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A model based on the Dirac equation allows one to describe topological insulators. In this paper we extend this
model by adding a Zeeman term to introduce magnetism. By this means we show that it can be used to describe
the electronic properties of ferromagnetic Weyl and nodal line semimetals, which arise for distinct parameters of
the model. We confirm the topological nontriviality of the nodal objects by calculating the topological invariants,
as well as by demonstrating the existence of topological surface states in the spectral function of the semi-infinite
systems. Furthermore, we calculate the anomalous and spin Hall conductivities for various model parameters,
which allows us to identify typical signatures of Weyl points and nodal lines in electronic transport.
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I. INTRODUCTION

Topological properties of materials are one of the key
topics of solid-state physics discussed in the last decade.
After the initial discoveries of two-dimensional (2D) [1,2] and
three-dimensional (3D) topological insulators (TIs) [3], the
focus of the community turned also toward metallic nontrivial
materials. Dirac semimetals [4–8], Weyl semimetals (WSMs)
[9–12], nodal line semimetals (NLSMs) [13–18], and other
semimetals with even more exotic low-energy excitations [19]
are studied with increasing effort in recent years.

A typical manifestation of the properties of topological
insulators are the quantum anomalous Hall effect (QAHE)
[20,21] in the case of broken time-reversal symmetry and
the quantized spin Hall effect (QSHE) [22–24] when the
time-reversal symmetry is preserved. The QSHE is a variant of
the spin Hall effect (SHE) [25,26] which shows a constant spin
Hall conductivity (SHC) if the Fermi energy (EF ) is located
in the insulating band gap. The SHC in trivial and topological
insulating systems was recently calculated in Ref. [27]. If EF

is not located in the band gap, which is necessarily the case
in metals and semimetals, then the anomalous and spin Hall
conductivities show no quantization and change with varying
EF (e.g., by doping). Therefore, to observe both anomalous
Hall effect (AHE) and SHE in WSMs and NLSMs, two ingre-
dients are necessary: magnetic order (to break time-reversal
symmetry) and spin-orbit coupling (SOC). It has been shown
earlier that the Weyl points (WPs)—band touching points in
a WSM—always exist in pairs [28] and the anomalous Hall
conductivity (AHC) for EF at the WP energy is proportional
to their distance in the reciprocal space [29,30]. This behavior
can be straightforwardly extended to the SHC by assuming
that the anomalous Hall current is spin polarized [31].

In the case of NLSMs the situation is more complicated than
for the WSMs. Usually, two types of NLSMs are discussed;
type 1 protected by mirror symmetry with the nodal loop
located in a mirror plane of the Brillouin zone (BZ) and type
2 with inversion and time-reversal symmetries being present
but in absence of SOC [32]. Because we study the AHE and
SHE in ferromagnetic NLSMs, we have to restrict ourselves to
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type 1. Generally, NLSMs of Dirac type (fourfold degenerate
nodal line) and of Weyl type (twofold degenerate nodal line)
are possible. In the case of broken time-reversal symmetry we
will only observe nodal lines of the Weyl type. Weyl nodal lines
of type 1 were already demonstrated to exist in PbTaSe2 [16]
and TlTaSe2 [33], which are nonmagnetic but lack inversion
symmetry. Even earlier, this type of nodal lines coexisting with
WPs was predicted from ab initio to exist in ferromagnetic
HgCr2Se4 [34]. Recently, other ferromagnetic materials, CrO2

[35] and half-metallic Heusler Co2TiX (X = Se, Ge, or Sn)
[36], were predicted to host nodal lines (NLs).

In this paper we adopt a model based on the extended Dirac
equation [37] previously used to describe TIs in two and three
dimensions. We further manipulate this model in order to study
the influence of ferromagnetism on the electronic bands of
insulators and to show that such a system can undergo a phase
transition from an insulating phase to a WSM or a NLSM.
In addition, we calculate the AHC and SHC for different
topological phases described by the model and thus identify the
main contributions of the semimetallic features to the spin and
electronic transport. Our findings thus complement the results
obtained for topological semimetals in realistic [38] and model
[39] systems featuring antiferromagnetic and noncollinear
magnetic order as well as in nonmagnetic materials [31].

This paper is organized as follows. In Sec. II we will in-
troduce the model Hamiltonian and demonstrate the existence
of WSM and NLSM phases for distinct parameter values. We
will proof the nontrivial topology by calculating topological
invariants and compare the results with surface electronic
structure calculations for a semi-infinite geometry. In Sec. III
we will calculate the AHC and SHC for the different systems
and discuss the effect of WPs and NLs on these transport
quantities. In Sec. IV we will suggest ferromagnetic materials,
in which WPs and NLs could exist. Finally, we will give a
conclusion in Sec. V.

