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We investigate the magnetic breakdown (MB) phenomena by means of the recently proposed magnetic-field-
containing relativistic tight-binding approximation (MFRTB) method [Phys. Rev. B 91, 075122 (2015)]. In the
MFRTB method, the MB phenomena can be described as the electron hopping between adjacent semiclassical
orbits. It is shown that a set of magnetic energy bands is generated by the MB in the cluster that corresponds
to the semiclassical energy level. It is also found that magnetic energy bands originating from the MB and
those originating from the semiclassical orbit lying on the constant energy surface are hybridized to each other.
Such hybridization leads to various subclusters that correspond to energy states of the so-called forbidden orbits.
Magnetic oscillations related to the MB occur when the subcluster changes from the occupied state to unoccupied
one and vice versa.
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I. INTRODUCTION

Magnetic oscillations in metals, such as the de Haas–van
Alphen (dHvA) oscillation [1–4] and the Shubnikov–de Haas
oscillation [4,5], are widely used to investigate the shape of
the Fermi surface, the cyclotron effective mass, and the re-
laxation time of the conduction electron. Magnetic oscillation
phenomena are usually treated on the basis of the semiclassical
approximation [4,6–9]. In the usual treatment, which will be
referred to hereafter as the semiclassical approach, both the
Bohr-Sommerfeld quantization rule that is obtained within the
semiclassical approximation and the equation of motion for a
Bloch electron in the magnetic field are used to get quantized
energy levels (semiclassical energy levels) and electronic
orbits [4,6–9]. According to the semiclassical approach, the
electron moves in k-space along the outline of the cross section
of the constant energy surface by a plane perpendicular to
the magnetic field [4,6–9]. If electronic orbits in k-space
are close to each other, the adjacent orbits connect to each
other due to tunneling. This is the conventional description of
magnetic breakdown (MB) [4,10–15]. Since the orbit changed
by the MB (MB orbit) has a different cross section on the
Fermi surface, the magnetic oscillation appears with a period
that is different from that of the dHvA oscillation [4,10–15].
Hereafter, the magnetic oscillation that is related to the MB
orbit will be referred to as the MB oscillation. Analysis of the
MB oscillation is also indispensable for the investigation of
the shape of the Fermi surface [4].

There have been other attempts to describe MB oscillations.
One is based on the effective-mass approximation [4,8,9]. By
means of the effective-mass approximation, it is shown that
MB oscillations originating from so-called forbidden orbitals
[4,10–17] are related to the chemical potential oscillation
[16,17]. Besides this, the Hofstadter method [18] is utilized
to describe MB oscillations [19–28]. It is found that the

Hofstadter method can also describe the MB oscillations
originating from forbidden orbitals [19–26]. Furthermore, the
Hofstadter method is also applied to a honeycomb lattice
system, in which the magnetic oscillation is shown to appear
even though the area of the Fermi surface vanishes [28].

Recently, we have developed the magnetic-field-containing
relativistic tight-binding approximation (MFRTB) method
[29]. This method enables us to calculate the energy-band
structure of materials immersed in a magnetic field. Hereafter,
we refer to the energy bands and energy-band structure of
materials immersed in a magnetic field as the magnetic energy
bands and magnetic energy-band structure, respectively. It
is shown that the MFRTB method provides the modified
Hofstadter butterfly diagram if it is applied to the two-
dimensional square lattice system with s-electrons [29]. We
have applied this method to crystalline silicon immersed in
a magnetic field, and we revealed its magnetic energy-band
structure that is defined in the magnetic first Brillouin zone
[29]. Also, the MFRTB method can reproduce the dHvA
oscillation [30], similarly to the Hofstadter method. It was
shown in a previous work [31] that the cluster of the magnetic
energy bands, which corresponds to a semiclassical energy
level, causes the dHvA oscillation. Furthermore, it is found that
the fine energy level structure in the cluster leads to additional
oscillation peaks that cannot be explained by the semiclassical
approach [31].

