]. Our analysis is closely related to the
investigation of renormalizability of the 3D Thirring model
by means of the functional renormalization group formulated
in terms of the Wetterich equation [48]. The procedure gives
flow equations for the mass of the two-dimensional Thirring
model and the fictitious gauge field experienced by relativistic
fermions, which may be matched with the magnetic field
and the strength of the DM interaction, respectively, in the
context of the chiral helimagnets. The RG transformations
are complemented by a flow equation for the strength of
the current-current coupling which can be compared with an
in-plane anisotropy of exchange interactions.

In order to provide the readers with an intuitive picture,
we supplement the rigorous functional RG analysis by a more
physical approach based on a duality mapping between vor-
tices and electrostatics that was actively employed in the theory
of the KT transition [49]. We derive the partition function of
point charges, corresponding to the given PT model of the
chiral helimagnet, and demonstrate that the DM interaction
brings forth an effective electric field directed perpendicularly
to the chiral axis. A natural consequence of this electric field is
a breakdown of KT transition that explains our rigorous results
obtained within the Wetterich’s RG scheme.

The paper is organized as follows. In Sec. II the PT
model and the corresponding counterpart of the 2D Thirring

model are formulated. Details of the functional RG calculation
are outlined in Sec. III. In this section a picture of the
RG flow is established by using the Thirring model and
the nonperturbative RG in terms of the Wetterich equation.
In Sec. IV the PT model is reformulated as the model of
the two-dimensional Coulomb gas and the RG flows are
perturbatively derived. Finally, a discussion of the obtained
results and concluding remarks are given in Secs. V and VI,
respectively.

II. MODEL

The Hamiltonian of the PT model in notations applicable
to the 2D chiral helimagnet reads as

H

T
=
∫

d2r

[
1

2

J⊥
T

(∂xϕ)2 + 1

2

J||
T

(∂yϕ)2

− D

T
(∂yϕ) − h

T
cos ϕ

]
, (1)

where d2r = dxdy, and J⊥ and J‖ are the ferromagnetic
exchange parameters. For J⊥ �= J||, the first two terms consider
the in-plane anisotropy of the exchange interaction that reflects
the situation in thin films of the monoaxial chiral helimagnet
Cr0.33NbS2. The third term may be attributed to the DMI along
the y axis, and is treated as a misfit parameter of the PT model,
while the fourth describes the Zeeman energy in a transverse
field h = hx̂.

We note that the same form of the Hamiltonian may be
used to consider various physical situations. For example,
Bak suggested to use Eq. (1) for studying phase transitions
in the 2D Ising ANNNI model [27]. In his analysis, the
misfit parameter is given by the ratio of the competing
exchange interactions, and ϕ parametrizes the order parameter
fluctuations taken in the form of a spin density wave. Horovitz
et al. [37] recognized Eq. (1) as being the Hamiltonian
for the floating phase [37] of the 2D sine-Gordon model
with a chemical potential coupled with the soliton density
ρ = (1/2π )

∫
dy ∂yϕ. The chemical potential may be shifted

away by the transformation ϕ(x,y) → ϕ̃(x,y) + 2πρy due to
symmetry of the fluctuations ϕ̃ under spatial translations. This
transformation changes the last term to cos(ϕ̃ + 2πρx) and
gives rise to the action for the fluctuations with the periodic
boundary conditions. This transformation changes the last term
to cos(ϕ̃ + 2πρx) and gives rise to an action for the fluctuations
with the periodic boundary conditions. The language of the
1D nonrelativistic fermions of the Tomonaga-Luttinger model
provides a description of the low temperature phase below
the C-IC phase transition, which requires a transformation of
the original classical 2D model in Eq. (1) into its (1 + 1)-
dimensional quantum counterpart followed by the fermion
map [50,51].

In our study, we use the Hamiltonian (1) to examine
and describe the disordered paramagnetic phase, when ϕ

measures deviations from a uniform reference configuration.
We emphasize that the uniform background excludes imposing
of periodic boundary conditions either to identify a topological
invariant term in the PT-model Hamiltonian or to make the
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phase shift and to rule out the misfit parameter as it was done in
Ref. [52]. To deal with this situation, we use a map onto the 2D
Thirring model of relativistic fermions. For this purpose, the
changes ϕ = √

T/J⊥θ , δ = D/T, η = h/T , and β = √
T/J⊥

are adopted that yields the Euclidean action

SSG =
∫

d2r

[
1

2
(∂xθ )2 + 1

2

J||
J⊥

(∂yθ )2

−βδ(∂yθ ) − η cos(βθ )

]
, (2)

which reproduces the isotropic 2D sine-Gordon model for
J|| = J⊥ and δ = 0.

A transition between the classical 2D sine-Gordon and the
2D massive Thirring models is achieved by the rules

1

8π
(∂μθ )2 → ψ̄iσμ∂μψ,

1

2πi
∂yθ → ψ̄σ1ψ,

−η cos θ → imψ̄ψ, (3)

where m is the mass and σμ (μ = 1,2) are the Pauli matrices.
The Grassman valued fields are ψ = (ψ1,ψ2)T and ψ̄ =
ψ∗σ1 = (ψ∗

2 ,ψ∗
1 ).