II. TOPOLOGICAL PROPERTIES

A. Model Hamiltonian

The basis of the model we use in this paper is the Dirac
equation of a free particle [40],

H = c �p · �α + mc2β. (1)
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c is the velocity, �p the momentum, �α and β the 4×4 Dirac
matrices, and m the mass, which take on the role of model
parameters when the equation is used to describe electrons and
holes in a solid near the fundamental band gap governed by the
mass m. In order to describe TIs [37], Eq. (1) has to be extended
by Mp2β. This term is the lowest term in the p expansion of
the potential which does not break the time-reversal symmetry.
The 3D model then describes strong TIs for m · M > 0 and
trivial insulators for m · M < 0.

In this paper, we additionally introduce a Zeeman term
β �� · �B with �� the relativistic spin operator and �B an exchange
field, either induced by magnetization or applied externally.
This term breaks the time-reversal symmetry and induces an
exchange splitting of the Kramers degenerate bands, which
may lead to the existence of WSMs and NLSMs. Thus, we
end up with the model Hamiltonian

H = c �p · �α + (mc2 − Mp2)β + β �� · �B. (2)

Note that a similar Hamiltonian was introduced in Ref. [13].
Recently, Yu et al. [39] studied a related model for antiferro-
magnetic half-Heusler materials, which also features various
topological phases.

For further calculations of topological invariants in a finite
BZ and to be able to consider a slab or semi-infinite geometry,
we make the Hamiltonian (2) periodic on a cubic lattice (lattice
constant a) by substituting

pα → h̄

a
sin(apα/h̄)

p2
α → 2h̄2

a2
[1 − cos(apα/h̄)]

with α = x,y,z, (3)

similar to Refs. [37,41]. The Hamiltonian then becomes

H = m0c
2

⎛
⎜⎝

m − 2MK( �p) + B 0 c sin(pz) c[sin(px) − i sin(py)]
0 m − 2MK( �p) − B c[sin(px) + i sin(py)] −c sin(pz)

c sin(pz) c[sin(px) − i sin(py)] −m + 2MK( �p) − B 0
c[sin(px) + i sin(py)] −c sin(pz) 0 −m + 2MK( �p) + B

⎞
⎟⎠ (4)

by introducing the rest mass m0c
2 and redefining the parame-

ters as m/m0 → m, Mh̄2/(a2m0c
2) → M , ch̄/(am0c

2) → c,
�B/(m0c

2) → �B, pαa/h̄ → pα , and with the abbreviation
K( �p) = 3 − cos(px) − cos(py) − cos(pz). We chose �B =
B�ez. Thus, m, M , c, �B, and �p are dimensionless and m0c

2

defines the energy scale of the model.
In real space, the Hamiltonian has the tight-binding form

H = m0c
2
∑
i,j,k

[�0c
†
i,j,kci,j,k + {�xc

†
i+1,j,kci,j,k

+�yc
†
i,j+1,kci,j,k + �zc

†
i,j,k+1ci,j,k + H.c.}] (5)

with matrix-valued on-site energy

�0 = (m − 6M)τ0 ⊗ σz + Bτz ⊗ σz (6)

and hopping amplitudes

�α = Mτ0 ⊗ σz − i
c

2
τα ⊗ σx, α = x,y,z. (7)

τα and σα , with α = x,y,z, are the 2×2 Pauli matrices and τ0

and σ0 are the identity matrices. Equation (5) is particularly
useful for description of semi-infinite systems.

B. Bulk topology

At this point, we investigate the WSM and NLSM phases
which can emerge from the Hamiltonian (4). If not stated
otherwise, in all following examples we will set c = M = 1
and m = ±1. We choose m0c

2 = 1 eV, which is the typical
energy scale in insulators. Setting the exchange field B = 0
leads to two possible initial systems; a normal insulator for
mM < 0 and a strong topological insulator (STI) for mM > 0
(Ref. [37]). The respective band structures are shown in
Figs. 1(a) and 1(d). The normal insulator [Fig. 1(a)] has
a parabolic dispersion at the � point, whereas in the STI

case [Fig. 1(d)], the typical camel-back shape indicating the
band inversion is clearly visible. Note that for B = 0 the
bands are doubly degenerate because of the presence of both
time-reversal and inversion symmetries.

Increasing the exchange field to finite values breaks the
time-reversal symmetry and splits the Kramers degeneracy
[see Figs. 1(b) and 1(e) for B = 0.5]. A first important
semimetallic feature emerges immediately for nonvanishing
exchange field. For m = +1 (i.e., the STI case) there are
band crossings between the lowest two bands and between
the highest two bands, respectively. The crossings are located
along the Z-�-Z line in the BZ, which is parallel to the
direction of the exchange field. We confirm that the crossings
are Weyl points by calculating the Chern number of a sphere
in �p space surrounding a single crossing. The Chern number
is calculated as [42–45]

C = 1

2π

∑
n

∫
S

d2p[ �	n( �p) · �n( �p)]. (8)

The sum is over all bands n up to the WP energy, S is the surface
of a sphere, �	n( �p) is the Berry curvature, and �n( �p) is a unit
vector perpendicular to the surface S. We obtain C = ±1 for
all crossings, both the ones between bands 1 and 2, as well as
those between bands 3 and 4, indicating that they are all WPs.
Interestingly, the existence of WPs is here the consequence
of band inversion together with the exchange field. No WPs
emerge in the normal insulator case m = −1 [Fig. 1(b)].

