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We study the validity of Hund’s first rule for the spin multiplicity in circular molecules—made of real or
artificial atoms such as quantum dots—by considering a perturbative approach in the Coulomb interaction in the
extended Hubbard model with both on-site and long-range interactions. In this approximation, we show that an
anti-Hund rule always defines the ground state in a molecule with 4N atoms at half-filling. In all other cases
(i.e., number of atoms not a multiple of four, or a 4N molecule away from half-filling) both the singlet and the
triplet outcomes are possible, as determined primarily by the total number of electrons in the system. In some
instances, the Hund rule is always obeyed and the triplet ground state is realized mathematically for any values
of the on-site and long-range interactions, while for other filling situations the singlet is also possible but only if
the long-range interactions exceed a certain threshold, relatively to the on-site interaction.
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I. INTRODUCTION

The study of experimental atomic spectra in connection
with the theoretical behavior of quantum particles led Hund
to formulate the rules that express the spin and angular
momenta of many-electron atoms. Hund’s first rule (HFR)
states that for a given electronic configuration, corresponding
to incompletely occupied outer orbitals, the state with the
maximum spin (i.e., multiplicity) is the ground state [1,2].

A textbook example of HFR confirmation is the electron
filling of the three degenerate p orbitals in an atomic
subshell (px,py,pz), when the triplet, rather than the singlet,
configuration is realized, as happens in the C atom. This was
explained first by Slater [3] who considered the antisymmetric
nature of the electronic wave function that generates a higher
value for the Coulomb repulsion in the quantum state with
the lower spin value. More recent theoretical analyses were
developed in Refs. [2,4].

The Hund rule’s relevance has long exceeded the bound-
aries of atomic physics where it was first formulated, over
the years being investigated in many other systems such as
quantum dots [5–16], artificial molecules created by quantum
dots [17–20], metal clusters [21–24], bipartite lattices [25,26],
ultrathin films [27], new carbon systems [28,29] or even in
optical lattices [30,31].

A further understanding of the physical mechanism behind
HFR is also offered by the study of physical systems where
the rule is reversed, i.e., the two highest energy electrons form
a singlet rather than a triplet. Such a situation is known to
exist, for example, in quantum dots, where the zero spin
ground state is associated with a spin density wave [6], or
in artificial molecules, when the increase of level splitting
overcame the exchange energy gain by parallel spin alignment
[8]. In semiconductor artificial atoms under magnetic field,
the Hund rule violation is noticed in connection with changes
in the ground-state symmetry [32], while in quadratically

confining quantum dots is related to the modification of the
localization properties of some singlet states [15].

Other exceptions to Hund’s rule, in close relation with the
phenomenology studied in this paper, are known to exist in
physical systems that exhibit, as a common feature, degenerate,
nonoverlapping single-particle states in the midspectrum of
the electronic Hamiltonian. Such states, that do not have any
common sites around the ring, are called disjoint orbitals and
have been identified in ringlike molecules [33–36], graphene
nanoflakes [25], and small Lieb lattices [26].

The classic example concerning HFR validity in molecules
is given by a four-atom molecule such as square cyclobutadiene
for which the Hückel model gives an energy spectrum with four
states, two of them being the disjoint orbitals in the middle
[34]. The model is equivalent with quadruple quantum dot
molecules as described in [37,38]. Using a four-electron wave
function, it was shown that the singlet state has a lower energy
on account of Coulomb correlations associated with single-
particle excitations which are absent in the triplet state [33].
The quantitative calculation of this result was developed on
the basis of the spin polarization phenomena, where within
a self-consistent field approximation, the Brillouin theorem
specifies which of the transitions between the many-particle
spin state are canceled out. When performed for C4H4 and H4

molecules in the second order of interaction, this algorithm
yields a negative singlet-triplet energy gap in violation of the
HFR [35].

In this paper we discuss the spin properties of circular
molecules with an arbitrary number of atoms whose one-
particle spectrum, in general, is composed from a ladder of de-
generate electronic states [39–42]. This property recommends
them as adequate physical systems to investigate the HFR
applicability, motivating the significant number of previous
studies, as briefly described above.

If eigenvectors of the noninteracting Hamiltonian are used
to construct the many-particle states of the interacting system,
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the Brillouin theorem as in Ref. [35] is not applicable anymore,
but the transition probability can be analytically investigated
as done for the Hubbard model in Ref. [26] where the negative
singlet-triplet gap for an octagon molecule was shown to
result from the two midspectrum disjoint orbitals and from
the electron-hole symmetry of the spectrum.