After the change β2SSG/4π → STh, βθ → θ , and the re-
definitions (x1,x2) ≡ (x,y),� = π (J||/J⊥ − 1), d = β2δ/2,
and m̃ = β2m/4π the Euclidean action of the 2D Thirring
model is obtained:

STh =
∫

d2r

[
ψ̄(iσμDμ + im̃)ψ

− �

2
(ψ̄σ1ψ)2 − g

2
(ψ̄σμψ)2

]
. (4)

The model described by this action may be called the modified
massive Thirring model due the derivative Dμ = ∂μ − dδμ,2

with the fictitious gauge field induced by the DM coupling.
The current-current interaction of the strength g is also added,
it involves the conserved current jμ = ψ̄σμψ .

Four-fermion terms may be simplified through the identity
(ψ̄Mψ)2 = detM(ψ̄ψ)2, where M is any 2×2 matrix [53] that
converts (4) to the form

STh =
∫

d2r

[
ψ̄(iσμDμ + im̃)ψ +

(
�

2
+ g

)
(ψ̄ψ)2

]
. (5)

By using the Fourier transforms

ψ(x) =
∫

d2p
(2π )2

eipxψp ≡
∫

p

eipxψp, (6)

and a similar expression for ψ̄(x) the action (5) takes the form
in the momentum space

STh =
∫

d2p
(2π )2

ψ̄p(−/p − i/d + im̃)ψp + (2π )2

(
�

2
+ g

)

×
∫ 4∏

i=1

d2pi

(2π )2
(ψ̄p1ψp2 )(ψ̄p3ψp4 )

× δ(−p1 + p2 − p3 + p4), (7)

where the slashed notations /p = pμσμ, /d = dσ1 for the Dirac
operators are used.

III. FUNCTIONAL RG

A nonperturbative analysis for the PT model at finite
temperature is based on the effective average functional
renormalization-group scheme by Wetterich [54,55]. This
formalism, whose equations describe the scale dependence of
the effective action, has proven highly powerful in studies of
models from various fields of physics, ranging from condensed
matter theory to high-energy physics. The nonperturbative
RG methods have been used to analyze the KT transition on
the basis of a microscopic action of the ϕ4 model [56,57],
a derivative expansion of the average action for the O(2)
linear σ model [58], and for the sine-Gordon model [59].
The distinctive feature of the nonperturbative RG techniques
is that vortices are not explicitly introduced contrary to the
traditional perturbative approaches that use a mapping to the
Coulomb gas or sine-Gordon models [60].

Based on splitting of the corresponding Hamiltonian into
the sine-Gordon part and the part depending only on a number
of solitons present, the nonperturbative analysis was suggested
for the PT model in Ref. [52]. A derivation of a functional RG
transformation is validated by the assumption that the last
part is unaffected by the RG transformation that is relevant
for the floating phase regime when the periodic boundary
conditions are allowed. The scaling equations, obtained this
way, reproduce well known flow equations for the sine-Gordon
model [40], which belongs to the universality class of the 2D
XY spin model.

To develop a nonperturbative RG formalism for the fluid
phase, where no periodic boundary conditions are assumed,
the 2D MT model turns out to be appropriate. One of the
advantages of the approach is that nonlinear features of the
sine-Gordon model appear in terms of a fermion interaction,
what makes a sound basis for perturbative techniques [61,62]
as long as the interaction is not very strong. Another important
observation, the topological term of the PT model being
linear in the scalar field, cannot be taken into account within
the Wetterich formalism which operates only quadratic or
higher order terms over fields. However, the mapping onto
the Thirring fermions converts it to the quadratic form of
Grassmann-valued fields, where a scaling behavior of the
misfit parameter may be deduced.

The RG formulation by Wetterich is based on the effective
average action k , which is a generalization of the effective
action including only rapid modes, i.e., the fluctuations with
q2 � k2, where k is an ultraviolet cutoff for slow modes [54].
This is achieved by adding a regulator (infrared cutoff) Rk

to the full inverse propagator. The regulator decouples slow
modes with momenta q2 � k2 by giving them a large mass,
while high momentum modes are not affected.

The scale dependence of k is governed by the Wetterich
equation

∂kk = −1

2
Tr

[
∂kRk

(2) + Rk

]
= −1

2
∂̃k Tr log((2) + Rk), (8)

with (2) indicating the second functional derivative of k .
The trace involves an integration over momenta as well as
a summation over internal indices. The minus sign on the
right-hand side of Eq. (8) is due to the Grassman nature of ψ̄
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and ψ [55]. The derivative ∂̃k acts only on the k dependence
of Rk and not on (2).

By definition, the average action equals the standard
effective action for k = 0, as the infrared cutoff is absent and all
fluctuations are included. Similarly to (7) the effective action
is defined as

k =
∫

d2p
(2π )2

ψ̄p(−Zk /p − i/dk + im̃k)ψp + (2π )2

×
(

�k

2
+ gk

)∫ 4∏
i=1

d2pi

(2π )2
(ψ̄p1ψp2 )(ψ̄p3ψp4 )

× δ(−p1 + p2 − p3 + p4), (9)

where Zk denotes scale dependent wave function renormal-
ization for the fermionic fields. All parameters in the effective
action are assumed to be scale dependent which is marked by
the momentum-scale index k.

