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Instability of Dirac semimetal phase under a strong magnetic field
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The quantum limit can be easily reached in Dirac semimetals under a magnetic field, which leads to some
exotic many-body physics due to the high degeneracy of the topological zeroth Landau bands. By solving the
effective Hamiltonian, which is derived by tracing out the high-energy degrees of freedom, at the self-consistent
mean-field level, we have systematically studied the instability of Dirac semimetals under a strong magnetic
field. A charge-density wave (CDW) phase and a polarized nematic phase formed by “exciton condensation”
are predicted as the ground state for the tilted and untilted bands, respectively. Furthermore, we propose that, as
distinguished from the CDW phase, the nematic phase can be identified in experiments by anisotropic transport
and Raman scattering.
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I. INTRODUCTION

Searching for new states of matter in solid materials is
one of the key problems in condensed-matter physics and has
attracted lots of research interest recently. Applying an external
magnetic field has provided an additional dimension for such
studies, already leading to surprisingly rich phenomena and
phases in two-dimensional electron-gas systems, e.g., the
integer [1] and fractional [2] quantum Hall effects, the Wigner
crystal phase, as well as the nematic phases [3–5]. The
high degeneracy of Landau levels resulting from the Landau
quantization of the electronic wave functions is the main origin
of the instability towards the various exotic phases mentioned
above. In three-dimensional systems, the Landau quantization
only happens in the plane perpendicular to the magnetic
field and the energy dispersion along the field direction
remains unchanged. For ordinary semiconductor systems with
quadratic band dispersion, the high degeneracy of the Landau
bands (LBs) leads to almost perfect nesting of the “Fermi
surfaces” along the field direction, as illustrated schematically
in Fig. 1. Such a nesting effect will be greatly enhanced in
the so-called quantum limit, where only the lowest LB cuts
through the Fermi level, and the field-induced symmetry-
breaking phases such as charge-density waves (CDWs) [6–8],
spin-density waves [6,9,10], and valley-density waves [10],
will be stabilized as the ground state.

It is very difficult to reach the quantum limit in normal
semiconductors and semimetals and the experimental obser-
vation of the field-induced CDW phase in real materials, i.e.,
Bi and Sb, is still under debate [11,12]. The recently discovered
topological semimetals provide a new platform for the search
for new exotic phenomena under magnetic fields [13–21]. For
Dirac [22–24] or Weyl [25–31] semimetals, where the Fermi
level is very close to the Dirac or Weyl points, the quantum
limit can be easily reached even under a weak magnetic field
and more fruitful many-body physics can be realized due to
the extra valley and orbital degrees of freedom [32,33]. For
instance, in a strong magnetic field, the Weyl semimetal is
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found to be stabilized as a chiral-symmetry-breaking CDW
state [34,35]. In the present paper, we systematically study
the possible instabilities of Dirac semimetal state under a
magnetic field in the quantum limit. We find that, besides the
CDW phase, a new state, the polarized nematic phase, can be
stabilized in a large part of the phase diagram. Such an exotic
phase is caused by the “exciton condensation” between the
two zeroth LBs, which breaks both the rotational symmetry
and the inversion symmetry, leading to a number of important
physical consequences in transport and optical experiments.

II. MODEL

Dirac semimetals can be divided into two categories by
whether the Dirac points (DPs) are located on high-symmetry
lines or points [24] of the Brillouin zone (BZ). In this paper,
we focus on the first category, where the DPs are protected by
the crystalline symmetry along the high-symmetry lines and
always appear in pairs due to the presence of time-reversal
symmetry. The typical example of such types of materials is
Na3Bi [23], where the DPs are generated by the crossings of
two doubly degenerate bands along the z axis. The low-energy
physics of such a type of Dirac semimetal can be well described
by the following k · p model:

H 0 = C(kz) +

⎛
⎜⎝

M(kz) −vh̄k− γ (k) 0
−vh̄k+ −M(kz) 0 γ (k)
γ ∗(k) 0 −M(kz) vh̄k−

0 γ ∗(k) vh̄k+ M(kz)

⎞
⎟⎠.