As mentioned above, the MFRTB method is reliable for
describing the magnetic properties of metals immersed in
a magnetic field. Therefore, it is expected that the MFRTB
method may describe MB phenomena in a similar way to the
Hofstadter method. Although it is shown that MB phenomena
can be described by the Hofstadter method, MB phenomena
have not yet been discussed on the basis of magnetic energy-
band structure [19,21–28]. In this paper, after confirming the
revisitation of the MB through the MFRTB method, we reveal
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FIG. 1. Schematic view of the Fermi surface (dots line) and
electronic orbits containing the MB points (solid lines denoted by
MB1, MB2, MB3, and MB4). The arrows denote the direction of the
orbital motion for electrons, which is predicted by the semiclassical
approach. Note that the MB2, MB3, and MB4 orbits are so-called
forbidden orbits, parts of which are incompatible with the direction
of the orbital motion predicted by the semiclassical approach.

what kinds of magnetic energy bands are generated by the MB,
and we describe how the MB oscillations are produced by such
magnetic energy bands.

The outline of this paper is as follows. In Sec. II, it
is shown that the MB phenomena can be revisited by the
MFRTB method. In Sec. III, we give a description of the
MB phenomena through the MFRTB method. In Sec. IV,
we identify the magnetic energy bands that are generated by
the MB. Then, we discuss the generating mechanism of the
MB oscillations on the basis of magnetic energy bands. In
Sec. V, we present concluding remarks.

II. REVISITATION OF MAGNETIC BREAKDOWN
THROUGH THE MFRTB METHOD

The MFRTB method is applied to the two-dimensional
square lattice with s-electrons immersed in a magnetic field.
The E-k curve of the system for the zero-magnetic-field case
is given by E(k) = E0 − 2t{cos(kxa) + cos(kya)}, where E0

and t denote a constant value and a tight-binding parameter,
respectively, and a denotes the lattice constant. In this paper,
we take −12.1538 and −1.7391 eV for E0 and t , respectively
[29]. Figure 1 shows the schematic view of the Fermi surface
(dots line) and electronic orbits containing the MB points (solid
lines denoted by MB1, MB2, MB3, and MB4). According
to the semiclassical approach, the oscillation frequency is
proportional to the cross-sectional area of the Fermi surface in
a plane perpendicular to the magnetic field. In Fig. 1, we show
five orbits in order starting with the orbit having the smallest
cross-sectional area. If the band filling factor η is more (less)
than 0.5, then the Fermi surface is holelike (electronlike). The
closer η is to 0.5, the more likely it is that MB occurs because
electronic orbits in k-space become closer to each other.

The MFRTB method is applied to this system immersed in a
magnetic field. The magnitude of the magnetic field is given by
B = 2πh̄

ea2
p

q
, where p and q are relatively prime integers [18,29].

For convenience, the outline of the MFRTB method is given
in the Appendix. We calculate the magnetic-field dependences
of the total energy, and we obtain the magnetization by the
numerical derivative of the total energy with respect to the
magnetic field. Note that the total number of electrons per unit
volume is fixed [15–17,20] in the present calculations.
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FIG. 2. Fourier transformation of the magnetization for the case
of η = 0.52.

Figure 2 shows the coefficient of the Fourier transformation
of the magnetization for the case of η = 0.52, where we use
the Hamming function as the window function of the Fourier
transformation. The positions of the largest peak (denoted
by fdHvA) and its higher harmonics (2fdHvA, 3fdHvA) just
coincide with the frequencies of the dHvA oscillation and
its higher harmonics, respectively. It is also confirmed that
the positions of other peaks denoted by fMB1, fMB2, fMB3, and
fMB4 are identical with frequencies that correspond to orbits of
MB1, MB2, MB3, and MB4 (Fig. 1), respectively. Thus, MB
oscillations as well as the dHvA oscillation can be reproduced
by the MFRTB method.