Using Eq. (8) fixed points associated with the four-fermion
interactions can be simply examined. For this purpose, the
inverse regularized propagator can be split into the field-
independent ((2)

k,0 + Rk) and the field-dependent (�
(2)
k ) parts

that yields

∂kRk

(2) + Rk

= ∂̃klog
(


(2)
k,0 + �

(2)
k + Rk

)

= ∂̃klog
(


(2)
k,0 + Rk

)+ ∂̃k

�
(2)
k


(2)
k,0 + Rk

− 1

2
∂̃k

(
�

(2)
k


(2)
k,0 + Rk

)2

+ · · · . (10)

For the relativistic fermions the regulator function may be
chosen as [48,63]

Rk = − δp,q

(2π )2
Zkr

(
q2

k2

)(
0 /q

T

/q 0

)
. (11)

From the explicit calculations given in Appendix A the
propagator is found to be

(


(2)
k,0 + Rk

)−1 = (2π )2δp,q

⎛
⎝ 0 /αk−im̃k

α2
k+m̃2

k

/βT
k +im̃k

β2
k +m̃2

k

0

⎞
⎠

= (2π )2Ĝ0δp,q, (12)

where /αk = −Zk/q[1 + r( q2

k2 )] − i/dk ≡ ak/q − i/dk and /βk =
−Zk/q[1 + r( q2

k2 )] + i/dk ≡ ak/q + i/dk; α2 = α2
1 + α2

2 and
β2 = β2

1 + β2
2 .

Similar derivation of the field-dependent part yields

�
(2)
k = 2(2π )2

(
�k

2
+ gk

)

×
( −ψ̄T ψ̄ ψ̄T ψT + ψT ψ̄T

ψψ̄ + ψ̄ψ −ψψT

)
δp,q

= 2(2π )2

(
�k

2
+ gk

)
Ĝ1δp,q, (13)

where the second functional derivative is evaluated for ho-
mogeneous (constant) background fields to account for the
uniform background. In momentum space it means that �

(2)
k

is evaluated at ψp = (2π )2ψδ(p) and the similar expression for
ψ̄p, where ψ (ψ̄) is on the right-hand side, are constant [63].

We can then expand the flow equation in powers of the
Grassman fields by combining Eqs. (8) and (10):

∂kk = −1

2
Tr
[
∂̃klog

(


(2)
k,0 + Rk

)]− 1

2
Tr

[
∂̃k

�
(2)
k


(2)
k,0 + Rk

]

+ 1

4
Tr

⎡
⎣∂̃k

(
�

(2)
k


(2)
k,0 + Rk

)2
⎤
⎦+ · · · . (14)

The powers of �
(2)
k


(2)
k,0+Rk

can be calculated by simple matrix

multiplication. The RG flow equations can be obtained
straightforwardly by comparing the coefficients of the fermion
interaction terms of the right-hand side of Eq. (14) with the
couplings included in the anzatz (9). The calculations of the
second (two-fermion beta function) and the third (four-fermion
beta function) terms in Eq. (14) are relegated to Appendices B
and C, respectively.

For practical computations of the flow equations the sharp
cutoff regulator may be employed:

r

(
q2

k2

)
=
{∞, q2 < k2,

0, q2 > k2,
(15)

which facilitates explicit evaluation of the threshold func-
tions Li (i = 1,2,3). Their detailed derivations are given in
Appendix D.

As a result, the RG equations take the form

∂t m̄ = m̄ + m̄λ̄

4πd̄2

(1 − 4d̄2 + 4m̄2)√[
2
(

1−4d̄2+4m̄2

4d̄

)2 + 1
]2 − 1

, (16)

∂t d̄ = d̄ − λ̄

4πd̄
+ λ̄

4πd̄

(1 − 4d̄2 + 4m̄2)
(
1 + 1

8d̄2 [1 − 4d̄2 + 4m̄2]
)

√[
2
(

1−4d̄2+4m̄2

4d̄

)2 + 1
]2 − 1

, (17)

∂t λ̄ = −2λ̄2

π

(
1 − m̄2

d̄2

)
1√[

2
(

1−4d̄2+4m̄2

4d̄

)2 + 1
]2 − 1

, (18)
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FIG. 1. Flow diagrams for the RG [Eqs. (20) and (21)]. The fixed
points are shown by the red line.

where the “RG time” |t | = ln (�/k) and the dimension-
less quantities λ̄ = λk/2, m̄ = (2k)−1m̃k, d̄ = (2k)−1dk are
expressed in units of the running scale k. The additional factor 2
on the right-hand side is input to eliminate a multiple regulator
dependence (see also a discussion in Ref. [48]) and to reach a
consistence between the SG and MT theories.

Before discussing the results of model (5) we first focus on
the more trivial case of the massive Thirring (or, equivalently,
the sine-Gordon) model. The SG and the MT models are
equivalent provided the coupling constants β and g of the
two models are related through the relation [46,47]

4π

β2
= 1 + g

π
. (19)

As for the sine-Gordon model, the system undergoes a contin-
uous KT phase transition at β2 = 8π . Given the equivalence
between the SG and MT models, the transition point for the
massive Thirrring model is g = −π/2 [64]. For β2 < 8π

(g > −π/2) the coupling constant g flows to strong coupling
regime that indicates an opening of a gap in the spectrum, and
relevant degrees of freedom are massive fermionic solitons.
For β2 > 8π (or g < −π/2) the weak-coupling regime arises,
where the coupling g flows to zero, and relevant degrees of
freedom are massless bosons.

