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Quantum phase transitions to topological Haldane phases in spin-one chains
studied by linked-cluster expansions
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We use linked-cluster expansions to analyze the quantum phase transitions between symmetry-unbroken trivial
and topological Haldane phases in two different spin-one chains. The first model is the spin-one Heisenberg chain
in the presence of a single-ion anisotropy, while the second one is the dimerized spin-one Heisenberg chain.
For both models, we determine the ground-state energy and the one-particle gap inside the nontopological phase
as a high-order series using perturbative continuous unitary transformations. Extrapolations of the gap series
are applied to locate the quantum critical point and to extract the associated critical exponent. We find that
this approach works unsatisfactorily for the anisotropic chain, since the quality of the extrapolation appears
insufficient due to the large correlation length exponent. In contrast, extrapolation schemes display very good
convergence for the gap closing in the case of the dimerized spin-one Heisenberg chain.
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I. INTRODUCTION

Topologically ordered quantum phases have attracted an
enormous amount of interest in recent years due to their fas-
cinating physical properties. Such phases display long-range
quantum entanglement in the ground state and support exotic
excitations with fractional quantum numbers. In addition,
in two dimensions, these excitations feature unconventional
particle statistics that differ from those of conventional
fermions or bosons. The latter excitations, called anyons [1,2],
are at the heart of topological quantum computation [3–5].
Quantum phases with such topological order are robust against
small quantum fluctuations. But strong enough perturbations
destroy the topological order via a quantum phase transition
to a different ground state, which is usually not topologically
ordered. Since topological order cannot be characterized by
local order parameters, these quantum phase transitions cannot
be described by Landau’s paradigm of phase transitions.
Therefore, it is interesting and important to investigate such
quantum critical behavior.

Interacting quantum spin systems are one of the relevant
arenas in which to explore topological quantum phase transi-
tions. They are known to realize topological order and associ-
ated phase transitions in a large variety of microscopic models
and dimensions. This includes three-dimensional quantum
spin-ice models displaying a quantum phase transition out
of a topological Coulomb phase [6,7], two-dimensional toric
codes, Kitaev and string-net models showing a plethora of
phase transitions in the presence of additional perturbations
[8–20], as well as one-dimensional quantum spin chain
models.

The most prominent one-dimensional spin system display-
ing topological order is the antiferromagnetic spin-one chain
[21–24]. Its ground state possesses long-range string order
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[25,26] and its elementary excitations above the topological
singlet ground state are gapped, consistent with Haldane’s
conjecture [21–23]. A quantum phase transition out of such a
Haldane phase can be induced by additional interactions, e.g.,
a single-ion anisotropy [27,28] or a dimerization giving rise
to the dimerized spin-one Heisenberg chain. It is known that
the quantum phase transition between the gapped topological
Haldane phases and, in both models, topologically trivial
gapped phases is continuous, belonging to the Gaussian
universality class [29–34].

In this work, we study this topological phase transition
of the antiferromagnetic spin-one Heisenberg chain in the
presence of single-ion anisotropy or dimerization. Our main
interest is whether one can understand the continuous phase
transition by the closing of the one-particle gap of the trivial
phases, i.e., from the limit of infinitely strong dimerization
or single-ion anisotropy where the ground state is given by
unentangled product states. To this end, we set up high-
order linked-cluster expansions for the one-particle excitations
inside the trivial phases using the method of perturbative
continuous unitary transformations (pCUTs) [35,36]. Extrap-
olations of the one-particle gap allow us to locate the quantum
critical points and to extract the associated critical exponents.
We find that the extrapolation of the one-particle gap yields
unsatisfying results for the spin-one Heisenberg chain in the
presence of a single-ion anisotropy. This likely originates from
the fact that the correlation length exponent is larger than 1
[34] so that the one-particle gap closing is very flat. In contrast,
our results for the dimerized spin-one Heisenberg chain
compare well with the other numerical results of the literature,
which we discuss at the end of this work. Consequently, our
results provide confirmation of previous results, obtained by
complementary series expansion methods.