Next, we shall comment on other peaks that are found in
Fig. 2. For instance, we can find a weak peak between fMB2

and 2fMB1. Although there are possible orbits other than those
shown in Fig. 1, the cross-sectional areas of such orbits are
larger than those of the orbits shown in Fig. 1. Therefore,
oscillation frequencies of such orbits are out of the range of
the horizontal axis of Fig. 2. As a result, weak peaks cannot
be explained by the semiclassical approach. One possible
explanation regarding the origin of weak peaks is that they
come from additional oscillation peaks that are predicted in
the previous paper [31]. Another possible explanation is that
they are only due to side lobes that are generated in the process
of Fourier transformation. More investigations are needed to
identify the origin of weak peaks.

III. DESCRIPTION OF THE MB PHENOMENA THROUGH
THE MFRTB METHOD

In this section, we discuss how the MB phenomena are
described by the MFRTB method. In general, the semiclassical
electron orbit in real space can be obtained by rotating the
semiclassical electron orbit in k-space 90◦ [8]. Therefore, the
electronic orbit involving MB points looks like the rotated orbit
of Fig. 1. Since the area of the semiclassical electronic orbit in
real space is obtained by multiplying the factor (h̄/eB)2 by that
in k-space [8], the area of the semiclassical electronic orbit in
real space shrinks with increasing B. In the MFRTB method,
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FIG. 3. Dependence of the Fourier transformation of the magne-
tization on the TB parameter.

the eigenfunction is given by the linear combination of the
atomic orbitals immersed in a magnetic field. Judging from
the successful revisitation [30,31] of the dHvA oscillation,
which is well described by the semiclassical approach, the
linear combination represents the orbit that is close to the
semiclassical electronic orbit. Therefore, the area of the orbit
is expected to shrink with increasing B, which may facilitate
electron hopping between adjacent orbits [29]. This electron
hopping connects adjacent orbits to each other, which leads to
the energy width of the energy level [29]. That is, the magnetic
energy bands are formed by the electron hopping between
adjacent orbits.

On the other hand, the electron hopping between adjacent
orbits leads to various kinds of extended orbits. As is expected,
extended electronic orbits such as MB1, MB2, MB3, and
MB4 would be generated by the electron hopping between
adjacent orbits. Figure 3 shows the dependence of the MB
oscillation on the TB parameter, which gives evidence for the
direct relation between the MB and the electron hopping. It
is found from Fig. 3 that the amplitude of the MB oscillation
becomes larger as the TB parameter becomes larger. The large
TB parameter promotes the electron hopping between adjacent
semiclassical orbits. Therefore, the MB is more likely to occur
as the TB parameter becomes larger. Thus, the MB phenomena
can be recognized as the electron hopping between adjacent
semiclassical orbits. In addition, since the electron hopping
between adjacent semiclassical orbits leads to the widening
of the magnetic energy band, as mentioned above [29], the
energy width indicates to what extent the MB likely occurs.

IV. RELATION BETWEEN MB OSCILLATION AND
MAGNETIC ENERGY BANDS

In this section, we mention the relation between MB
oscillations and magnetic energy bands. Figure 4 shows
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FIG. 4. Dependence of the magnetization and the Fermi energy
on the magnitude of the magnetic field (p/q). The vertical dashed
lines indicate the positions of the dHvA and MB oscillations.

the magnetic-field dependences [(p/q) dependences] of the
magnetization and Fermi energy for the η = 0.52 case. Many
oscillation peaks are found in Fig. 4. To identify the origin
of the oscillation peak, the set of vertical dashed lines that
indicates the period of the dHvA, MB1, MB2, MB3, or MB4
oscillations is drawn in Fig. 4. The period is calculated by
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FIG. 5. Overall view of the magnetic energy-band structure for
the case of p/q = 17/151 ≈ 1/8.882. The position of the Fermi
energy (EF ) for the case of η = 0.52 is indicated by the red line and
arrow.
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2πe/h̄Aα , where Aα denotes the cross section of the orbit α

(=dHvA, MB1, MB2, MB3, or MB4). As shown in Fig. 4,
major oscillations come from the dHvA, MB1, MB2, MB3, or
MB4. It is also found that the Fermi energy changes rapidly
at the vertical dashed lines. This implies that, in a similar way
to the dHvA oscillation, magnetic oscillations of MB1, MB2,
MB3, and MB4 would occur when some magnetic energy
bands become occupied or unoccupied states. With the aid
of Fig. 4, the relation between magnetic energy bands and
magnetic oscillations of the dHvA, MB1, MB2, MB3, and
MB4 is investigated.