If d̄ = 0 Eqs. (16)–(18) are restricted to

∂t m̄ = m̄

[
1 + 2λ̄

π (1 + 4m̄2)

]
, (20)

∂t λ̄ = 16

π

λ̄2m̄2

(1 + 4m̄2)2
. (21)

These flow equations reproduce the well-known scaling
equations of the KT type. The RG trajectories remain in the
plane (m̄, λ̄), the corresponding flow diagram is shown in
Fig. 1, where there exists a line of fixed points with m̄ = 0
and finite λ̄∗ < λ̄KT = −π/2.

The corresponding parametric flow at finite d̄ value is
shown in Fig. 2. The flow is seen to initially closely follow

FIG. 2. The RG trajectories of the 2D Thirring-like PT model.
The fixed points of the case d̄ = 0 are shown by the red line.

the KT flow at d̄ = 0, approaching the fixed line at m̄ = 0,
but ultimately departing from it in a flow toward the high-
temperature phase. We may conclude that in the presence of
the linear gradient term, or DM interaction, no KT transition
may exist in the fluid phase.

IV. COULOMB GAS MODEL

Many phenomena, which are difficult to interpret in the
fermion language, have simple semiclassical explanations via
the boson description, and the current problem is not an excep-
tion. A remarkable feature found in early studies [38–40,42] is
that the defect-mediated transition of the 2D XY model and its
analogs can be mapped to the insulator-conductor transition of
a two-dimensional Coulomb gas. To elucidate the origin of the
flow of the Thirring model we formulate the 2D Coulomb gas
model by using discrete vector calculus on a square lattice for
the Hamiltonian (5), where, for simplicity, the representation
is restricted by the isotropic case J|| = J⊥. For definiteness,
all sums run over the sites of a square lattice although the
transformation described below are easily generalized.

The partition function defined on such a lattice is of the
form

Z =
∫

Dϕ exp

⎡
⎣βJ̃

∑
〈ij〉

cos(ϕi − ϕj − αij )

+βh
∑

i

cos ϕi

⎤
⎦, (22)

where henceforth β = (kBT )−1 is the inverse temperature, J̃ =
S2

√
J 2 + D2 is the effective exchange parameter, h = Shx ,

and the bond angle is given by αij = α = tan−1 (D/J ) for the
ij link along the z axis and zero otherwise. The first sum runs
over all nearest neighbor sites within the (xz) plane.

A duality mapping between vortices and electrostatics
is derived in detail in Appendix D. The resulting partition
function for point charge particles reads as

Zeff =
∑
{q(r)}

exp

⎡
⎣πK0

∑
r�=r′

q(r) log |r − r′|q(r′)

+ 2π
∑

r

(Ex · r)q(r)

⎤
⎦y

∑
r q2(r)

0 , (23)
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FIG. 3. The RG flows of the 2D Coulomb gas counterpart of the
PT model (blue) and for the XY model (red), εl = 0.

where the bare values for the vortex coupling K0 = βJ̃ and for
the vortex pair fugacity y0 = exp (−βπ2J̃ /2). The first term
in the exponential of Eq. (23) describes the charge-charge
interactions, the second includes the sum of the self-energies
associated with each elementary charge q(r), which arises due
to the effective uniform x-direction field Ex = αβJ̃ ex = ε ex .
The question whether a topological order realizes is thereby
mapped, as in the conventional Kosterlitz-Thouless transition,
to the problem of screening in the Coulomb gas, albeit now
with modified terms due to the DM interaction.

The scaling equations can then be obtained from (23)
in the limit of small fugacity. The procedure parallels what
was detailed in Refs. [65,66]. At a general minimum scale
a = el the renormalized vortex coupling Kl , the vortex pair
fugacity yl , and the topological electric field εl obey the scaling
equations

dKl

dl
= −4π3K2

l y2
l , (24)

dyl

dl
= (2 − πKl + πεl)yl, (25)

dεl

dl
= εl + 4π3y2

l Klεl. (26)

An advantage of the nonperturbative RG approach of the
previous section should be noted. In contrast to the RG of
the 2D Coulomb gas model, a smallness of the magnetic field
is not required.

Figure 3 shows numerical solutions of RG flows. For ε = 0
it reproduces the well-known Kl(yl) scale dependencies of
the KT theory that tend asymptotically to zero (infinity) for
T > TKT, kBTKT = πJ/2, and to constant (zero) for T < TKT.
The results for nonzero electric fields are also presented in this
figure. Apparently, at all temperatures Kl tends asymptotically
to zero and yl tends to infinity, i.e., vortex pairs are unbound
by the electric field. It means that the breaking apart of dipoles
by the topological field begins to exceed the vortex attractive
interaction. In addition, the plot clearly demonstrates that both
models, the Thirring model (5) with a fictitious gauge field and
the Coulomb gas in an electric field, are in the same universality
class.

This concludes the RG analysis which shows that the DM
interaction is relevant, it creates an effective electric field
perpendicular to the direction of the DM vector on a lattice
and eliminates the KT transition.