(1)

Here C(kz) = C0(cos a0kz − cos a0kc), M(kz) =
M0(cos a0kz − cos a0kc), k± = kx ± iky , v is the velocity in
xy plane, a0 is the lattice along kz, and ±kc are the locations
of DPs. The bases of the k · p model can be labeled by their
main orbital characters as |P 3

2 〉, |S 1
2 〉, |S − 1

2 〉, |P − 3
2 〉,

respectively. The first term in Eq. (1) plays an important role
in the formation of type-II Weyl points [36,37]. As long as
|C0| < |M0|, which is the case we focus on, the C(kz) term
will just tilt the DPs and change the ellipsoidal Fermi surface
to a pyriform one. Even so, as shown in the following, this
term will play an important role in determining whether the
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FIG. 1. Band structure and instability channels. The two zeroth
LBs, referred to as the conductance and valence bands, are plotted
in red and blue, respectively, and the high-energy LBs are plotted
in gray. Panel (a) shows the nematic phase channel (green arrows)
and three CDW phase channels (orange arrows) in an untilted band
structure (C0 = 0). As argued in the text, only the nematic phase and
the 2kc CDW phase can be realized in the low-density limit. Here
the dashed colored lines represent the folded bands in the 2kc CDW
phase. Panel (b) shows the two channels in a tilted band structure
(C0 �= 0). It is apparent that the kinetic-energy cost of the 2kc CDW
order is significantly lowered by the tilting.

CDW or nematic phase will be stabilized. The high-order
term γ (k) does not play any important role for the physics
discussed here and so is neglected in the rest of the paper.

The external magnetic field B is applied along the z

direction. We adopt the Landau gauge A = (−yB,0,0), which
leaves kx and kz still as good quantum numbers, so the LB
eigenenergies and eigenstates can be solved analytically (see
Appendix A). As shown in Fig. 1, the two zeroth LBs disperse
linearly and cross with each other at the DPs. The quantum
limit can be reached by increasing the magnetic field such that
only the zeroth LBs cuts through the Fermi level. In the present
work we are only interested in the instability in the quantum
limit, so we only keep the zeroth LBs in the noninteracting
Hamiltonian,

Ĥ 0 =
∑
akxkz

εkzaψ̂
†
kxkza

ψ̂kxkza, (2)

εkza =
{
C(kz) − M(kz), a = c

C(kz) + M(kz), a = v.
(3)

Here c and v represent the conduction band [red band in Fig. 1]
and valence band [blue band in Fig. 1], which is formed by
the |S 1

2 〉 and |P − 3
2 〉 states, respectively. Since they belong to

different eigenvalues of C6, the crossings at ±kc are protected
by rotational symmetry and will persist even if nonzero γ (k)
is present.

Notice that the Zeeman’s coupling between the magnetic
field and the field-free orbitals is neglected here. In a first-
principle study of the effective g factor [38], we show that the
Zeeman splitting in a typical Dirac semimetal under a magnetic
field as strong as 100 T is just about 5 meV, which is much
smaller than the band inversion energy M0 and so would not
affect the discussion qualitatively.

III. EFFECTIVE INTERACTION

To explore the stability of the above system under the
Coulomb repulsive interaction, we need to derive an effective

interaction for the zeroth LBs by tracing out all the high LBs.
Taking the random-phase approximation (RPA), we get

Ĥ eff
int = 1

2�

∑
q �=0

∑
kxkz

∑
pxpz

∑
ab

eil2
Bqy (kx−px )W (q)

× ψ̂
†
kx+qx,kz+qz,a

ψ̂
†
px,pz,b

ψ̂px+qx ,pz+qz,bψ̂kx ,kz,a, (4)