Figure 5 shows the overall view of the magnetic energy-
band structure for the case of p/q = 17/151 ≈ 1/8.882. The
horizontal axis denotes the wave vector defined in the magnetic
Brillouin zone [29]. In Fig. 5, we can find nine clusters. Each
cluster consists of a lot of magnetic energy bands, as shown in
the inset of Fig. 5. The magnetic energy bands are nearly flat,
which corresponds to the quantization of the orbital motion
of electrons in a uniform magnetic field [29]. As shown in
Ref. [31], the dHvA oscillation appears whenever the cluster of
the energy bands crosses the Fermi energy with increasing B.
Therefore, each cluster corresponds to a semiclassical energy
level [31]. As is expected from the fact that the semiclassical

orbit on the constant-energy surface [E(k) = E] is a holelike
orbit for E > E0 = −12.1538 (eV), the cluster with a higher
energy than the center (E0) goes down with increasing B.
On the other hand, the cluster with a lower energy than E0

goes up with increasing B, corresponding to the fact that the
semiclassical orbit with E < E0 is an electronlike orbit.

It is found from Fig. 5 that the energy width of the cluster
(bandwidth), which corresponds to Harper broadening [32],
becomes wider as the position of the cluster approaches the
center. This can be understood as follows. The semiclassical
orbits in k-space are close to each other if the corresponding
energy levels lie near the center. Therefore, the electronic
hopping between these adjacent semiclassical orbits occurs
more readily as the energy levels approach the center. Since
the electron hopping between adjacent semiclassical orbitals
results in a widening of the bandwidth [29], the bandwidth
becomes wider as the position of the cluster approaches the
center. Furthermore, it is found from the inset of Fig. 5 that the
cluster near the center has a fine energy level structure. That
is, the cluster consists of several subclusters. As shown below,
these subclusters play an important role in MB oscillations.

With increasing B from the case of Fig. 5, the bandwidth
near the center becomes wider. As mentioned below, magnetic

FIG. 6. Dependence of magnetic energy bands near the center on p/q, the values of which are (a) 61/487 (≈1/7.983), (b)
25/199 (≈1/7.960), (c) 24/191 (≈1/7.958), and (d) 21/167 (≈1/7.952), respectively. The position of the Fermi energy (EF ) for the case
of η = 0.52 is indicated by the red line and arrow.
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energy bands that would be caused by the MB appear
in the cluster near the center. Figures 6(a)–6(d) show the
magnetic-field dependence of magnetic energy bands near
the center for higher-magnetic-field cases, the p/q values of
which are (a) 61/487 (≈1/7.983), (b) 25/199 (≈1/7.960), (c)
24/191(≈1/7.958), and (d) 21/167 (≈1/7.952), respectively.
In these figures, the set of magnetic energy bands lying
between −11.5 and −4 eV corresponds to a cluster near the
center. The magnetic energy bands in this cluster show a char-
acteristic dependence on the magnetic field. That is, magnetic
energy bands are classified into two kinds of subclusters by
their magnetic-field dependence. One is that the constituent
magnetic energy bands lie in the lower half of the cluster and
go up with increasing B. The other is that they lie in the upper
half of the cluster and go down with increasing B. Judging
from the magnetic-field dependence, it seems that magnetic
energy bands belonging to the former subcluster originate
from electronlike semiclassical orbits, while magnetic energy
bands belonging to the latter subcluster originate from holelike
semiclassical orbits. Considering the fact that electronlike
semiclassical orbits on the constant-energy surface exist only
below the center, the above-mentioned dependence strongly
suggests that the set of magnetic energy bands in the lower half
of the cluster originates from the MB1 orbit. This is because
(i) the derivative of the cross section (AMB1) with respect to the
energy is positive, so that the cyclotron effective mass becomes
positive for the MB1 orbit, and (ii) magnetic energy bands of
this type appear only near the center where the MB occurs
more frequently than other energy ranges. It should be noted
that the lower and upper subclusters have a wide energy width.
While the widening of the upper subcluster is, as mentioned
above, due to the hybridization between semiclassical orbits
that is caused by electron hopping between them, that of the
lower subcluster is due to hybridization between MB1 orbits
that is caused by electron hopping between them.