As a technical detail, we consider the extended Hubbard
model for the general case of a circular molecule by including
also a long-range interaction potential, as described in Sec. II.
The single-particle spectrum which consists of a ladder of
double degenerate states is discussed in Sec. III. The particular
case of the molecules with 4N atoms which present a
pair of degenerate nonoverlapping levels at midspectrum is
emphasized. Our main formal results are given in Sec. IV, and
then applied to some particular cases of interest in Sec. V.
Section VI concludes the paper.

II. CIRCULAR MOLECULE AND THE INTERACTING
POTENTIAL

In a tight-binding approximation, we describe a circular
molecule composed of Ns sites (either real atoms or artificial
ones, such as quantum dots) occupied by Ne electrons that
interact through a long-range Coulomb interaction by the
Hamiltonian [43],

Ĥ = −t
∑

n

(c†n+1cn + c†ncn+1)

+ 1

2

∑
n,m,σ,σ ′

Vnmc†nσ c
†
mσ ′cm,σ ′cnσ , (1)

where c
†
nσ and cnσ are the creation and annihilation operators

for an electron state of spin σ = ±1/2 at location n =
1, . . . ,Ns . Every site n can host a maximum of two electrons,
of opposite spins.

The interaction potential between two electrons localized
on the sites n and m with coordinates rn,rm is considered
within the extended Hubbard model to be given by

Vnm = VL

|rn − rm| (1 − δnm) + UHδnm, (2)

with VL the long-range parameter and UH the Hubbard
interaction term. If, say, R1 is the distance between the nearest
sites, VL/R1 and UH are measured in the energy unit t of the
hopping integral set equal to 1. A ring geometry with Ns = 16
is depicted in Fig. 1.

Previously, this model was used in [19,44,45] to investigate
the interaction effect in quantum dot molecules, in core-shell
nanowire with corner localized electric charge [46,47], or in
discretized quantum rings [48]. It was also found to be a good
approximation to describe the electronic dynamics in planar
models of circular molecules such as cyclobutadiene [33] or
cyclooctatetraene [49,50] when the Hükel model is used. The
extended Hubbard model is also used in chemistry in the frame
of the Pariser-Parr-Pople model Hamiltonian [51].

III. SINGLE-PARTICLE STATES

It is well known that in the absence of the interaction, the
single-particle spectrum of circular molecules consists of a

FIG. 1. (Top) The circular molecule with Ns = 16. (Bottom) The
single-particle eigenstates are represented by horizontal lines, while
the circles indicate occupied states at half-filling. At midspectrum,
when k = π/2, states ϕα and ϕβ do not share any common site
(disjoint) and are occupied by two electrons in the singlet state, thus
breaking the first Hund rule. For all other degenerate states, away
from half-filling, the Hund rule is discussed in the text.

ladder of double degenerate states [39–42]. Here we briefly
outline some characteristic properties, useful in the ensuing
discussion.

Following the notations in Ref. [41] for a quantum ring one
can express the energy of the twice degenerate states to be
εk = −2t cos k, where k = 2πl/Ns (l = 1,2,Ns/2 − 1) is the
wave vector (with R1 the distance between the sites set equal
to unity). The associated eigenstates are

∣∣ϕ(1)
k

〉 =
√

2

Ns

∑
n

sin nk|n〉, (3)

∣∣ϕ(2)
k

〉 =
√

2

Ns

∑
n

cos nk|n〉. (4)

In Fig. 1 this result is shown for Ns = 16 sites.
For k = π/2 and l = Ns/4, the eigenstates identified above,

located at energy ε(π/2) = 0, satisfy〈
n
∣∣ϕ(1)

π/2

〉〈
ϕ

(2)
π/2

∣∣n〉 = 0, for all n ∈ [1,Ns], (5)

which means that they do not share any common site. If we
think of the quantum ring as a bipartite lattice with A sites
for n odd and B sites for n even as sketched in Fig. 1, it
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follows that |ϕ(1)
π/2〉 has only A sites localization, and |ϕ(2)

π/2〉
has only B sites localization. Such nonoverlapping states are
also present in the flatband of a Lieb lattice [52] or as different
localized edge states in two-dimensional materials [53–55].
In the frame of the molecular Hückel model used in the
field of quantum chemistry, this situation defines the disjoint
nonbonding orbitals [34,56,57] which have relevance for spin
properties at half-filling.