Further increase of the exchange field leads to the overlap
of the higher valence band with the lower conduction band
(assuming EF = 0). For the trivial insulator, the bands touch
at the � point for B = 1.0. For higher exchange fields, a flat NL
occurs at E = 0.0 eV in the pz = 0 plane [Fig. 1(c)]. In the case
of the TI, multiple NLSM phases occur upon increasing the
exchange field (see Fig. 2). Because of the camel-back shape of
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FIG. 1. Band structure of the Hamiltonian (4) for m = −1 [(a)–(c)] and m = +1 [(d)–(f)] for selected exchange fields: B = 0 [(a),(d)],
B = 0.5 [(b),(e)], and B = 2.0 [(c),(f)]. The colors represent the value of the spin polarization (red: 1; blue: −1) along the z axis (parallel
to �B). Inset: BZ of the cubic lattice.

the bands, the direct band gap of the insulating phase is located
at the �-X line, off the � point. At this point the band gap closes
for the first critical exchange field B1

c ≈ 0.8165. Because of
the C4 rotational symmetry preserved in the magnetic system,
four NLs emerge. A second phase transition happens at B2

c ≈
0.845, where the band gap closes also along the �-M line.
The result is a pair of NLs, concentric around �. Note that in
the case of the isotropic Hamiltonian (2) both �-M and �-X
lines are equivalent and only the double-NL phase can exist.
Finally, at B3

c = 1.0 the band gap closes also at �, the inner
NL of the former pair vanishes, and only one NL remains
[see Fig. 1(f)], similar to the trivial insulator. All NLs are
protected by the mirror symmetry, which is preserved in the
pz = 0 plane because �B is oriented along the z axis. In a mirror
plane, the spin is oriented perpendicular to it and remains
unchanged under the action of the mirror operator. Therefore,

FIG. 2. Topological phases upon increasing Bz for m = +1.
Displayed is the location of the NLs in the pz = 0 plane.

the z component of the spin operator commutes with the mirror
operator and they share common eigenfunctions. A crossing
of two bands with different mirror or spin eigenvalues [as
indicated by red and blue in Fig. 3(a)] is allowed in the mirror
plane, since the states do not hybridize with each other [32].

In addition to the mirror eigenvalues, the NLs in the
Hamiltonian (4) are also protected by a Berry phase θ of a
closed loop L piercing the NL [32,46]:

θ (L) =
∑

n ∈ occ.

i

∮
L
〈un, �p‖∇�p un, �p〉d �p. (9)

The integrand, i〈un, �p|∇ �p un, �p〉, is the Berry connection. Owing
to the presence of the mirror symmetry, the Berry phases θ

FIG. 3. (a) Band structure of the Hamiltonian (4) for m = +1
and B = 2.0 at pz = 0. Only bands 2 and 3 are shown; the colors
represent the value of the spin polarization (red: 1; blue: −1) along
the z axis (parallel to �B). (b) The Berry phase θ (px) calculated for
lines in the BZ from pz = −π to pz = π .
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FIG. 4. Spectral density of the (001) surface represented as a color scale (black : low; white: high) for m = +1, B = 2.0. (a) Spectral
density of the bulk layer along high-symmetry lines in the surface BZ; see (c). (b) Spectral density of the surface layer along high-symmetry
lines in the surface BZ. (c) Bulk BZ (red) and (001) surface BZ (black) with the position of the band crossings and their projections onto the
surface BZ, respectively (red: NL; blue: WPs). (d) Constant energy cut at EF = 0.0 eV of the projected bulk layer. (e) Constant energy cut at
EF = 0.0 eV of the surface layer.

calculated along mirror-symmetric lines L in the BZ is quan-
tized and takes on values of θ = 0, − π mod 2π . Effectively,
�p ∈ L is a 1D subsystem possessing inversion symmetry,
resulting from the mirror symmetry of the full system. The
Berry phase of such a system is quantized, as shown by
Zak [47]. In Appendix A we present an alternative way the
Berry phase is quantized in the presence of mirror symmetry
or particle-hole symmetry. The latter is a feature of the
Hamiltonian (4) and is unlikely in real materials. It is θ (L) = π

mod 2π if L and the NL are intertwined and θ (L) = 0
mod 2π otherwise (especially when there is no NL at all). As
loop L we choose a line in the BZ parallel to pz, going from
pz = −π to pz = π , i.e., from the bottom of the BZ to the top.
Such a line L is closed by the periodic boundary conditions.
Thus, for each �p‖ = (px,py) the Berry phase θ ( �p‖) can be
calculated and each step indicates crossing of the NL. For the
calculation, we have rewritten Eq. (9) as a Wilson loop [48,49]

θ (L) =
∑

n ∈ occ.