With increasing B, the lower and upper subclusters that
are shown in Figs. 6(a)–6(d) approach each other. This
would cause the hybridization between the MB1 orbits (lower
subcluster) and the semiclassical orbits on the constant-
energy surface (upper subcluster). Figures 7(a)–7(h) show
the magnetic-field dependence of magnetic energy bands for
higher-magnetic-field cases, the p/q values of which are
(a) 59/457(≈1/7.746), (b) 25/193 (≈1/7.720), (c) 26/199
(≈1/7.654), (d) 25/191 (≈1/7.640), (e) 50/379 (≈1/7.580),
(f) 24/179 (≈1/7.458), (g) 29/211 (≈1/7.276), and (h)
48/349 (≈1/7.270), respectively. As shown in Fig. 7(a), three
subclusters are formed around −7 eV as a consequence
of the hybridization of the lower and upper subclusters of
Figs. 6(a)–6(d). The middle subcluster out of three passes
through the Fermi energy with increasing B [Fig. 7(b)],
and thus becomes an unoccupied state. Corresponding to
this change, the Fermi energy goes down from the middle
subcluster to the lowest one [Fig. 7(b)]. At this magnetic
field [p/q = 25/193 (≈1/7.720)], the MB oscillation related
to the MB4 orbit appears as shown in Fig. 4. This implies that
magnetic energy bands of the middle subcluster are related to
the MB4 orbit.

The highest subcluster in Fig. 7(b) and the middle subcluster
(MB4 orbit) overlap each other with increasing B, so that two
subclusters appear in the case of Fig. 7(c). Magnetic energy

bands in the lower subcluster, which is denoted by MB3 orbit
in Fig. 7(c), are partially occupied in the case of Fig. 7(c). As
shown in Figs. 7(d) and 7(e), the number of magnetic energy
bands in the lower subcluster decreases with increasing B, so
that magnetic energy bands in the lower subcluster are fully
occupied. In response to this change, the Fermi energy goes up
from the lower subcluster to the upper subcluster [Fig. 7(e)].
Since the oscillation peak related to the MB3 orbit appears
at the case of p/q = 50/379 ≈ 1/7.580 [Fig. 7(e)], as shown
in Fig. 4, the lower subcluster in Figs. 7(c)–7(e) seems to be
related to the MB3 orbit.

Between Figs. 7(a) and 7(e), the total number of magnetic
energy bands around −7 eV decreases with B gradually.
Further increase of B leads to a further decrease of the number
[Figs. 7(f) and 7(g)]. This would be related to the fact that
energy states originating from the MB1 orbit disappear when
their energy levels go up. If energy states originating from
MB1 disappear, then the hybridized energy states related to
the MB1 orbit also disappear.

While magnetic energy bands around −7 eV are disap-
pearing, the cluster of magnetic energy bands appears around
−12 eV, as shown in Figs. 7(a)–7(h). In this lower cluster, one
can find magnetic energy bands that go up with increasing B.
They are expected to originate from the MB1 orbit. At the
magnetic field of p/q = 48/397 (≈1/8.271) [Fig. 7(h)],
the Fermi energy goes down from the second lowest cluster to
the lowest cluster, so that a large oscillation peak related to the
MB1 orbit appears, as shown in Fig. 4. Thus, MB oscillations
of MB1 are generated by the appearance and disappearance
of magnetic energy bands that go up with increasing B. This
is another piece of evidence for identifying these magnetic
energy bands as energy states originating from the MB1
orbit.