For wave numbers k = 0 and k = π (l = 0,Ns/2) the
double degeneracy of the spectrum is lifted as the single-
particle energies are ε0 = −2t and επ = +2t , respectively.
In this case |ϕ(1)

k 〉 is zero, while |ϕ(2)
k 〉 [Eq. (4)] is the only good

eigenstate, which upon normalization becomes

∣∣ϕ(2)
0

〉 =
√

1

Ns

∑
n

|n〉, (6)

∣∣ϕ(2)
π

〉 =
√

1

Ns

∑
n

(−1)n|n〉. (7)

IV. THE INTERACTING GROUND STATE

In this section, we investigate the applicability of the
HFR for a pair of electrons that occupy the top states in
the single-particle spectrum identified above when several
electronic occupancies are realized in a molecule with Ns

sites in the presence of the Coulomb interaction. As such,
we evaluate only the differences between the lowest energies
of the interacting system when a pair of electron spins form
a singlet state, corresponding to total spin momentum S = 0
or a triplet with S = 1. With E0 and E1 denoting the lowest
energies in the spin sectors S = 0 and S = 1, respectively, we
define the magnetic energy or the singlet-triplet gap as

	E = E0 − E1. (8)

In a perturbative approach, 	E is obtained, in a first-order
approximation, to be equal to the exchange energy associated
with the Coulomb interaction between the parallel spins in
the triplet configuration [26]. If the exchange energy is zero,
a second-order calculation in the Coulomb interaction is
performed.

In the eigenfunction representation Eqs. (3) and (4), the
Coulomb matrix element for any four single-particle quantum
states, ϕα , ϕβ , ϕγ and ϕδ , is written as Vαβ,γ δ ,

Vαβ,γ δ =
∑
n1,n2

ϕα(n1)�ϕβ(n2)�Vn1n2ϕγ (n1)ϕδ(n2), (9)

with n1 and n2 counting the positions from 1 to Ns of the two
electrons in the system and Vn1,n2 from Eq. (2).

First, we consider the case of a quantum molecule with Ne

number of electrons that fill the energy levels with every k �
k0, with the last two electrons occupying the degenerate states
ϕ

(1)
k0

and ϕ
(2)
k0

with a given k0 �= 0, π/2, or π . Actually, k0 = 0 or
π correspond to the lowest and highest nondegenerate levels,
not of interest for our discussion, and k0 = π/2 is discussed
later in this section.

The singlet-triplet gap 	E is equal to the exchange energy
Vαβ,βα , where ϕα = ϕ

(1)
k0

and ϕβ = ϕ
(2)
k0

[26]:

	E = 2Vαβ,βα. (10)

From Eqs. (3), (4), and (9),

Vαβ,βα =
(

2

Ns

)2 Ns∑
n1,n2=1

sin n1k0 cos n2k0Vn1n2

× cos n1k0 sin n2k0, (11)

which can be written as a difference of two terms:

Vαβ,βα = 1

2N2
s

Ns∑
n1,n2=1

cos 2(n1 − n2)k0Vn1n2

− 1

2N2
s

Ns∑
n1,n2=1

cos 2(n1 + n2)k0Vn1n2 . (12)

The first term in Eq. (12) is just the Fourier transform 1
2V (2k0)

(see also the Appendix). The second term can be shown to
vanish for all the allowed values of the wave vector k0 =
2πl/Ns , except for k0 = 0, π/2, and π . For k0 = π/2, should
such a value exist in the spectrum (for 4N molecules), the
second term cancels exactly the first one and an evaluation in
the second order of the Coulomb interaction is needed. Leaving
this single exception aside for the moment, the spin splitting
energy [Eq. (10)] is therefore given by the Fourier transform
for the wave number 2k0:

	E = V (2k0). (13)

The above equation is one of the main formal results of our
paper. Consequently, the sign of V (2k0) determines the spin
configuration in the ground state, since 	E > 0 means a triplet
ground state and 	E < 0 a singlet ground state.

Since the sign of the function V (q) dictates the spin of
the ground state, a legitimate question is whether negative
values can be obtained—i.e., singlet ground state and the
anti-Hund rule, or is V (q) always positive. The minimum
value of V (q) can be inferred by formally considering q as
a continuous variable in Eq. (A4) which upon differentiation
generates qmin = π [58].

An interesting analytical result is obtained from the large
Ns limit. We can consider Ns = even, since only for an even
number of sites is the wave vector k0 = π/2 a physically
allowed value. One can show that, for Ns = even (see
Appendix)

V (π )→ 1

Ns

[
UH−2 ln 2

VL

	

]
, for Ns→∞, 	=2πR/Ns.