The paper is organized as follows. We introduce the
microscopic models in Sec. II and we explain all the technical
aspects in Sec. III. This includes the pCUT method as well
as the applied extrapolation schemes. In Sec. IV, we present
and discuss our results. Finally, we draw our conclusions in
Sec. V.
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FIG. 1. (i) The left part illustrates the Heisenberg chain in the
presence of a single-ion anisotropy. Circles embody spin-one degrees
of freedom, and black lines represent Heisenberg interactions with
strength λac. The right part shows the energy spectrum of an isolated
spin subject to a single-ion anisotropy. The three eigenstates are
denoted by |α〉, with α ∈ {0, ± 1} labeling the quantum number of Sz.
(ii) The left part illustrates the dimerized Heisenberg chain. The black
box shows the dimer d consisting of a left (red circles) and a right
(white circles) spin one. Black lines represent interdimer Heisenberg
interactions with strength λdc. On the right, the energy spectrum of an
isolated spin-one Heisenberg dimer is sketched. The lowest-energy
eigenstate is the singlet |s〉. Excitations are triplet states |tα〉 with
α ∈ {0, ± 1} and quintuplet states |qβ〉 with β ∈ {0, ± 1, ± 2}.

II. MODELS

We consider two types of antiferromagnetic spin-one
chains: (i) a Heisenberg chain in the presence of a single-ion
anisotropy (ac), and (ii) a dimerized Heisenberg chain (dc).
Both models are illustrated in Fig. 1.

A. Single-ion anisotropy

The Hamiltonian of the Heisenberg chain in the presence
of a single-ion anisotropy reads

H(ac) =
∑

j

(
Sz

j

)2 + λac

∑
j

Sj · Sj+1. (1)

The sums run over all sites j of a one-dimensional chain,
λac ∈ [0,∞), and Sj = (Sx

j ,S
y
j ,S

z
j ) represents the spin-one

operator on site j . For large λac, this model realizes a topolog-
ical Haldane phase characterized by a nonlocal string order
parameter and gapped elementary excitations. In contrast,
for small λac, one finds a ground state that is adiabatically
connected to the case λac = 0 of decoupled spin-ones. The
three spin eigenstates in the presence of a single-ion anisotropy
are denoted by |α〉, with α ∈ {0, ± 1} labeling the quantum
number of Sz. The eigenenergy of state |α〉 is α2 as sketched
on the right side of Fig. 1(i). For λac = 0, the ground state
is the unentangled product state

∏
j |0〉j and elementary

excitations are local spin flips to the states | ± 1〉 of single
spins costing an energy �(ac) = 1. Therefore, for small λac,
the phase is featureless without symmetry breaking and has
gapped excitations. Consequently, there must occur a quantum
phase transition between the two gapped phases when the
parameter λac is varied. This Gaussian transition has been
located accurately by density matrix renormalization-group
calculations to be at λc

ac ≈ 1.032 58, and the gap in both
quantum phases closes with a critical exponent zν ≈ 1.472

[34]. Here z is the dynamical exponent and ν is the correlation
length exponent.

B. Dimerized chain

The Hamiltonian of the dimerized Heisenberg chain is given
by

H(dc) =
∑

d

Sd,L · Sd,R + λdc

∑
d

Sd,R · Sd+1,L, (2)

where Sd,L (Sd,R) denotes a spin-one operator on the left
(right) site of dimer d [see also Fig. 1(ii)]. The parameter
λdc ∈ [0,1] varies from the isolated dimer limit λdc = 0 to
the isotropic Heisenberg chain λdc = 1. The ground state for
λdc = 0 is the unentangled product state

∏
d |s〉d , where |s〉d

is the singlet eigenstate of the isolated dimer d. Elementary
excitations are local triplets |tα〉 with α ∈ {0, ± 1} and quin-
tuplets |qβ〉 with β ∈ {0, ± 1, ± 2} as illustrated on the right
side of Fig. 1(ii). In contrast, the isotropic Heisenberg chain
at λdc = 1 is known to be in a topologically ordered gapped
Haldane phase like the ac for large λac discussed above. Thus
a Gaussian quantum phase transition must occur as a function
of λdc between the two gapped phases, which is known to take
place at λc

dc ≈ 0.6 [37–45]. The associated gap closing critical
exponent is zν = 1 [21–23,27,28,38–40,45].