W (q) = e2

ε0κ(q)q2
e− 1

2 l2
B q2

⊥ , (5)

where q⊥ = (qx,qy), lB = √
h̄/eB is the magnetic length,

κ(q) is the effective dielectric function, and � is the sample
volume. Details of the RPA derivation and the discussion of the
dielectric function are given in Appendix B. As shown below,
the long-wave part of the interaction contributes the most in
both of the possible instabilities, thus we can approximate κ(q)
by a dielectric constant κ = κ0 + 1

3κz + 2
3κxy , where

κz ≈ e2u

3π2ε0v2h̄

[
0.9 + ln

(
M0lB

vh̄

)]
, (6)

κxy ≈ e2

4π2ε0uh̄

[
0.6 + ln

(
M0lB

vh̄

)]
(7)

are the dielectric constants from high LBs, κ0 is the dielectric
constant from the core electrons, and u = 1

h̄
M0a0 sin(a0kc) is

the Dirac velocity along the z direction. The derivation of such
dielectric constants is given in Appendix C. It should be noted
that the results in Eq. (6) and (7) are not only applied to this
particular model, in fact they are universal for all the Dirac or
Weyl semimetals. One of the important features for the above
effective interaction is that its strength can be tuned by an
external magnetic field, which is a bit unusual in condensed-
matter physics. The mechanism is easy to understand; that is,
the energy gap between the zeroth and high LBs increases with
the field strength, which weakens the screening effect.

IV. COULOMB HOLE PLUS SCREENED
EXCHANGE METHOD

It is well known that the direct Hartree–Fock mean-
field approximation for metals with a long-range Coulomb
interaction leads to a singular Fermi velocity because of a
logarithmic divergence in the exchange channel. To handle
this problem, we adopt the “Coulomb hole plus screened
exchange” (COHSEX) method, which is a simplified version
of the GW method [39]. Applying this method to our model,
the self-energy consists of a direct Hartree term �H and
a screened exchange term �E where the interaction is not
only screened by high-LB electrons but also the zeroth-LB
electrons. As explained in the next section, in the limit
of low carrier density, the system has a CDW instability
at Q = 2kc. For convenience of calculation, we take the
commensurate limit by setting kc = π

Dca0
, where Dc is an

integer. The BZ will be folded Dc times if the CDW order is
present. Thus, in general, we can define the Green’s function
as Gan,bm(kx,kz,t) = 〈Tt ψ̂kx ,kz+nQ,a(t)ψ̂†

kx ,kz+mQ,b(0)〉, where
n,m = 0, . . . ,Dc − 1 is the sub-BZ index and kz takes values
in the reduced BZ: 0 � kz < Q.
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FIG. 2. Feynman diagrams for the COHSEX method. The full
and free Green’s functions are represented by thick and thin lines,
respectively. Correspondingly, the screened effective interaction W S

and the bare effective interaction W are represented by thick and thin
wavy lines, respectively. Panel (a) shows the diagram for Dyson’s
equation. Panel (b) shows the diagram for the self-energy. Panel (c)
shows the diagram for the screened effective interaction, where the
Green’s functions participating in the screening are approximated by
the free Green’s functions.

Then the self-energy can be expressed as [Fig. 2(b)]

�H
an,bm(kxkz) = δabW (0,0,(n − m)Q)

∫
dpxdpzdω

(2π )3

×
∑
cn′

Gc,n′+n−m;c,n′ (px,pz,ω)eiω0+
, (8)

�E
an,bm(kxkz) = −

∑
n′

∫
d2q⊥
(2π )2

∫
dpzdω

(2π )2

×W S(ω = 0,q⊥,kz − pz + n′Q)

×Ga,n−n′;b,m−n′ (kx − qx,pz,ω)eiω0+
, (9)

where W S(ω = 0) is the static screened interaction. Here we
approximate the Green’s-function screening W S by the free
Green’s function at zero doping, as shown in Fig. 2(c). Such an
approximated screened interaction can be derived analytically

W S(ω = 0,q) = e2

ε0

e− 1
2 l2

Bq2
⊥

κq2 + q2
TF(qz)e− 1

2 l2
B q2

⊥
, (10)

where qTF(qz) is the effective Thomas–Fermi wave vector,

q2
TF(qz) =

e2M0 ln
∣∣∣ sin akc+sin aqz

2

sin akc−sin aqz
2

∣∣∣
2ε0π2l2

B

(
M2

0 − C2
0

)
a sin aqz

2

. (11)

We have checked this approximation by comparing it with full
self-consistent calculations, where W S is calculated from G

self-consistently, and find that the correction of the results is
very small.