V. DISCUSSIONS

To understand the significance of our results and compare
them with pertinent calculations on simple magnetic models
which exhibit periodically modulated structures, we provide
a view of the critical behavior of the 2D chiral helimagnet
from a slightly broader perspective. The first relevant modeling
system is the 2D anisotropic Ising model with competing
nearest and next-nearest neighboring interactions (ANNNI
model) [67]. It has been observed that the ANNNI model
displays a variety of interesting physical features related to an
emergence of the modulated phase. While the 3D version of
the model exhibits an infinity of phases where periodicity is
commensurate with the lattice, what is known as the devil’s
staircase, the 2D version behaves in a completely different
way. At nonzero temperature, the devil’s staircase is replaced
by the floating modulated phase, which is followed by the
paramagnetic phase at higher temperatures. The transition
from the floating phase to the paramagnetic one is of the KT
type [27] and it is a consequence of vortex separation at a
critical temperature higher than that of the C-IC transition.
The latter is estimated through the analogy between ANNNI
and the 2D sine-Gordon models: the C-IC takes place when
the domain wall free energy balances the chemical potential
determined by the misfit parameter.

The transition sequence is clearly in line with the general
scheme suggested by Nelson and Halperin in the theory of
melting in two dimensions [45] and would seem to be relevant
for the 2D chiral helimagnet. However, despite an apparent
similarity of the spiral spin structures in the chiral helimagnet
and the ANNNI model, they have a profound difference at
which level the chiral symmetry is broken [68]. In the ANNNI
model the chiral symmetry is not violated at the level of a
Hamiltonian, but an emerging helimagnetic order breaks it
spontaneously. On the other hand, in the chiral helimagnet,
the Hamiltonian breaks explicitly the chiral symmetry due
to the presence of the DMI. Therefore, the helicoidal structure
of the ANNNI model does not have any macroscopical
protectorate, which justifies ad hoc an application of the XY

model for the high-temperature disordered phase. In contrast,
our approach implies that the disordered phase in the 2D
chiral helimagnet should take into account the remnant spin
correlations caused by the DMI.

Our conclusion that in the 2D helimagnets vortices do not
contribute to melting of the floating phase is amenable to direct
verification by Lorentz microscopy. In this respect, we mention
that peculiarities of the floating phase near the C-IC phase
transition has been also discussed for the 2D sine-Gordon
model within the RG scheme [37]. This approach treats
the system as a grand-canonical ensemble with a chemical
potential coupled to the soliton density, which is independent
from any microscopic mechanism of an appearance of the
modulated phase, and can be applied with an equal success to
both the ANNNI and the chiral helimagnet. A linear growth of
the soliton density with a temperature and a similar dependence
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for the critical index η may be considered as hallmarks of the
floating phase in these systems. The first has been observed
in the Monte Carlo studies of the 2D ANNNI model as a
reduction of the average width of the stripe domains with a
growth of temperature [69].

In the low temperature regime the fermion model can
be formulated, where the domain walls or kinks, which are
nothing but solitons with short-range repulsion between them,
are represented by Tomonaga-Luttinger fermions moving in
one spatial direction, while the other axis represents time. In
this formalism, a finding of the free energy of the initial 2D
sine-Gordon system amounts to determining of the ground
state energy of the fermion Hamiltonian. The soliton density
of the sine-Gordon model becomes equivalent to the density
of Tomonaga-Luttinger fermions. The misfit parameter is
mapped to a chemical potential of the fermions, whereas the
strength of the pinning term generates a gap needed for creation
of soliton excitations (additional kinks). At the commensurate
phase, the chemical potential is within the gap dividing the
empty upper conducting band from the the completely filled
lower valence band of the Tomonaga-Luttinger quasiparticles.
At zero temperature, the system is a Mott insulator. Heating the
system and passing through the critical temperature of the C-IC
transition puts the chemical potential above the gap, when the
states of the conduction band are getting occupied [70], thus
indicating the onset of the floating phase.

VI. SUMMARY

A possibility of the topological KT transition in the 2D
sine-Gordon model with the misfit parameter, when the phase
describes fluctuations around an uniform reference configu-
ration with no kinks, is investigated by using the functional
renormalization-group (RG) approach by Wetterich. Our main
result is that the misfit parameter, which can be identified as
the Dzyaloshinsky-Moriya interaction in the chiral helimagnet,
makes such a transition prohibited. In order to argue this
conclusion the initial boson model has been reformulated in

terms of the 2D theory of relativistic fermions using an analogy
between the 2D sine-Gordon and the massive Thirring models.
In the new formalism the misfit parameter corresponds to
an effective gauge field that enables us to include it in the
renormalization-group procedure on an equal footing with
the other parameters of the theory. With the new fermionic
action at hand, we apply the Wetterich equation to obtain flow
equations and demonstrate that these RG equations reproduce
a KT type of behavior for the zero misfit. However, any small
nonzero value of the quantity rules out a possibility of the
topological transition. To confirm these findings, a description
of the problem in terms of the effective 2D Coulomb gas model
is developed. Within this approach, the breakdown of the KT
scenario becomes transparent. The misfit parameter results
in the appearance of an effective in-plane electric field that
prevents a formation of bound vortex-antivortex dipoles. The
discussion is presented on how these results are embedded in
a general hierarchy of phase transitions in this 2D system and
their relation with a melting of the soliton lattice in thin films
of chiral helimagnets.
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APPENDIX A: THE INVERSE PROPAGATOR

The matrix of second derivatives of k with respect to the fermion fields deduced from Eq. (9):