Next, we shall comment on the MB oscillation related to the
MB2 orbit. Figure 6(a) corresponds to magnetic energy bands
in the case of p/q ≈ 1/7.983 at which the MB oscillation
related to the MB2 orbit occurs weakly, as shown in Fig. 4.
It is difficult from Fig. 6(a) to identify magnetic energy bands
originating from the MB2 orbit clearly. This is because the
MB oscillation related to the MB2 orbit is weak [33] for the
present system, as shown in Fig. 2. However, we can say that
some magnetic energy bands cause the MB oscillation related
to the MB2 orbit in a similar way to other MB oscillations
because the Fermi energy exhibits a spikelike change at the
magnetic field, as shown in Fig. 4. In addition, as shown in
Fig. 6(a), the energy width of the cluster becomes maximum
at the magnetic field. Therefore, we can also say that when the
energy width of the cluster becomes maximum, the weak MB
oscillation related to MB2 appears. These two facts would be
key points to reveal the mechanism of the weak MB oscillation
related to the MB2 orbit.

At the end of this section, we give a brief comment on a more
quantitative description of the subcluster. As mentioned in
Refs. [18,29–31], the magnetic energy bands depend strongly
on the value of the rational number p/q. In the case of
B ∝ p/q, p magnetic energy bands lie within a small energy
range in the magnetic Brillouin zone [29]. In addition, as is
discussed in Ref. [31], the set of p magnetic energy bands
corresponds to a cluster in many cases. To give a more
quantitative description of the subclusters, we need to know
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FIG. 7. Magnetic-field dependence of magnetic energy bands for the higher magnetic-field case, the p/q values of which are (a)
59/457 (≈1/7.746), (b) 25/193 (≈1/7.720), (c) 26/199 (≈1/7.654), (d) 25/191 (≈1/7.640), (e) 50/379 (≈1/7.580), (f) 24/179 (≈1/7.458),
(g) 29/211 (≈1/7.276), and (h) 48/349 (≈1/7.270), respectively. The position of the Fermi energy (EF ) for the case of η = 0.52 is indicated
by the red line and arrow.
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what determines the largeness of the energy gaps between
p magnetic energy bands; this could be explored in future
work.

V. CONCLUDING REMARKS

We investigate MB oscillations on the basis of magnetic
energy bands calculated by the MFRTB method. It is found
that subclusters of magnetic energy bands are generated
by the MB in the cluster that corresponds to the energy
level of the semiclassical orbit lying on the constant-energy
surface. The formation of the subcluster is similar to the
fine energy-band structures that appear in the simple-cubic
system, where MB occurs infrequently [31]. While the fine
energy-band structures for the case of the simple-cubic system
are caused by hybridization between semiclassical orbits
lying on the constant energy surface [31], the subclusters
are caused by hybridization between semiclassical orbits
containing MB points, or between semiclassical orbits lying on
the constant energy surface and semiclassical orbits containing
MB points. It is found that whenever the subcluster becomes
unoccupied or occupied with increasing magnetic field, the
Fermi energy jumps up or down, which results in MB
oscillations.

Finally, we mention the similarity between the formation
of magnetic energy bands and that of energy bands of solids.
It is well known that energy bands in solids are formed via
electron hopping between atomic orbitals as atoms approach
each other. On the other hand, in the formation of magnetic
energy bands, the semiclassical orbit lying on the constant
energy surface and semiclassical orbits containing MB points
serve as the atomic orbital. That is, a semiclassical energy level
that corresponds to a semiclassical orbit has an energy width
that increases gradually with an increasing magnetic field
due to electron hopping between semiclassical orbits. Since
electron hopping between semiclassical orbits is enlarged with
increasing magnetic field, the inverse of the magnetic field
serves as the distance between atoms in the formation of the
magnetic energy bands. As the energy-band structure depends
on the material, the magnetic energy-band structure that
contains the fine energy level structure, the cluster structure,
and the subcluster structures depends on both the material and
the magnetic field.
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APPENDIX: MFRTB METHOD AND ITS APPLICATION
TO A TWO-DIMENSIONAL SQUARE LATTICE