With the above approximation, Dyson’s equation (Ĝ0−1 −
�̂)Ĝ = I [Fig. 2(a)] and Eqs. (8) and (9) set up a
self-consistent loop to determine the possible symmetry-
breaking phases at zero temperature by assuming differ-
ent nondiagonal matrix elements in the self-energy ma-
trix. For convenience, we define the order parameter as
�an,bm(kx,kz) = 〈ψ†

an(kx,kz)ψbm(kx,kz)〉, whose nondiagonal
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FIG. 3. In the left panel, the energy gaps of the polarized nematic
and CDW phases at zero doping and a few tilting ratios are plotted
as functions of magnetic field. In the right panel, the corresponding
order parameters of the two phases at B = 100 T, i.e., |�NM

v;c (kz)| and
(
∑

a |�CDW
a,−1;a,0|2)1/2, are plotted around the DPs.

elements in the band indexes a,b and sub-BZ indexes n,m

denote the appearance of the nematic phase and the CDW
phase, respectively.

V. CHARGE-DENSITY-WAVE PHASE

The CDW phase acquires its instability from the Fermi-
surface nesting in the quasi-one-dimensional band structure
[Fig. 1]. At first sight, it seems that the CDW should occur
simultaneously at the Q = 2kc + 2kF and Q = 2kc − 2kF

channels for conduction and valence bands, respectively.
However, the interband Hartree energy can lock the CDWs in
different bands to the same Q = 2kc, at least for low enough
carrier density. This conclusion can be reached by simply
comparing the energy difference between the CDW phases
with Q = 2kc ± 2kF and Q = 2kc. According to Eq. (8), the
Q = 2kc phase gains an extra interband Hartree energy of
∼W (Q)Re(�CDW

c0,c−1�
CDW∗
v0,v−1), which reaches a negative con-

stant as kF approaches zero if �CDW
c0,c−1 = −�CDW

v0,v−1. The kinetic
energy and exchange energy [Eq. (9)] difference between
the Q = 2kc and the Q = 2kc ± 2kF phases vanish as kF

approaches zero. Therefore, as long as kF is small enough, the
CDW phase with Q = 2kc for both bands will be stabilized.

The numerical calculation is performed with the initial con-
dition �CDW

an,bm(kx,kz) = δn,m+1ηa,b(kz) + δn+1,mη∗
b,a(kz), where

η(kz) is a random matrix. The parameters are set as κ0 =
5, a0 = 9.66 Å, M0a0 = 2.3 eV Å, h̄v = 2.0 eV Å, and
Dc = 4, which give the same Dirac velocity for Na3Bi as the
first-principle results [23]. We set C0 as C0 = −tM0, where
t ∈ [0,1) is the tilting ratio describing how much the bands are
tilted. In Fig. 3(b), we plot the band gaps and order parameters
at various tilting ratios and magnetic fields. It shows that the
tilting can significantly enlarge the CDW order, which is a
direct consequence of saving the kinetic energy, as sketched in
Fig. 1(b). The typical band gap under a strong magnetic field
is about 1 meV and so correspond to a transition temperature
of about 10 K.
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limit is indicated by dashed lines, and the Dirac semimetal, polarized
nematic, and CDW phases are represented by gray, green, and orange
areas, respectively. It shows that the polarized nematic phase is more
favored in untilted bands, while the CDW phase is more favored in
tilted bands.