(2)
k (p,q) =

⎛
⎝−→

∂ ψT−p
k

←−
∂ ψq

−→
∂ ψT−p

k

←−
∂ ψ̄T−q

−→
∂ ψ̄p

k

←−
∂ ψq

−→
∂ ψ̄p

k

←−
∂ ψ̄T−q

⎞
⎠ (A1)

results in the field-independent part


(2)
k,0(p,q) = δp,q

(2π )2

(
0 −Zk /p

T + i/d
T − im̃

−Zk /p − i/d + im̃ 0

)
. (A2)

Then the inverted form of the regularized propagator reads

(


(2)
k,0 + Rk

)
(p,q) = δp,q

(2π )2

(
0 −Zk /p

T
[
1 + r

(
q2

k2

)]+ i/d
T − im̃

−Zk /p
[
1 + r

(
q2

k2

)]− i/d + im̃ 0

)
, (A3)

the inverse of the matrix yields the result (12). To find the form of the field-dependent part (13) the property ψ̄ψ = −ψT ψ̄T

appears to be useful.

235126-7



NOSOV, KISHINE, OVCHINNIKOV, AND PROSKURIN PHYSICAL REVIEW B 96, 235126 (2017)

APPENDIX B: TWO-FERMION BETA FUNCTION

Let us now derive the RG flow equations for the couplings that were involved in the part of the action which is quadratic in
the fermionic fields ψ and ψ̄ . From the series (14) it is clear that only the term

−1

2
Tr

[
�

(2)
k


(2)
k,0 + Rk

]
= −

(
�k

2
+ gk

)
�

∫
d2q

(2π )2
Tr[Ĝ1Ĝ0], (B1)

where � is the volume of the system, contributes to the RG flow of the needed couplings, and Ĝ1 is defined by Eq. (13).
An elementary calculation gives

Tr[Ĝ1Ĝ0] = − αkμ

α2
k + m̃2

k

(ψ̄σμψ) + βkμ

β2
k + m̃2

k

(ψ̄σμψ) − im̃k

(
1

α2
k + m̃2

k

+ 1

β2
k + m̃2

k

+
)

ψ̄ψ

= −2im̃k

a2
kq

2 − d2
k + m̃2

k(
a2

kq
2 − d2

k + m̃2
k

)2 + 4a2
kd

2
k q2

1

(ψ̄ψ) + 2idk

a2
kq

2 − d2
k + m̃2

k − 2a2
kq

2
1(

a2
kq

2 − d2
k + m̃2

k

)2 + 4a2
kd

2
k q2

1

(ψ̄σ1ψ)

− 4idk

a2
kq1q2(

a2
kq

2 − d2
k + m̃2

k

)2 + 4a2
kd

2
k q2

1

(ψ̄σ2ψ). (B2)

The third term drops out of Eq. (B1) after integration over the momentum q that brings forth

−1

2
Tr

[
∂̃k

�
(2)
k


(2)
k,0 + Rk

]
= 2i�m̃k

(
�k

2
+ gk

)
∂̃kL1(ψ̄ψ) − 2i�dk

(
�k

2
+ gk

)
∂̃kL2(ψ̄σ1ψ), (B3)

where the threshold functions are

L1 =
∫

d2q

(2π )2

a2
kq

2 − d2
k + m̃2

k(
a2

kq
2 − d2

k + m̃2
k

)2 + 4a2
kd

2
k q2

1

, (B4)

L2 =
∫

d2q

(2π )2

a2
kq

2 − d2
k + m̃2

k − 2a2
kq

2
1(

a2
kq

2 − d2
k + m̃2

k

)2 + 4a2
kd

2
k q2

1

. (B5)

The ansatz for the kinetic term in the effective action (9) gives

∂kk = −i�(∂kdk)(ψ̄σ1ψ) + i�(∂km̃k)ψ̄ψ. (B6)

In our approximation, the RG running of Z is trivial, i.e., ∂kZ = 0. Thus, the associated anomalous dimension η = −k∂k ln Z is
zero. Therefore, in what follows, we set the wave-function renormalization as Z = 1.

Comparing coefficients of the quadratic contributions [Eqs. (B3) and (B6)] to the exact flow equations yields

∂kmk = 2

(
�k

2
+ gk

)
mk∂̃kL1, (B7)

∂kdk = 2

(
�k

2
+ gk

)
dk∂̃kL2. (B8)

APPENDIX C: FOUR-FERMION BETA FUNCTION

Formula for the four-fermion beta function reads

1

4
Tr

⎡
⎣∂̃k

(
�

(2)
k


(2)
k,0 + Rk

)2
⎤
⎦ =

(
�k

2
+ gk

)2

�

∫
d2q

(2π )2
Tr[Ĝ1Ĝ0Ĝ1Ĝ0]. (C1)

By evaluating

Tr[Ĝ1Ĝ0Ĝ1Ĝ0] =
{
−det

(
/αk − im̃k

α2
k + m̃2

k

)
− det

(
/βk − im̃k

β2
k + m̃2

k

)
+ 2X

(
/αk − im̃k

α2
k + m̃2

k

,
/βk + im̃k

β2
k + m̃2

k

)}
(ψ̄ψ)2, (C2)

where the function with the matrix arguments is defined by

X (M̂,N̂ ) = 1
2 (M11N22 − M12N21 − M21N12 + M22N11), (C3)

the four-fermion terms are straightforwardly appear.
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By employing the ansatz (9) for the effective action after some elementary algebra we get for the constant fields

k = �

(
�k

2
+ gk

)
(ψ̄ψ)2. (C4)

The flow for the coupling constant λk = (�k/2 + gk) is obtained by comparing both sides of Eq. (14) and by using Eqs. (C1)
and (C4):

∂kλk = λ2
k∂̃kL3. (C5)

The flow involves the threshold function

L3 =
∫

d2q

(2π )2

{
−det

(
/αk − im̃k

α2
k + m̃2

k

)
− det

(
/βk − im̃k

β2
k + m̃2

k

)
+ 2X

(
/αk − im̃k

α2
k + m̃2

k

,
/βk + im̃k

β2
k + m̃2

k

)}
. (C6)

Equations (B7), (B8), and (C5) represent the main result of the two sections.