Im ln
∏
j

〈un, �pj
|un, �pj +� �p〉, (10)

where �pj are points on a dense mesh on the line L and � �p
is a distance between two adjacent points. The result of the

calculation is shown in Fig. 3(b), where we plot the Berry
phase θ (px) for m = +1 and B = 2.0. We obtain θ (px) = 0 in
the region where the lineL does not pierce the NL and θ (px) =
−π whenL goes through the NL. Thus, we claim that the NL is
protected by both the mirror symmetry and the nonzero Berry
phase. Here we want to note that in Ref. [50] the authors discuss
a NL in Ca3P2, which is protected by the same effects as the
NL in this paper, i.e., the mirror symmetry and the Berry phase.
The results of the corresponding Berry phase calculations
for the double- and quadruple-NL phases are given in
Appendix B.

C. Surface states

One of the most prominent features of all topological
materials is the existence of surface states which are connected
to the nontrivial topological features of the bulk bands.
In WSMs, these are the Fermi arcs—surface states, which
connect the surface projections of the WPs when cut at
the energy of the WPs [51]. In the case of the NLSM, the
corresponding surface state is called drumhead surface state,
and it typically exists either inside or outside of the projection
of the NL onto the surface [13,50].
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FIG. 5. Spectral density of the (100) surface represented as a color scale (black: low; white: high) for m = +1, B = 2.0. (a) Spectral density
of the bulk layer along high-symmetry lines in the surface BZ; see (c). (b) Spectral density of the surface layer along high-symmetry lines in
the surface BZ. (c) Bulk BZ (red) and (100) surface BZ (black) with the position of the band crossings and their projections onto the surface
BZ, respectively (red: NL; blue: WPs). (d) Constant energy cut at EF = 0.0 eV of the surface layer. (e) Constant energy cut at EF = 2.2 eV
of the surface layer.

In this work, we studied the surface electronic structure
of the model in Eq. (4) by calculating the Green’s function
of the system in a layered semi-infinite geometry. Using the
real-space formulation [Eq. (5)] enables one to decouple the
inter- and intralayer parts. The layer-resolved Green’s function
Gα,α(px,py) is calculated from a renormalization scheme
described in Refs. [52,53]. The electronic structure is then
given as the spectral density

Nl(E,px,py) = − 1

π
Im Tr Gα,α(E + iη,px,py) (11)

with the layer index α, and a small imaginary energy η =
0.001 eV. The results for B = 2.0 (single NL) are shown
in Figs. 4 and 5 for the (001) surface (with a surface
normal perpendicular to �B) and for the (100) surface (with
a surface normal parallel to �B), respectively. Surface elec-
tronic structures of the multiple-NL phases are presented in
Appendix B.

From Fig. 4(c) it becomes obvious that the WPs are both
projected on the � point of the surface BZ (SBZ). These
projected WPs can be seen in Figs. 4(a) and 4(b) at E ≈
±2.2 eV. The effective Chern number of the WP projection
is +1 + (−1) = 0 and, hence, there are no Fermi arcs at the
(001) surface. The projection of the NL, on the other hand,
has exactly the same shape as the original bulk feature, as

it is located in the pz = 0 plane, parallel to the (001) SBZ.
The crossings of the projected bulk bands can be observed
in Figs. 4(a) and 4(b) along all considered high-symmetry
lines �-X, �-Y , and �-M at E = 0.0 eV. In the surface layer
[Fig. 4(b)], the crossings are connected by a flat surface state.
Its drumheadlike shape is visible in Fig. 4(e), as its surface
spectral density is maximal inside the projected NL [Fig. 4(d)].
These findings are in line with the fact that there has to be
a surface state either inside or outside of the NL projection
onto the SBZ. The exact position of the surface state is not
topologically protected by the Berry phase θ (px,py) = −π

mod 2π , in contrast to its existence. The location of the
surface state can depend on the surface termination [32].
Since the quantization of the Berry phase is given by mirror
or particle-hole symmetry, the occurrence of the drumhead
surface states may be viewed as being protected by these
symmetries.