III. pCUT

In this section, we provide the relevant technical aspects of
pCUT applied to both spin-one chains. We start by sketching
the underlying method of the expansion; for details, the reader
may consult Refs. [35,36,46]. The expansion’s reference point
is λκ = 0 with κ ∈ {ac,dc}. Here the ground state is given by a
product state in both models. The spin-one Heisenberg chain in
the presence of single-ion anisotropy is in the state where each
spin on site j is in the state |0〉j , and the elementary excitations
are local excitations | ± 1〉j having Sz

j = ±1 and an excitation
energy �(ac) = 1 [see Fig. 1(i)]. For the dc, isolated dimers are
in the singlet state |s〉d , and elementary excitations are local
triplets with total spin 1 and with excitation energy �(dc) = 1
as well as local quintuplet excitations with total spin 2 and
excitation energy 3 as illustrated in Fig. 1(ii).

After a global energy shift, we can rewrite both models in
the form

H(κ) = H(κ)
0 + λκ V̂ (κ), (3)

where κ ∈ {ac,dc} and H(κ)
0 is a counting operator of elemen-

tary energy quanta. The number of energy quanta is equal to
the number of local excitations | ± 1〉 with Sz = ±1 for the ac.
In contrast, for the dc, the number of energy quanta is given by
the number of triplet excitations |tα〉 with α ∈ {0, ± 1} plus
three times the number of quintuplet excitations |qβ〉 with
β ∈ {0, ± 1, ± 2}, since the eigenenergy of the states |qβ〉
is 3.

The perturbations can be written as

V̂ (ac) = T̂
(ac)
−2 + T̂

(ac)
0 + T̂

(ac)
2 (4)
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for the ac and

V̂ (dc) =
4∑

m=−4

T̂ (dc)
m (5)

for the dc, where T̂ (κ)
m changes the total number of energy

quanta by m.
Each operator T̂ (κ)

m is a sum over local operators connecting
two nearest-neighbor supersites on the chain, where a supersite
corresponds to a single spin for the ac and a dimer for the dc.
One can therefore write

T̂ (κ)
m =

∑
l

τ̂
(κ)
m,l, (6)

with τ̂
(κ)
m,l affecting the two supersites connected by the link l

on the chain of supersites.
The pCUT method [35,36,46] maps the original Hamilto-

nian to an effective quasiparticle-conserving Hamiltonian of
the form

H(κ)
eff = H(κ)

0 +
∞∑

n=1

λn
κ

∑
dim(m)=n

M(m)=0

C(m) T̂ (κ)
m1

· · · T̂ (κ)
mn

, (7)

where n reflects the perturbative order. The second sum runs
over all possible vectors m≡ (m1, . . . ,mn) with mi ∈ {±2,0}
(mi ∈ {±4, ± 3, ± 2, ± 1,0}) for the ac (dc) and dimension
dim(m) = n. Each term of this sum is weighted by the
rational coefficient C(m) ∈ Q, which has been calculated
model-independently up to high orders [35]. The additional
restriction M(m) ≡ ∑

i mi = 0 reflects the quasiparticle-
number conservation of the effective Hamiltonian, i.e., the
resulting Hamiltonian is block-diagonal in the number of
energy quanta, [H(κ)

eff ,H
(κ)
0 ] = 0. Each quasiparticle-number

block can be investigated separately, which represents a major
simplification of the complicated many-body problem.

The operator products T̂m1 · · · T̂mn
appearing in order n

can be interpreted as virtual fluctuations of “length” l � n

leading to dressed quasiparticles. According to the linked-
cluster theorem, only linked fluctuations can have an overall
contribution to the effective Hamiltonian Heff. Hence, the
properties of interest can be calculated in the thermodynamic
limit by applying the effective Hamiltonian to finite chain
segments.

In practice, we calculated high-order series expansions for
the zero- and one-quasiparticle sector for both models. Note
that the computations for the dc are more demanding than
the ones for the ac. The reasons for this are the larger local
Hilbert space of a dimer compared to that of a single spin and
the larger number of operators T̂m resulting in more operator
sequences in the effective Hamiltonian (7). As a consequence,
we reach lower perturbation orders for the dc compared to the
ac. Additionally, the coefficients of the series are obtained as
exact fractions for the ac while we had to calculate with a float
number for the dc. The zero-quasiparticle sector yields directly
the ground-state energy per supersite, which we calculated
up to order 14 (8) for the ac (dc). Similar calculations in
the one-quasiparticle sector result in the one-particle hopping
amplitudes, which we determined up to order 15 (8) for the ac
(dc). A Fourier transformation diagonalizes the one-particle
hopping Hamiltonian for both spin-one chains. This yields

the one-particle dispersion ω(κ)(k) and the one-particle gap
�(κ) ≡ ω(κ)(k = 0).