APPENDIX D: THRESHOLD FUNCTIONS

The flow equations include single integrals due to the one-loop structure of the Wetterich equation, the threshold functions,
which contain details of the regularization scheme. The definitions of the threshold functions are given by Eqs. (B4), (B5),
and (C6). In the flow equations ∂̃k is defined to act on the regulator’s k dependence. The sharp cut-off regulator (15) has the
remarkable feature that all threshold integrals can be done explicitly.

Indeed, in the polar coordinates

∂̃kL1 = ∂̃k

∫ �

k

dq

(2π )2

∫ 2π

0
dφ

q
(
q2 − d2

k + m̃2
k

)
(
q2 − d2

k + m̃2
k

)2 + 4d2
k q2 cos2 φ

, (D1)

where � is the ultraviolet cutoff, and we take into account that a = −1 for the regulator (15).
The needed dependence on k appears only in the lower limit of the integration over q. Therefore, one obtain

k∂̃kL1 = − 1

8π2

(
k2 − d2

k + m̃2
k

)
d2

∫ 2π

0

dφ

2
( k2−d2

k +m̃2
k

2kdk

)2 + 1 + cos 2φ
. (D2)

Once the simple integration is performed, we get

k∂̃kL1 = −
(
k2 − d2

k + m̃2
k

)
4πd2

k

1√[
2
( k2−d2

k +m̃2
k

2kdk

)2 + 1
]2 − 1

. (D3)

Similarly, the scale derivative of L2 is given by

k∂̃kL2 =
[

1 + 1

2d2
(k2 − d2 + m̃2)

]
k∂̃kL1 + k2

4πd2
. (D4)

To find the RG running of L3 we first note that

det

(
/αk − im̃k

α2
k + m̃2

k

)
= − 1

α2
k + m̃2

k

, det

(
/βk + im̃k

β2
k + m̃2

k

)
= − 1

β2
k + m̃2

k

, (D5)

and

X
(

/αk − im̃k

α2
k + m̃2

k

,
/βk + im̃k

β2
k + m̃2

k

)
= m̃2

k − α1kβ1k − α2kβ2k(
α2

k + m̃2
k

)(
β2

k + m̃2
k

) . (D6)

Therefore,

−det

(
/αk − im̃k

α2
k + m̃2

k

)
− det

(
/βk − im̃k

β2
k + m̃2

k

)
+ 2X

(
/αk − im̃k

α2
k + m̃2

k

,
/βk + im̃k

β2
k + m̃2

k

)

= 4m̃2
k + (α1k − β1k)2 + (α2k − β2k)2(

α2
k + m̃2

k

)(
β2

k + m̃2
k

) . (D7)

For the sharp cutoff (15), for which α1k − β1k = −2idk and α2k − β2k = 0, the last expression reads

4
(
m̃2

k − d2
k

)
(
q2 − d2

k + m̃2
k

)2 + 4q2
1d2

k

. (D8)
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Through the insertion of the result into Eq. (C6) one obtain

L3 = 1

π2

∫ �

k

dq q

∫ 2π

0
dφ

(
m̃2

k − d2
k

)
(
q2 − d2

k + m̃2
k

)2 + 4q2d2
k cos2 φ

. (D9)

From the definition it follows that

k∂̃kL3 = 4
(
m̃2

k − d2
k

)
(
k2 − d2

k + m̃2
k

)2 k ∂̃kL1. (D10)

APPENDIX E: THE ELECTROSTATIC MODEL

To introduce the duality mapping we replace [60] in the partition function (22):

eβJ̃ cos �ij → eβJ̃

m=+∞∑
m=−∞

exp

[
−βJ̃

2
(�ij − 2πm)2

]
, (E1)

where �ij = ϕi − ϕj − αij , and use the Poisson sum formula which states

+∞∑
m=−∞

f (m) =
+∞∑

l=−∞

∫ +∞

−∞
dφ f (φ)e2πilφ. (E2)

This yields

eβJ̃ cos �ij → 1√
2πβJ̃

+∞∑
lij =−∞

eβJ̃ exp

[
− l2

ij

2βJ̃
+ ilij�ij

]
. (E3)

After substituting the result into (22) and omitting nonessential factors one find

Z =
∫

Dϕ
∑
{lij }

exp

⎛
⎝−

∑
〈ij〉

[
l2
ij

2βJ̃
− ilij�ij

]
+ βh

∑
i

cos ϕi

⎞
⎠. (E4)