The situation on the (100) surface is demonstrated in
Fig. 5(c). The WPs are projected on two different points along
−X-�-X, as can be seen in Figs. 5(a) and 5(b) at E ≈ ±2.2 eV.
Here, both WP projections are connected by a single surface
state (Fermi arc), as is also shown for the constant energy cut
(CEC) at E ≈ 2.2 eV [Fig. 5(e)]. The projection of the NL is
a single line along the −Y -�-Y direction in the (100) SBZ,
which is demonstrated in the CEC at E = 0.0 eV [Fig. 5(d)].
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FIG. 6. Distribution of the spin Berry curvature 	l
ij ( �p) = ∑

n 	l
n,ij ( �p) summed over bands below E = 0.0 eV in the px-py and px-pz

planes, given as color scale, for systems with a NL (B = 2.0). Top: system with initial band inversion (m = +1). Bottom: system without a
band inversion (m = −1). (a) and (d) 	x

yz. (b) and (e) 	y
zx . (c) and (f) 	y

yz (only the px-py plane is shown).

Overall, both the NL and the WPs possess characteristic
surface states in the SBZ. The existence of these surface
states and their shape depends strongly on the chosen surface,
especially with respect to the magnetization direction.

III. ANOMALOUS AND SPIN HALL EFFECT

After having established that the system described by the
model Hamiltonian (4) can harbor WPs and NLs, we will now
show how these semimetallic features give rise to considerable
AHC and SHC. These intrinsic phenomena are calculated from
the linear-response Kubo formula [54–56]. For the AHC at
T = 0 K we evaluated

σij = −e2

h̄

∑
n

∫
BZ

d3 �p
(2π )3

	n,ij ( �p), (12)

with the Berry curvature

	n,ij ( �p) = 2ih̄2
∑
m�=n

〈un( �p)|v̂i |um( �p)〉〈um( �p)|v̂j |un( �p)〉
[En( �p) − Em( �p)]2

(13)

of band n, which can be calculated from the eigenvalues En( �p)
and the eigenvectors |un( �p)〉 of the Hamiltonian Ĥ ( �p), as well
as the velocity operator v̂i = ∂Ĥ

∂pi
, i = x,y,z. n is the band index

and for zero temperature, only occupied bands contribute to the
sum in Eq. (12). σij describes the anomalous current density
in direction i as a response to an electric field oriented in
direction j .

The SHC can be calculated from

σ l
ij = e

h̄

∑
n

∫
BZ

d3 �p
(2π )3

	l
n,ij ( �p), (14)

where the integrand,

	l
n,ij ( �p) = −2 Im h̄2

∑
m�=n

〈un( �p)|ĵ l
i |um( �p)〉〈um( �p)|v̂j |un( �p)〉
[En( �p) − Em( �p)]2

,

(15)

is sometimes called the spin Berry curvature. ĵ l
i is the spin

current density operator in direction i with a spin orientation
along l. The other quantities are as in Eq. (13). Also here, the
spin current is driven by an electric field along direction j .

The model in Eq. (4) describes a simple cubic system
for �B = 0. The finite exchange field along the z direction
lowers the symmetry of the system, which then belongs
to the tetragonal magnetic group 4/mm′m′. According to
Ref. [57], the AHC tensor of the studied Hamiltonian has
only one independent nonzero off-diagonal element σxy . The
situation becomes more complicated for the SHC tensor. In
the nonmagnetic case (group m3̄m1′), only the elements of
σ l

ij with i �= j �= l �= i can have nonzero values. The group
4/mm′m′ allows also the elements σ i

iz, i = x,y and σ z
ii ,

i = x,y,z to be nonzero. For the former, we found numerically
that the spin Berry curvature changes sign under a C4 rotation
along the pz axis [see Figs. 6(c) and 6(f)]. Therefore, the
total spin Berry curvature vanishes for these elements when
integrated over the whole BZ. We did not calculate the diagonal
elements of the SHC tensor.

To obtain numbers comparable with more realistic cal-
culations, we chose for the interatomic distance a = 3 Å.
The AHC and SHC are given in units of (	 cm)−1 and
h̄
e
(	 cm)−1, respectively. The numerical integration over the

BZ was performed on an equidistant mesh with 4003 �p points.
For σx

yz we reach no convergence at E = 0.0 eV, i.e., exactly
at the NL energy, and in its close vicinity, which we assign to
the existence of the line singularity of the spin Berry curvature.
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FIG. 7. Energy-dependent AHC and SHC for m = −1 (upper row) and m = +1 (lower row) for different exchange fields B (see color code
in the panels for each row). Note the varying conductivity scale.

To perform the integration in this complicated situation, more
sophisticated methods, such as adaptive meshes, have to be
used. Therefore, the corresponding data points are not plotted.

In Fig. 7, we show the results of calculations of the AHC and
SHC for m = ±1 and B ∈ [0.0,2.0] which can be compared
with the band structures shown in Figs. 1 and 2. Only σxy ,
σ z

xy , σx
yz, and σ

y
zx are shown, which are the only independent

non-ero off-diagonal elements of the AHC and SHC tensors. In
the following, we will discuss the influence of the topological
features of the band structure on these transport properties.