VI. NEMATIC PHASE

As shown in Fig. 1, if the chemical potential is close enough
to the DPs, a rotation-broken phase, i.e., the nematic phase,
can be stabilized. Since the nematic phase does not break the
translational symmetry, its order parameter can be expressed in
the full BZ as �NM

a,b (kx,kz) = δābη(kz), where −π � kz < π ,
and ā = v(c) for a = c(v). Two different types of η can be
obtained: odd or even with respect to kz. According to the
definition of the LB wave function [Eq. (A2)], the inversion
operator acts on it as

Pψ̂
†
kx ,kz,c

ψ̂kx ,kz,vP−1 = −ψ̂
†
−kx ,−kz,c

ψ̂−kx ,−kz,v, (12)

thus the even and odd η will respectively break and maintain
the inversion symmetry. As discussed in the next paragraph,
the inversion-broken phase, which will be referred to as the
polarized nematic phase in the following, is always more
favored.

The band gaps and order parameters of the polarized
nematic phase, and the phase diagram consisting of the phases
mentioned above, are calculated with the same parameters
used for the CDW phase and shown in Fig. 3(a) and 4,
respectively, which indicates that the polarized nematic phase
is more favored in untilted bands while the CDW phase is
more favored in tilted bands. This can be understood as a
result of competition between kinetic energy and interaction
energy. On one hand, as explained latter, the polarized nematic
phase has a lower interaction energy; on the other hand,
as shown in Fig. 1(b), the tilting will significantly lower
the kinetic-energy cost in the CDW phase. Therefore, as
shown in Fig. 4, the area of the polarized nematic phase in
the phase diagram will shrink and eventually vanish with

increasing tilting. Now let us explain why the polarized
nematic phase has a lower interaction energy. Since its Hartree
energy reaches zero, i.e., the minimum, we only need to
compare the exchange energies. Equation (9) suggests that
the exchange energy in the CDW phase is approximately
−W S(q⊥,0)|�CDW

a,0;a,−1|2. While the exchange energy in the
nematic phase consists of three parts: two intravalley parts
− 1

2W S(q⊥,0)|�NM
aā (±kc)|2, which equal the CDW part; and an

intervalley part −W S(q⊥,Q)Re(�NM
aā (kc)�NM∗

aā (−kc)), which
is negative in the polarized nematic phase [�NM

aā (kc) =
�NM

aā (−kc)]. Here we have omitted the summation and integral
symbols for brevity. Thus we conclude that the polarized
nematic order has a lower interaction energy than the inversion
symmetric nematic order and the CDW order.

Another aspect to understand this nematic order is to view
it as a “pairing order” between electrons in the conduction
band and holes in the valence band, which is the “exciton
condensation” state in the mean-field level [40]. Formally, we
can rewrite the creation operators of electrons and holes as
ψ

†
kx ,kz,c

= ψ
e†
kx ,kz

, ψkx,kz,v = ψ
h†
−kx ,−kz

and rewrite the order pa-

rameter as a pairing order 〈ψe†
kx ,kz

ψ
h†
−kx ,−kz

〉. Then the exchange
interaction turns into an effective attractive interaction between
electrons in the conduction band and holes in the valence band.
And our mean-field theory is equivalent to the BCS theory for
superconductivity. Since the system is three dimensional, the
quantum fluctuation and disorder cannot suppress the phase
coherence completely and such a transition can survive even
beyond the mean-field approximation.

VII. EXPERIMENTAL ASPECTS

The most direct consequence of both the nematic and CDW
phase transitions is the opening of an energy gap between the
zeroth LBs, which can be observed easily through the transport
measurement. For the CDW phase, since the order wave
vector given by the distance between two DPs is in general
incommensurate with the lattice, the corresponding Goldstone
mode, i.e., the so-called sliding mode, will contribute to an
electric-field-dependent conductivity along the wave-vector
direction due to the depinning effect [41]. For the nematic
phase, an anisotropic resistance in the xy plane is expected
due to the rotational symmetry breaking. Since the original
rotational symmetry is discrete, the corresponding Goldstone
mode in the nematic phase will be gapped and can be detected
by neutron-scattering experiments.