IMMERSED IN A MAGNETIC FIELD

In this Appendix, for convenience, we briefly explain
the MFRTB method [29–31] and its application to a two-
dimensional square lattice immersed in a magnetic field. In
addition, we mention the calculation method of the total
energy [30,31].

The Dirac equation for an electron that moves in both a
uniform magnetic field and the periodic potential of the crystal
is given by[

cα · { p + eA(r)} + βmc2 +
∑

n

∑
i

vai
(r − Rn − di)

]

×�k(r) = E(k)�k(r), (A1)

where A(r) and vai
(r − Rn − di) are the external vector

potential of the uniform magnetic field B and the scalar
potential caused by the nucleus of atom ai that is located
at Rn + di . Vectors Rn and di denote the translation vector of
the lattice and the vector specifying the position of atom ai ,
respectively. In Eq. (A1), c, e, and m denote the velocity of
light, the elementary charge, and the rest mass of electrons,
respectively, and the matrices α = (αx, αy, αz) and β stand
for the usual 4 × 4 matrices. The vector k is the wave vector
that belongs to the magnetic first Brillouin zone [29–31]. In
the MFRTB method, the wave function �k(r) is expanded by
means of relativistic atomic orbitals for atoms immersed in a
uniform magnetic field:

�k(r) =
∑

ξ

∑
n

∑
i

C
ξ

k (Rn + di)ψ
ai,Rn+di

ξ (r), (A2)

where C
ξ

k (Rn + di) is the expansion coefficient and
ψ

ai,Rn+di

ξ (r) denotes the relativistic atomic orbital for the atom
ai that is immersed in a uniform magnetic field. By neglecting
both overlap integrals involving different centers and hopping
integrals involving three different centers, matrix elements of
the Hamiltonian are given by [29]

HRmjη,Rniξ = (
ε

ai , 0
ξ + 
ε

ai, di

ξ

)
δRm,Rn

δj,iδη,ξ + (1 − δRm,Rn
δj,i)e

−i eB
h̄

(Rnx+dix−Rmx−djx )(Rmy+djy )

× T
aj ai

ηξ (Rn − Rm + di − dj ) (A3)

with

T
aj ai

ηξ (Rl + di − dj ) =
∫

ψ
aj ,0
η (r)†

vaj
(r) + vai

(r − Rl − di + dj )

2
ψ

ai,Rl+di−dj

ξ (r)d3r, (A4)


ε
ai, di

ξ =
∫

ψ
ai, di

ξ (r)†

⎧⎨
⎩

∑
Rm

∑
k

vak
(r − Rm − dk)

⎫⎬
⎭

(Rm + dk �= di)

ψ
ai, di

ξ (r)d3r, (A5)
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where T
aj ai

ηξ (Rl + di − dj ), ε
ai ,0
ξ , and 
ε

ai, di

ξ denote the magnetic hopping integral, the atomic spectrum, and the energy of

the crystal field for the nonzero magnetic-field case, respectively. To calculate T
aj ai

ηξ (Rl + di − dj ), ε
ai , 0
ξ , and 
ε

ai, di

ξ , the

perturbation theory is employed in the MFRTB method [29]. This enables us to approximately express T
aj ai

ηξ (Rl + di − dj ),

ε
ai , 0
ξ , and 
ε

ai, di

ξ by using the hopping integral, the atomic spectrum, and the energy of the crystal field for the zero-magnetic-field
case [29]. The resultant matrix elements in the MFRTB method are given by