(i) For the AHC σxy we find only small values for the
trivial case (m = −1) which originate from the exchange
field and SOC, intrinsically included in the Dirac equation.
σxy = 0 for B = 0, because the Berry curvature vanishes in
the presence of time-reversal and inversion symmetry. For
m = +1, on the other hand, we observe large values of σxy for
B > 0 with maxima located exactly at the WP energies (e.g.,
Emax = ±2.2 eV for B = 2.0). This effect of WPs inducing
large values of the AHC was discussed previously [29,30] and
it reflects the fact that the WPs are sources and sinks of the

Berry curvature [43], a quantity which directly contributes to
the AHC. Interestingly, the AHC shows no signatures of NLs
in the band structure, for either m = −1 or m = +1.

(ii) The σ z
xy component of the SHC tensor which describes

the SHE in the x-y plane with spin polarization parallel to the
exchange field shows behavior very similar to the AHC. For
m = −1, again only moderate values were calculated, which
originate from the presence of relativistic effects. For m = +1,
we find large values originating from the WPs. When the spin
polarization parallel to �B can be assumed, then the relation
between σ z

xy and σxy is [31]

σ z
xy = ± h̄

2e
σxy. (16)

As discussed in Ref. [30], the separation of the WPs along
the pz axis leads to large values of σ z

xy and σxy . Since the
system is a STI for m = +1 and B = 0, we also see a large
constant value equal for all three components of the SHC
tensor in the bulk band gap. A small exchange field breaks
the cubic symmetry and the values of the three SHC elements
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become different, but remain constant in the bulk band gap
(for B < 0.8165). The system is no longer a STI, because the
exchange field breaks the time-reversal symmetry, but it can
still be characterized by other nontrivial topological invariants,
such as the mirror Chern number (cf. Ref. [58]). σ z

xy becomes
smaller upon increasing the exchange field. As for the AHC,
there is no significant effect of the NLs on the SHC.

(iii) The σx
yz component of the SHC tensor shows the

most interesting behavior. First, the corresponding spin Berry
curvature obtains large positive and negative values when the
energy difference between the bands becomes small, especially
in the regions of the band inversion “camel back” and at the
NLs [see Figs. 6(a) and 6(d)]. For m = −1, σx

yz increases
in the vicinity of E = 0.0 eV with a stronger exchange field
B. For B = 1.0 the SHC obtains a large negative value as
the band gap closes at �. For larger values of B there is a
NL in the band structure, which means the conduction band
becomes a valence band inside the NL, and vice versa. Both
bands carry spin Berry curvature of the same magnitude but of
opposite sign. Therefore, after the band order changes, the SHC
immediately obtains positive values at E = 0.0 eV originating
from the band inversion causing the NL to exist. Even larger
exchange fields enhance this effect and the SHC can obtain
values comparable with those of diamond and zinc-blende
semiconductors with considerable SOC [59].

The situation is similar for m = +1. In addition to the
previous case, the initial band inversion leads to a plateau of
σx

yz in the band gap for B < B1
c . As B increases, the SHC

obtains large positive values [several thousand], since the spin
Berry curvature of the topmost valence band becomes also
large positive near the band inversion region. Like for m = −1,
the existence of the NLs leads to a band inversion of bands
with opposite spin Berry curvature. This, in turn, causes σx

yz to
obtain a negative contribution near E = 0.0 eV in addition to
the positive offset originating from the initial band inversion.
Note that overall the SHC for m = +1 is an order of magnitude
larger than for m = −1. These values are comparable with
those calculated for Au or Pd [54].

(iv) Finally, we obtain moderate values also for σ
y
zx .

Figures 6(b) and 6(e) illustrate that for both m = ±1 the
spin Berry curvature is large when the energy difference
between valence and conduction bands is small, but there is
no significant direct influence of the NLs on the SHC. Thus,
for m = −1 values similar to σx

yz are calculated, originating
from the band inversion connected with the existence of the
NL. Similarly, for m = +1 the largest effect is the presence of
the initial band inversion in the band structure. Increasing the
exchange field and closing the band gap does not lead to an
enhancement of the SHC. In addition, σ

y
zx is sensitive to the

existence of WPs in the band structure, but the SHC values are
smaller than for σ z

xy .
Overall, the AHC σxy and the components of the SHC tensor

show a very different response to the existence of topological
nodal objects in the band structure. σxy and σ z

xy (external
electric field and spin current in the x-y plane, perpendicular
to the exchange field) are large in the vicinity of WPs. In
contrast, σx

yz (external electric field parallel to the exchange
field, spin current, and the spin polarization perpendicular to
it) becomes large near the NL energy. In addition, it can even
change the sign at the phase transition between an insulating

and NLSM phase. This effect could be used to switch the
direction of the spin current upon increasing or decreasing the
exchange field. Finally, σ

y
zx (spin current along the direction

of the exchange field driven by an electric field perpendicular
to it) is mostly influenced by the existence of an avoided or a
real crossing between bands. The NL shows no enhancement
of this component and the effect of the WPs is smaller than
for σ z

xy .