Another piece of evidence for the nematic phase should
be the anisotropy in the inelastic light scattering shown in
Fig. 5(a), where a strongly anisotropic scattering section with
a Raman shift of the band gap will be observed, since both the
initial and final states are rotation broken.

To verify this, we apply a numerical study of the
Raman-scattering section with the formula ∂2σ

∂�∂ωs
∝ ∑

F

|MF,G|2δ(EF − EI − h̄�) where � = ωi − ωs is the Raman
shift and MF,I is the light scattering matrix element [42]:

MF,I = ei · es〈F |ρ̂|G〉 + 1

m

∑
J

[ 〈F |π̂ s |J 〉〈J |π̂ i |G〉
EG − EJ + ωi

+ 〈F |π̂ i |J 〉〈J |π̂ s |G〉
EG − EJ − ωs

]
. (13)
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FIG. 5. Raman scattering characterizing the nematic phase. In
panel (a) the scattering process that reveals the rotation symmetry
breaking is sketched. In panel (b) the numerical differential scattering
section at zero doping and B = 40 T is shown.

Here |G〉, |J 〉, and |F 〉 represent the initial (ground), inter-
mediate, and final many-body states having energies EG, EJ ,
and EF , respectively. i,s represent the polarization direction of
the initial and scattered photons, respectively. And ρ̂, π̂ are the
density and velocity operators in second-quantization form, re-
spectively. Results at zero doping and field B = 40 T are shown
in Fig. 5(b), where the large splitting in the xx and yy polarized
light measurements indicates the rotation-symmetry breaking.

VIII. SUMMARY

In summary, we have systematically studied the instabilities
of the Dirac semimetal phase in the quantum limit due to
the Coulomb interaction. The high-LB electrons far away
from the Fermi level are considered as a background to
screen the interaction by an effective dielectric constant in the
long-wavelength limit. All possible instabilities on the zeroth
LBs, i.e., the inter- and intravalley and inter- and intraband
channels, are treated within the so-called COHSEX method.
By numerical calculations, we have shown that a polarized
nematic phase breaking both the rotational and inversion
symmetry and a CDW phase breaking translational symmetry
will be stabilized depending on the strength of the tilting terms
for the Dirac cones. Relevant experiments, including transport
and Raman scattering, are also proposed to verify the existence
of such phases. Further theoretical studies on the physical
properties such as magnetotransport in these exotic phases are
also strongly encouraged.
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APPENDIX A: SOLUTION OF THE FREE HAMILTONIAN

The eigenenergies and eigenstates of our model Hamilto-
nian can be explicitly derived as [43]

εkzsα =

⎧⎪⎪⎨
⎪⎪⎩

C(kz) +
√

M2(kz) + 2h̄2v2l−2
B |α|, α > 0

C(kz) − sM(kz), α = 0

C(kz) −
√

M2(kz) + 2h̄2v2l−2
B |α|, α < 0,

(A1)

ψ̂
†
kxkzsα

= 1√
lzlx

∑
jz

δs,sign(jz)C
kzsα

jz

×
∫

d3rei(kzz+kxx)Hα′

(
y

lB
− lBkx

)
ψ̂

†
jz

(r), (A2)

where s = 1(−1) represents the upper left (lower right) block
in the Hamiltonian, α = 0, ± 1, . . . is the LB index, jz =
3
2 , 1

2 , − 1
2 , − 3

2 is the k · p-basis index, and Hα′ is the α′th-
order one-dimensional harmonic oscillator. Here α′ is defined
as α′ = |α| + s − jz − 1