A. Extrapolation

To detect second-order quantum phase transitions, we use
Padé and DlogPadé techniques to extrapolate the one-particle
gap �(κ) [47]. To this end, various extrapolants [L,M] are
constructed, where L denotes the order of the numerator and
M denotes the order of the denominator.

A standard extrapolation scheme is the Padé extrapolation,
which is defined by

P[L,M]� ≡ PL(λ)

QM (λ)
= p0 + p1λ + · · · + pLλL

q0 + q1λ + · · · + qMλM
(8)

for the one-particle gap � and with pi,qi ∈ R and q0 = 1.
The latter can be achieved by reducing the fraction. The real
coefficients are fixed by the condition that the Taylor expansion
of P[L,M]� about λ = 0 up to order r ≡ L + M with
L + M � n recovers the corresponding Taylor polynomial
of order r for the original series of �. Here n denotes the
maximum perturbative order that has been calculated.

The DlogPadé extrapolation is based on the Padé
extrapolation P[L,M]D of the logarithmic derivative
D(λ) ≡ d

dλ
ln �(κ) of the one-particle gap �(κ). Due to the

derivative in D, one requires L + M � n − 1. The DlogPadé
extrapolant dP[L,M]� is then given by

dP[L,M]� ≡ exp

(∫ λ

0
P[L,M]D dλ′

)
. (9)

In the case of a physical pole of P[L,M]D at λc, which
corresponds to the closing of the gap and therefore to the
location of the quantum critical point, one is able to determine
the dominant power-law behavior |λ − λc|zν close to λc. The
critical exponent zν is given by the residuum of P[L,M]D at
λ = λc,

zν = PL(λ)
d
dλ

QM (λ)

∣∣∣∣
λ=λc

, (10)

where PL(λ) [QM (λ)] is the numerator (denominator) of
P[L,M]D. If the exact value of λc is known, one can obtain
better estimates of the critical exponent zν by defining

zν∗(λ) ≡ (λc − λ)D(λ) ≈ zν + O(λ − λc)

and by then applying standard Padé extrapolation on the
function zν∗(λ),

P[L,M]zν∗

∣∣∣∣
λ=λc

= zν, (11)

evaluated at λ = λc.
In general, one expects that the quality of the extrapolation

increases with the perturbative order. Convergence of a physi-
cal quantity is indicated by different extrapolants [L,M] (Padé
or DlogPadé extrapolation) and especially different families
of extrapolants with L − M = const yielding the same result.
Here and in the following, we omit the index � in [L,M]� for
the sake of brevity. Note that Padé and DlogPadé extrapolants
can possess so-called spurious poles, i.e., poles for 0 < λ < λc,
or physical poles for λ ≈ λc, where λc corresponds to the
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location of a quantum critical point. These spurious poles
usually spoil the quality of the extrapolation. Thus associated
extrapolants are excluded in the further analysis.

IV. RESULTS

In this section, we present our results and discuss impli-
cations for the quantum phase transition between the trivial
and the Haldane phases. To this end, we focus on the one-
particle gap inside the trivial phases of both models, since
extrapolations of the ground-state energy did not provide any
quantitative indications for the quantum critical behavior.

A. Anisotropic chain

As outlined above, we have applied the pCUT method to
calculate the ground-state energy per site ε

(ac)
0 as well as the

one-particle gap in the form of a high-order series in λac. The
explicit expressions are given by

ε
(ac)
0 = −λ2

ac − 1

2
λ3

ac + 1

4
λ4

ac + 9

8
λ5

ac + 17

16
λ6

ac − 39

32
λ7

ac

− 597

128
λ8

ac − 117

32
λ9

ac + 52 681

6144
λ10

ac + 157 237

6144
λ11

ac

+ 11 698 951

884 736
λ12

ac − 353 210 417

5 308 416
λ13

ac

− 20 232 615 041

127 401 984
λ14

ac (12)

and

�(ac) = 1 − 2λac + λ2
ac + 1

2
λ3

ac − 3

4
λ4

ac − 1

4
λ5

ac + 3

32
λ6

ac

+ 99

32
λ7

ac − 53

128
λ8

ac − 14 367

2048
λ9

ac − 11 647

768
λ10

ac

+ 4 659 605

294 912
λ11

ac + 257 499 161

3 538 944
λ12

ac

+ 3 026 827 735

42 467 328
λ13

ac − 3 056 050 607

14 155 776
λ14

ac

− 982 259 794 445

1 528 823 808
λ15

ac . (13)