IV. REALISTIC MATERIALS

After having established that ferromagnetic order can lead
to NLs and WPs (in the presence of an initial band inversion)
in the bulk band structure, which themselves can cause the
AHE and SHE to reach considerably large values, we discuss
realizations of this situation in realistic materials. To the
best of our knowledge, there are three theoretical predictions
of ferromagnetic materials possessing a NL: HgCr2Se4 [34]
and Co2TiX (X = Se, Ge, or Sn) [36] feature a NL in
the px-py plane protected by the mirror symmetry of this
plane, accompanied by a pair of WPs along pz, i.e., parallel
to the magnetization direction. These features fit to those
in our model. Another ferromagnetic material, CrO2 [35],
was predicted to possess NLs on the faces of its fcc BZ.
These NLs do not directly correspond to our findings, yet
their origin—mirror planes in the BZ perpendicular to the
magnetization—are the same.

In addition to these known materials, we predict here
a way to systematically create ferromagnetic NLSMs from
narrow-gap semiconductors. The initial semiconductor can,
but does not have to be topologically nontrivial. Doping the
semiconductor with magnetic atoms could lead to a finite
magnetization, which has to be large enough to ensure that the
exchange splitting of valence and conduction bands is of the
order of the band gap. The second condition for a NL to occur
is the same magnetization direction of atoms contributing to
valence and conduction bands. Otherwise, bands with the same
mirror eigenvalues would overlap, which leads to avoided
crossings, rather than a NL. This happens, for example, in Cr-
doped STI Sb2Te3 [60], where the magnetizations of Sb and Te
are antiparallel, which contribute to the valence and conduction
band at �, respectively. If the induced magnetization would be
strong enough to bridge the insulating band gap, no NL would
appear. Nevertheless, the combination of a magnetization
and a band inversion should give rise to WPs at the band
edges as described by our model. These WPs should lead to
considerable values of AHC and SHC perpendicular to the
magnetization.

V. CONCLUSION

In this work, we studied ferromagnetic topological
semimetals featuring WPs and NLs, exploiting a lattice model
based on the extended Dirac equation. Our recipe to realize
ferromagnetic WSMs and NLSMs is to begin with a topolog-
ically trivial or nontrivial insulator and sufficiently increase
the exchange field. We show that this procedure can lead to
WPs and NLs as proven by calculating the bulk topological
invariants and observing typical surface states (Fermi arcs and
drumhead surface states) in the surface electronic structure of
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FIG. 8. Spectral density of the (001) surface represented as a color scale (black: low; white: high) for m = +1, B = 0.83. (a) Spectral
density of the bulk layer along high-symmetry lines in the surface BZ. (b) Spectral density of the surface layer along high-symmetry lines in
the surface BZ. (c) The Berry phase θ (px) calculated for lines in the BZ from pz = −π to pz = π . (d) Constant energy cut at EF = 0.0 eV of
the bulk layer. (e) Constant energy cut at EF = 0.0 eV of the surface layer.

various surfaces. Furthermore, we show that intrinsic AHC and
SHC are strongly enhanced by the presence of WPs and NLs
in the bulk band structure. Of particular importance is the fact
that also spin currents with spin polarization perpendicular to
the magnetization can gain considerable values.

In addition to ferromagnetic semimetals, the existence of
WPs and NLs has been recently studied also in antiferro-
magnets with collinear (e.g., Refs. [61,62]) and noncollinear
(e.g., Refs. [38,63]) magnetic structure, also leading to large
conductivities. In order to study these and other topological
semimetals, various extensions of the model Hamiltonian (4)
are conceivable. To break the particle-hole symmetry present in
our model, a term ∝p2 can be added. This would, for example,
lead to a modification of the dispersion along the nodal
line, which is perfectly flat in energy without this extension.
Another way to modulate the NL and WPs and test their
stability is to tilt the direction of the exchange field. Within
the present tight-binding formulation it is straightforward
to investigate various collinear and noncollinear magnetic
configurations. Finally, defining complex hopping parameters
resulting from the Peierls substitution can be used to study
Landau levels in magnetic topological semimetals.
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APPENDIX A: QUANTIZATION OF THE BERRY PHASE

Here we show the quantization of the Berry phase in the
presence of mirror or particle-hole symmetry. Our derivation
is similar to that in the Appendix of Ref. [64].

The Berry phase γn of band n along a line L connecting the
boundaries of the Brillouin zone is given by

γn = i

∫ π

−π

〈un( �p)|∇ �p un( �p)〉d �p.

The integrand

An( �p) = i〈un( �p)|∇ �p un( �p)〉

is the Berry connection. For simplicity we assume that the
band n is isolated along L.