2 , which equals |α| − 1, |α|, |α| − 1,
|α| for jz = 3

2 , 1
2 , − 1

2 , − 3
2 , respectively, and α′ = −1 terms

should be omitted. The coefficient C
kzsα

jz
is defined as

C
kz,+1,α
3
2

= cos
θ

2
, C

kz,+1,α
1
2

= sin
θ

2
,

C
kz,−1,α

− 1
2

= − sin
θ

2
, C

kz,−1,α

− 3
2

= cos
θ

2
, (A3)

for α > 0,

C
kz,+1,α
3
2

= − sin
θ

2
, C

kz,+1,α
1
2

= cos
θ

2
,

C
kz,−1,α

− 1
2

= cos
θ

2
, C

kz,−1,α

− 3
2

= sin
θ

2
, (A4)

for α < 0, and

C
kz,+1,α
3
2

= 0, C
kz,+1,α
1
2

= 1,

C
kz,−1,α

− 1
2

= 0, C
kz,−1,α

− 3
2

= 1, (A5)

for α = 0, respectively, where the auxiliary angle θ is set by

θ = arctan
vh̄

√
2|α|

M(kz)lB
, 0 � θ < π.

The conduction and valence bands in the paper are the
α = 0, s = 1 and α = 0, s = −1 bands here.

APPENDIX B: EFFECTIVE INTERACTION
ON THE ZEROTH LANDAU BANDS

In this section, we derive the effective interaction on the
zeroth LBs by tracing out the high LBs in RPA. The long-range
Coulomb interaction can be written as

Ĥint = 1

2

∑
jzj ′

z

∫
d3r

∫
d3r′ e2

4πε0κ0|r − r′|

× ψ̂
†
jz

(r)ψ̂†
j ′
z
(r′)ψ̂j ′

z
(r′)ψ̂jz

(r), (B1)

where κ0 is the dielectric constant contributed by the core elec-
tron states. By a representation transformation, the interaction
can be written on the LB bases,

Ĥint = 1

2�

∑
q �=0

∑
kxkz

∑
pxpz

∑
ss ′

∑
αβα′β ′

eil2
Bqy (kx−px )

× Ukzsαα′,pzs ′ββ ′(q)ψ̂†
kx+qx ,kz+qz,sα′ψ̂

†
px,pz,s ′β

× ψ̂px+qx ,pz+qz,s ′β ′ψ̂kx ,kz,sα, (B2)
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= +q q q

p

p+q
q

FIG. 6. RPA diagrams of the effective interaction on the zeroth
LBs. The solid wavy line represents the effective interaction, while
the dashed wavy line represents the bare interaction. The dashed
straight line represents the Green’s functions in high LBs.

where

Ukzsαα′,pzs ′ββ ′ (q) = e2

ε0κ0q2
e− 1

2 l2
B q2

⊥�∗
kzsαα′ (q)�pzs ′ββ ′(q),

(B3)

�pzs ′ββ ′ (q) =
∑
jz

δs ′,sign(jz)C
pzs

′β∗
jz

C
pz+qz,s

′β ′
jz

× F|β|+s ′−jz− 1
2 ,|β ′|+s ′−jz− 1

2

(
lB

(
qx − iqy

)
√

2

)
.

(B4)

Here, Fα,β(ξ ) is the well-known form factor of Landau levels,
which is defined as

Fα,β(ξ ) =
√

β!

α!
ξα−βL

(α−β)
β (|ξ |2) (B5)

for α � β and Fα,β(ξ ) = F ∗
β,α(−ξ ) for α � β, and L

(α−β)
β is

the Laguerre polynomial [44,45].
In the Feynman diagram representation, the RPA effective

interaction on the zeroth LBs can be interpreted as the
“dressed” interaction, which has been inserted with bubble
diagrams concerning high LBs (Fig. 6). Thus the static
effective interactions satisfy

W (q) = U (q) + U (q)χ0>(0qxqz)W (q), (B6)

where the matrix subscripts are omitted. χ0> is the bare
susceptibility of high LBs:

χ0>
kxkzsαβ,k′

xk
′
zs

′α′β ′ (ωqxqz)

= δkxk′
x
δkzk′

z
δss ′δαα′δββ ′

× 1

�

{
nF (εkzsα−μ)−nF (εkz+qzsβ−μ)