Next we analyze the one-particle gap to extract the
quantum critical properties of the ac by applying DlogPadé
extrapolation. The resulting quantum critical points λc

ac are
shown for various families of extrapolants dP[L,M] with
L − M = const as a function of the total order r = L + M

in Fig. 2.
Obviously, the quality of the extrapolation is not very

convincing, since the locations of the critical point scatter
between λc

ac ≈ 1 and λc
ac ≈ 1.5. We attribute this to the gap

expected to close with an exponent zν = 1.472 > 1 [34]. As
a consequence, the gap closing is very flat. It is reasonable to
interpret the unsatisfactory extrapolation as being caused by
the fact that it is hard for the DlogPadé extrapolation to locate a
very flat gap closing precisely. Indeed, if one studies the asso-
ciated critical exponents for the extrapolants shown in Fig. 2,
one finds values for zν in the large interval 1 to 5 (not shown).
We therefore biased the DlogPadé extrapolants to the critical
value λc

ac = 1.032 58 [34] and extracted the critical exponent

6 8 10 12 14 16 18
order r

0.8

1

1.2

1.4

λ ac

c

L-M=0
L-M=+1
L-M=-1
L-M=-2
L-M=-3

8 12 16
order r

1.2

1.5

1.8

2.1

zν

biased dP

FIG. 2. Critical point λc
ac as a function of the order r extracted

from different families of DlogPadé extrapolants dP[L,M] with L −
M = const. The dashed horizontal line indicates λc

ac = 1.032 58 from
Ref. [34]. Inset: Critical exponent zν extracted from biased DlogPadé
extrapolation using λc

ac = 1.032 58 in Eq. (11). The dashed horizontal
line indicates zν = 1.472 (taken also from Ref. [34]).

using Eq. (11). These results are displayed in the inset of Fig. 2.
We first note that a larger number of DlogPadé extrapolants
do not show spurious poles when biasing with λc

ac = 1.032 58.
Furthermore, the different families of extrapolants seem to
converge to the critical exponent zν ≈ 1.5 consistent with the
expected value zν = 1.472 > 1 [34]. Still, the overall quality
of the extrapolation is not sufficient to gain any quantitative
insights into the quantum critical behavior of the ac.

B. Dimerized chain

Next we look at the dc. The series expansion for the ground-
state energy reads

ε
(dc)
0 = −0.666 666 666 7 λ2

dc − 0.166 666 666 6 λ3
dc

+ 0.009 259 259 2 λ4
dc − 0.041 358 024 7 λ5

dc

− 0.030 448 674 0 λ6
dc + 0.005 420 191 0 λ7

dc

− 0.023 729 015 3 λ8
dc (14)

and the one-particle gap is given by

�(dc) = 1.000 000 000 − 1.333 333 333 3 λdc

− 0.814 814 814 9 λ2
dc + 1.148 148 148 3 λ3

dc

− 1.974 651 349 2 λ4
dc + 3.464 781 474 5 λ5

dc

− 6.444 028 114 3 λ6
dc + 12.343 184 172 4 λ7

dc

− 27.602 644 347 3 λ8
dc. (15)

For this model, one expects that the gap closes around
λc

dc ≈ 0.6 with a critical exponent zν = 1. We have applied
Padé and DlogPadé extrapolation to the one-particle gap in
order to study the quantum phase transition of the dc. The
results are shown in Fig. 3. In contrast to the ac, we find a much
better convergence for the dc in both extrapolation schemes.
The DlogPadé extrapolants converge to a value λc

dc ≈ 0.61. An
exception is extrapolant dP[5,2] (square symbol for r = 7),
which is the single member of the rather nondiagonal family
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zν

order r

FIG. 3. The critical point λc
dc displayed as a function of the order

r in the upper (lower) panel using DlogPadé (Padé) extrapolation.
Different symbols correspond to different families of extrapolants
with L − M = const. Inset: Critical exponent zν extracted from
DlogPadé extrapolation.

dP[L,M] with L − M = 3 and might therefore be ignored.
The good convergence of all the other extrapolants is also
reflected in the associated critical exponents, which are shown
in the inset of Fig. 3. Averaging over the extrapolants with
the highest reliable order r = 6 gives the critical exponent
zν = 0.98 ± 0.01 consistent with the expected behavior. The
single extrapolant with r = 7 is less reliable, because one
cannot compare it to other extrapolants of the same order.