1. Quantization by mirror symmetry

We assume that the Hamiltonian Ĥ of the system is mirror
symmetric with respect to the xy plane and the line L is
perpendicular to the mirror plane in the Brillouin zone. The
problem then becomes one dimensional, allowing one to fix
px and py . We thus have

M̂Ĥ (pz) = Ĥ (−pz)M̂,
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FIG. 9. Spectral density of the (001) surface represented as a color scale (black: low; white: high) for m = +1, B = 0.90. (a) Spectral
density of the bulk layer along high-symmetry lines in the surface BZ. (b) Spectral density of the surface layer along high-symmetry lines in
the surface BZ. (c) The Berry phase θ (px) calculated for lines in the BZ from pz = −π to pz = π . (d) Constant energy cut at EF = 0.0 eV of
the bulk layer. (e) Constant energy cut at EF = 0.0 eV of the surface layer.

with the reflection operator M̂ . Starting from the stationary
Schrödinger equation

Ĥ (pz)|un(pz)〉 = En(pz)|un(pz)〉
we obtain

M̂Ĥ (pz)|un(pz)〉 = En(pz)M̂|un(pz)〉,
Ĥ (−pz)M̂|un(pz)〉 = En(pz)M̂|un(pz)〉,

and by replacing pz ↔ −pz

Ĥ (pz)M̂|un(−pz)〉 = En(−pz)M̂|un(−pz)〉.
Comparison with the Schrödinger equation gives

En(pz) = En(−pz), (A1a)

|un(pz)〉 = eiϕ(pz)M̂|un(−pz)〉, (A1b)

with some phase factor exp[iϕ(pz)]. With this, the Berry
connection becomes

An(pz) = i〈un( �p)|∇ �pun( �p)〉
= i〈un(−pz)|M̂†e−iϕ(pz)∂pz

eiϕ(pz)M̂|un(−pz)〉
= −∂pz

ϕ(pz) − An(−pz)

and the Berry phase reads

γn =
∫ π

−π

An(pz)dpz

= −
∫ π

−π

∂pz
ϕ(pz)dpz −

∫ π

−π

An(−pz)dpz

= −ϕ|π−π −
∫ π

−π

An(−pz)dpz

= 2πm − γn,

with m integer. Thus, we obtain a quantized Berry curvature
γn = πm. Since the Berry phase is defined modulo 2π , γn can
only take values of 0 or π . The same then holds also for the
total Berry phase summed over all occupied bands.

2. Quantization by particle-hole symmetry

We now assume that the Hamiltonian Ĥ has particle-hole
symmetry and the isolated band n is occupied. Considering
the line L in the Brillouin zone as before, we have

ĈĤ (pz) = −Ĥ (−pz)Ĉ,

with the charge conjugation operator Ĉ. As for the mirror
symmetry it follows for band n

Ĥ (pz)|un(pz)〉 = En(pz)|un(pz)〉,
ĈĤ (pz)|un(pz)〉 = En(pz)Ĉ|un(pz)〉,
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−Ĥ (−pz)Ĉ|un(pz)〉 = En(pz)Ĉ|un(pz)〉,
Ĥ (−pz)Ĉ|un(pz)〉 = −En(pz)Ĉ|un(pz)〉,
Ĥ (pz)Ĉ|un(−pz)〉 = −En(−pz)Ĉ|un(−pz)〉,

and

En(pz) = −En(−pz), (A2a)

|un(pz)〉 = eiϕ(pz)Ĉ|un(−pz)〉. (A2b)

The last equation has the same form as the corresponding
one for the mirror symmetry, Eq. (A1), with the exception
that |un(−pz)〉 is an unoccupied state. We rename the
band index n → ñ = N + 1 − n with the total number of
bands N on the right-hand side of the last equation to
make clear that |uñ(−pz)〉 belongs to a different band than
|un(pz)〉. This leads to γn = 2πm + γñ with ñ denoting the
unoccupied band. Since the sum of the Berry phases of
all bands vanishes, we can use γn = −γñ to obtain the

quantization γn = πm, m integer, in the presence of particle-
hole symmetry.

APPENDIX B: PHASES WITH MULTIPLE NODAL LINES

In Fig. 8 we show the projected bulk and surface electronic
structure for the (001) termination for B = 0.83. Four NLs can
be identified crossing the �-X line in the BZ. The Berry phase
of a line along pz in the bulk BZ is 0 when it does not pierce
the NLs and its value is −π otherwise [Fig. 8(c)].

We obtain a similar result for B = 0.90 shown in Fig. 9.
In this case, there is a pair of NLs which harbor a drumhead
surface state between them at the (001) surface. The calculation
of the Berry phase again confirms the nontrivial topological
character of the NL.

Finally, for both B = 0.83 and B = 0.90 we observe a
surface state at � in addition to the drumhead surface state.
This surface state is left over from the topological surface state
connected with the STI character of the system with vanishing
exchange field.
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