We now define a vector field lμ(r) (μ = 1,2) that is directed from the starting point r, which is the left-hand side or lower side
of the link between the sites i and j , to the other side of the link. The vector field takes the value lij on the link. The partition
function is then just the sum over all possible values lμ(r) of the form

Z =
∑

{lμ(r)}

∫
Dϕ exp

(
−
∑
r,μ

[
l2
μ(r)

2βJ̃
− ilμ(r){ϕ(r) − ϕ(r + aμ)} + ilμ(r)αμ

]
+ βh

∑
r

cos ϕ(r)

)
, (E5)

where αμ coincides with αij on the ij link, and aμ is the lattice unit.
To evaluate the sum we shall make use of∑

r,μ

lμ(r){ϕ(r) − ϕ(r + aμ)} =
∑
r,μ

{lμ(r) − lμ(r − aμ)}ϕ(r) (E6)

to transform the partition function into

Z =
∑

{lμ(r)}

∫
Dϕ exp

(
−
∑
r,μ

[
l2
μ(r)

2βJ̃
− i{lμ(r) − lμ(r − aμ)}ϕ(r) + ilμ(r)αμ

]
+ βh

∑
r

cos ϕ(r)

)
. (E7)

We wish to perform integration over ϕ(r) from 0 to 2π . The goal is easily accomplished with the aid of the Jacobi-Anger
expansion

ez cos ϕ = I0(z) + 2
∞∑

k=1

Ik(z) cos(kϕ), (E8)

where Ik(z) is the modified Bessel function of the first kind.
The ϕ integrals can be then done immediately which reduces the partition function to a sum over the bond variables lμ(r) with

a set of δ functions restricting these variables at every site:

Z ∝
∑

{lμ(r)}
exp

[
−
∑
rμ

(
l2
μ(r)

2βJ̃
+ ilμ(r)αμ

)]∏
r

⎧⎨
⎩

∞∑
κ(r)=−∞

Iκ(r)(βh) δ

[∑
μ

[lμ(r) − lμ(r − aμ)] − κ(r)

]⎫⎬
⎭. (E9)
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A presence of the magnetic field violates the “zero divergence”
condition ∑

μ

[lμ(r) − lμ(r − aμ)] = 0, (E10)

giving the effective integer-valued charges κ(r) confined to
lattice sites.

To gain an insight into the nature of the constraints imposed
by the δ functions it is worthy to note that lμ(r) can be splitted
into the longitudinal and transverse parts [71]

lμ(r) = m(r) − m(r + aμ) + σ (r) − σ (r + aμ)

+ εμν[n(r) − n(r − aν)], (E11)

where εμν is the standard antisymmetric tensor, the m(r) and
n(r) are integers, and |σ (r)| < 1.

The transverse vector field n(r) = n(r)e3, where e3 is
perpendicular to the plane of the system, realizes the discrete
version of the equation l(r) = rot n(r),

l1(r) = n(r) − n(r − a2), l2(r) = −n(r) + n(r − a1),

(E12)

that ensure that the zero divergence condition (E10) is properly
satisfied.

The δ-function condition in Eq. (E9) can, in turn, be satisfied
if the longitudinal part obeys the discrete Poisson equation

−
∑

μ

[m(r + aμ) + m(r − aμ) − 2m(r) + σ (r + aμ)

+σ (r − aμ) − 2σ (r)] = κ(r). (E13)

Here the m(r) are required to be integer valued and σ (r) are
adjusted to keep Eq. (E13).

Given that we are primarily focusing on a role of the
DM interaction, we restrict ourselves to the case of vanishing
magnetic fields βh → 0, when Iκ(r)(βh) can be replaced by
the delta symbol δκ,0 and the trivial solution m(r) + σ (r) = 0
can be taken for Eq. (E13).

By substituting (E12) in Eq. (E9) and taking account of
αμ = αδμ,1 we find

Z =
∑
{n(r)}

exp

[
−
∑
rμ

1

2βJ̃
[n(r) − n(r − aμ)]2

− iα
∑

r

[n(r) − n(r − a2)]

]
. (E14)

Rewriting the sum running over integers n(r) through the
Poisson formula (E2) one obtains

Z =
∫

Dφ
∑
{q(r)}

exp

[
− 1

2βJ̃

∑
r,μ

(�̂μφ)2

−iα
∑

r

�̂2φ + 2πi
∑

r

q(r)φ(r)

]
, (E15)

where the lattice difference is defined as �̂μφ(r) = φ(r) −
φ(r − aμ).

Making use of the parallel translation in the functional
space [72], φ(r) → φ(r) − iαβJ̃ x2, and carrying out Gaussian
integration over φ(r) we are led to

Zeff ∝
∑
{q(r)}

exp

{
−2π2βJ̃

∑
r,r′

q(r)G(r − r′)q(r′)

+ 2παβJ̃
∑

r

q(r) x2

}
. (E16)

The lattice Green function takes the form [40]

G(r − r′) =
∫

d2k

(2π )2

eik·(r−r′)

4 − 2 cos kx − 2 cos ky

≈ − 1

2π
ln

( |r − r′|
a

)
− 1

4
+ G(0), (E17)

where the last term does not contain divergent terms. In-
terpreting q(r) as an electric charge at the position r and
the logarithmic potential as the Coulomb potential in two
dimensions, the term with G(0) disappears if the charge
neutrality condition

∑
r q(r) = 0 is imposed. The remaining

part of G(r − r′) leads to the result (23).
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