The linear closing of the gap can also be well described
by a standard Padé extrapolation. We find a good conver-
gence, as can be seen from the lower panel of Fig. 3. All
families converge to a critical value close to 0.61. To get
a more quantitative estimate of the quantum critical point,
we calculated average values of the Padé extrapolants of the
same order r and scaled the averages to the infinite-order limit
r → ∞. The results of this scaling are shown in Fig. 4 as a
function of 1/r . For this we have omitted values from too small
orders r < 4 as well as families’ small-order outliers deviating
strongly from high-order members of the same family. A
linear scaling of the averaged values and their variances gives
λc

dc = 0.6133 ± 0.0016. Note that the error bar reflects the
rather small variance of different Padé extrapolants and does
not correspond to an error margin in the sense of measurement
uncertainties or numerical errors.

Let us compare our findings to the results for the dc in
the literature. The critical point at λc

dc ≈ 0.61 and the critical

FIG. 4. Linear scaling of the critical point λc
dc as a function of

1/r . Data points are the average of Padé extrapolants of the same
order shown in Fig. 3. Error margins correspond to their variance.
Solid and dashed lines are linear scalings through the data points and
their variances, respectively.

exponent zν ≈ 1 are consistent with other investigations.
High-order series expansions for physical quantities other
than the gap amount to λc

dc = 0.6 ± 0.04 [37]. Density matrix
renormalization-group calculations yield λc

dc = 0.6 ± 0.0128
by analyzing the gap closing [38,42]. Similarly, quantum
Monte Carlo simulations obtain λc

dc ≈ 0.6 via the
one-particle gap, extracting also the effective light velocity
v ≈ 2.46 ± 0.01 as well as the central charge c ≈ 1.02 ± 0.09
at the quantum critical point [39,40]. Interestingly, other
works point toward a critical value slightly below 0.6
[41,43–45]. Exact diagonalization gives λc

dc = 0.595 ± 0.01
[41] when performing finite-size scaling of the Binder
parameter with the nonlocal string order parameter. The
infinite time-evolving block decimation (iTEBD) method
yields λc

dc =0.587 ± 0.002 by analyzing the singular behavior
of the bipartite entanglement in the ground state [44,45].
Altogether, it seems that estimators of ground-state properties
such as the bipartite entanglement or the nonlocal string
order parameter tend to smaller values λc

dc ≈ 0.59 compared
to other investigations (including ours), which locate the
quantum critical point via the closing of the excitation gap.

V. CONCLUSIONS

We calculated high-order series expansions for the ground-
state energy per site and the one-particle gap for two different
spin-one chains using the method of perturbative continuous
unitary transformations. In both cases, the expansion is per-
formed inside a trivial phase where the unperturbed reference
state is a product state of isolated spins (ac) or isolated
dimers (dc). Computationally, the expansion for the dc is
more involved due to the larger local Hilbert space of a single
dimer compared to that of a single spin-one for the ac. As a
consequence, substantially higher orders are reached for the ac.

Both spin-one chains display a second-order quantum
phase transition between two symmetry-unbroken gapped
ground states. The systems are either in a trivial phase or
in a topological Haldane phase with unconventional nonlocal
string order parameter. Although both transitions are expected
to belong to the Gaussian universality class, the critical
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exponent associated with the one-particle gap closing is
very different: For the ac one finds an exponent zν ≈ 1.472
[34], while an integer exponent zν = 1 is expected for the
dc [21–23,27,28,38,39,45]. This results in a very different
convergence behavior when one extrapolates the one-particle
gap series for both spin-one chains using Padé and DlogPadé
extrapolation. We find that the extrapolation for the ac yields
unsatisfactory results displaying a large uncertainty for the
location of the critical point and for the value of the critical
exponent. Only a biased Dlog-Padé extrapolation shows
more convincing values for the critical exponent approaching
zν ≈ 1.5. The situation is strongly different for the dc,
although the calculated perturbative order is smaller. We find a

very good convergence of Padé and DlogPadé extrapolation for
the one-particle gap. Our findings are in quantitative agreement
with values of the literature.

It is unclear what the reason is for the small discrepancies
between the location of the quantum critical point for the dc
when either studying the gap closing or the physical properties
of the ground state, such as entanglement measures. This
question deserves further investigations in the future.
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