ω+εkzsα−εkz+qzsβ
α, β �= 0

0 otherwise.
(B7)

Therefore, the effective interaction can be derived as

Wkzs,pzs ′ (q) =
[
U (q)

(
1 − χ0>U (q)

�

)−1
]

kzs00;pzs ′00

= e2

ε0κ(q)q2
e− 1

4 l2
B q2

⊥ , (B8)

where

κ(q) = κ0 − e2

2πε0l
2
Bq2

e− 1
2 l2

Bq2
⊥

×
∑
sαβ

∫
dk′

z

2π
�∗

k′
zsαβ (q)χ0>

k′
zsαβ (qz)�k′

zsαβ (q) (B9)

M0lB/vħ
0 50

5

10

15
κxy 

κz 

0
100 150 200 250

FIG. 7. The dielectric constants calculated from the definition
equations (C3) and (C4) and the simplified equations (C5) and (C6)
are plotted by triangles and lines, respectively. It shows that the
simplified equations give a very good approximation.

is the effective dielectric function. For brevity, we use here
χ0>

kzsαβ(ωqz) to represent the diagonal elements of χ0>. Because
Wkzs,pzs ′ (q) does not depend on its subscripts, we denote it as
W (q) in this paper.

APPENDIX C: LONG-WAVE BEHAVIOR
OF THE EFFECTIVE INTERACTION

In this section, we intend to get a more explicit expression of
the dielectric function in the long-wavelength limit. Expanding
�∗

k′
zaαβ(q)χ0>

k′
zaαβ (qz)�k′

zaαβ(q) to second order in q, we have∑
αβ

�∗
k′
zaαβ(q)χ0>

k′
zaαβ(qz)�k′

zaαβ(q)

≈
∑

α

χ0>
k′
zaα,−α(qz)

[
1

4

(
∂θα

∂kz

qz

)2

+ l2
B

(
q2

x + q2
y

)
sin2 θα

16|α|

]
.

(C1)

Substituting in the definition of the auxiliary angle θα , we get

κ(q) ≈ κ0 + κz cos2 〈q,B〉 + κxy sin2 〈q,B〉, (C2)

where

κz = e2

8π2ε0l
2
B

∞∑
α=1

∫ 2v2h̄2l−2
B α

(
∂M(kz)

∂kz

)2
dk′

z[
M2(kz) + 2v2h̄2l−2

B α
] 5

2

, (C3)

κxy = e2

8π2ε0l
2
B

∞∑
α=1

∫
2v2h̄2dk′

z

4
[
M2(kz) + 2v2h̄2l−2

B α
] 3

2

, (C4)

and 〈q,B〉 is the angle between q and the magnetic field.
Equations (C3) and (C4) may be simplified further. First,
because the main contribution in the k′

z integral comes
from small M(kz), we can expand M(kz) to linear order
of kz around each DP. Second, the limit vh̄l−1

B � M0 is
assumed such that the Landau level splitting is significantly
smaller than the bandwidth, so the summation over α can
be approximated by integral. Therefore, we achieve the
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following formula:

κz ≈ e2u

3π2ε0v2h̄

[
0.9 + ln

(
M0lB

vh̄

)]
, (C5)

κxy ≈ e2

4π2ε0uh̄

[
0.6 + ln

(
M0lB

vh̄

)]
, (C6)

where u = 1
h̄
M0a0| sin(a0kc)| is the Dirac velocity along the

z direction, and the coefficients 0.9 and 0.6 are obtained by

numerically fitting Eqs. (C5) and (C6) to Eqs. (C3) and (C4).
Indeed, Eqs. (C5) and (C6) give very good approximations
for Eq. (C3) and (C4) over quite a wide range. In Fig. 7, we
compare the two equations with the parameters used in the
paper.

In the end, if we neglect the dependence of κ on the direction
of q, a dielectric constant can be obtained by an average over
the solid angle:

κ ≈ κ0 + 1
3κz + 2

3κxy. (C7)
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