HRmj (n′l′J ′M ′),Rni(nlJM) =
(
ε̄

ai

nlJ (B = 0) + 
ε̄
ai , di

nlJM (B = 0) + eB

2m

2J + 1

2l + 1
h̄M

)
δRm,Rn

δj,iδn′l′J ′M ′, nlJM

+ (1 − δRm,Rn
δj,i)e

−i eB
2h̄

(Rnx+dix−Rmx−djx )(Rny+diy+Rmy+djy ) t
aj ai

n′l′J ′M ′, nlJM (Rn− Rm+di −dj ), (A6)

where t
aj ai

n′l′J ′M ′, nlJM (Rn − Rm + di − dj ) denotes the relativistic hopping integral for the zero-magnetic-field case, and they are

calculated by using the relativistic version of the Slater-Koster table [29]. In Eq. (A6), ε̄ai

n�J (B = 0) and 
ε̄
ai , di

nlJM (B = 0) represent
the energy spectrum and the energy of the crystal field for the zero-magnetic-field case, respectively. The subscripts n, �, J , and
M are the principal, orbital, total angular momentum, and magnetic quantum numbers, respectively.

In this paper, we apply Eq. (A6) to a two-dimensional square lattice immersed in a uniform magnetic field, and we suppose
that each lattice point has one atom with one s-electron, i.e., (n, l, J,M) = (n,0,1/2, ± 1/2). Taking only the hopping integrals
between nearest-neighbor atoms into consideration, and using Eq. (A6), we have the simultaneous equations for expansion
coefficients as follows [29]:[

E0 + eB

m
h̄M+2t cos

{
2π

(
kx + I

p

q

)}]
C

n0 1
2 M

k (Iaey) + t
[
C

n0 1
2 M

k [(I + 1)aey] + C
n0 1

2 M

k [(I − 1)aey]
]

= E(k)C
n0 1

2 M

k (Iaey),

(A7)

with

E0 = ε̄
ai

n0 1
2
(B = 0) + 
ε̄

ai , 0
n0 1

2 M
(B = 0) (A8)

C
n′0 1

2 M ′

k [(I ′ + 1)aey] =
{

e−2πky C
n′0 1

2 M ′

k (0) for I ′ = q − 1,

C
n′0 1

2 M ′

k [(I ′ + 1)aey] for I ′ �= q − 1,
(A9)

C
n′0 1

2 M ′

k [(I ′ − 1)aey] =
{

e2πiky C
n′0 1

2 M ′

k [(q − 1)aey] for I ′ = 0,

C
n′0 1

2 M ′

k [(I ′ − 1)aey] for I ′ �= 0,
(A10)

where t is the relativistic TB parameter, which is denoted by K1(n0 1
2 ,n0 1

2 ) 1
2

in Ref. [29]. In the derivation of Eqs. (A7)–(A10),

the magnitude of the magnetic field is assumed to be given by

B = 2πh̄

ea2

p

q
, (A11)

where p and q are relatively prime integers, and a denotes the lattice constant [18,29–31]. By solving the simultaneous equations,
we have 2q energy eigenvalues for each k, and we obtain E-k curves for the system immersed in a magnetic field. In the present
calculations, we use the following values for the lattice constant and relativistic TB parameters:

a = 0.543 nm,

E0 = −12.1538 eV,

t = −1.7391 eV. (A12)

These values are the same as those used in Refs. [29–31].
Next, we briefly explain the method to calculate the total energy [30,31]. According to the theorem mentioned in Ref. [25],

the total number of k-points in the magnetic Brillouin zone is equal to the total number of magnetic primitive unit cells contained
in the system. We calculate E(k) for all k-points under the assumption that k-points are uniformly distributed in the magnetic
Brillouin zone [29]. Then, we obtain the total energy by summing values of E(k) in order from the lowest energy state until the
total number of states reaches the total number of electrons. In the present calculations, we take 8q2 × 106 as the total number
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of k-points [30,31]. This value is determined by requiring that the dependence of the total energy per unit volume on the volume
of the system is negligibly small [30,31].
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