(14)

This implies that a given Fourier component like V (2k0)
is always positive for any UH > 2 ln 2VL

	
� 1.386VL

	
. This

represents, for instance, reasonable values of the Hubbard and
long-range parameters ratio for an artificial quantum dot arrays
model used in [26]. In this case the spin energy gap from
Eq. (13) is always positive (	E > 0). The examples presented
in the next section all suggest that the triplet is ground state for
physically reasonable reasons. However, as Eq. (13) indicates,
mathematically situations with a preferred singlet ground state
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FIG. 2. Long-range part of V (q) (constants disregarded, i.e., R =
1 and VL = 1) for Ns = 12 and Ns = 160. The physically allowed
values for the wave number are multiples of 2π

Ns
. We notice V (π ) →

− ln 2/π .

are possible. To separate the two instances, it is insightful to
plot the long-range part of V (q), i.e., for UH = 0.

From Fig. 2, one notices that for q < π/3 or q > 5π/3,
V (q) > 0 while for the middle interval q ∈ (π/3,5π/3) the
long-range part of V (q) takes negative values, which are to
be compared with the on-site Hubbard part (which is always
positive) in order to decide the sign of 	E.

In conclusion, when the double degenerate states with the
wave number k �= π/2 are occupied with the last two electrons,
the ground state is decided by the sign of the exchange energy
in the triplet configuration. The triplet is always the ground
state if k ∈ (0,π/6) or k ∈ (5π/6,π ), for any values of the
interaction parameters UH or VL. For intermediate values
k ∈ [π/6,5π/6], the singlet can become ground state if the
long-range interaction exceeds a k-dependent threshold value
(relatively to UH ).

A significant exception to this rule, as mentioned previ-
ously, occurs in the case of a molecule whose number of sites
Ns is a multiple of four, occupied by Ne = Ns . In this case
the two midspectrum states with k0 = π/2 are occupied by
two electrons. The exchange energy vanishes for this case and
the perturbative calculation in the Coulomb potential must be
carried out in the second order to determine 	E. As we show
below, the singlet state is always the interacting ground state
of the system, as 	E < 0, and an anti-Hund rule situation is
obtained.

For the beginning, we consider a single-particle excitation
process from one state with wave number π/2 − q ′ < k0 to
another state with wave number π/2 + q > k0. These states
need to have the same symmetry properties to allow single-
particle excitation between them.

With the notations ϕα = ϕ
(1)
π/2, ϕβ = ϕ

(2)
π/2, ϕγ = ϕ

(1)
(π/2)−q ′ ,

and ϕδ = ϕ
(1)
(π/2)+q we have the following formula for the spin

splitting energy in the second order of perturbation [26]:

	E = 2Vαβ,βα + 4Vδα,αγ Vδβ,βγ

	δ,γ

, (15)

where 	δ,γ is the excitation energy 	δ,γ = εδ − εγ . A similar
formula to Eq. (15) can be obtained with self-consistent
orbitals from Ref. [35] if one consider that the singlet and
triplet wave functions are the same.

The Coulomb matrix elements that enter in Eq. (15) are
obtained straightforwardly:

Vαβ,βα = 0, (16)

Vδα,αγ = 1
2 [V (q) + V (π − q)]δq,q ′ , (17)

Vδβ,βγ = −Vδα,αγ , (18)

for q,q ′ ∈ (0,π/2). The first-order cancellation in Eq. (16) is
readily obtained when using the disjointness relation of the two
states with wave number k0 = π/2 from Eq. (5). For Eqs. (17)
and (18), after further arrangements, we use the summation of
the Fourier transformations from Eq. (A5). The negative sign
in Eq. (18) is the one that will lead to negative splitting energy
and HFR violation.

If we consider now the single-particle excitation between
the cosine functions ϕγ = ϕ

(2)
π/2−q ′ and ϕδ = ϕ

(2)
π/2+q we find

out that the Coulomb matrix elements Vδα,αγ and Vδβ,βγ only
change the sign compared to those generated by the sine
functions. The difference is that in this case q,q ′ can have
also the value π/2 corresponding to the transition between the
two extreme energy states from Eqs. (6) and (7), which means
that q,q ′ ∈ (0,π/2].

We are holding now all possible single-particle transition
processes between the states with wave numbers π/2 − q

and π/2 + q for any possible value of q. Using the above
considerations in Eq. (15) and summing the terms for all pairs
of single-particle states ϕγ ,ϕδ we obtain the following relation
for the spin energies splitting:

	E = −2[V (π/2)]2

|ε0| −
∑

q

[V (q) + V (π − q)]2

|επ/2−q | (19)

with επ/2−q and ε0 the single-particle energies.
The first term of the above equation accounts for excitations

from the lowest nondegenerate state (k0 = 0) to the highest
one (k0 = π ), which is also nondegenerate. In the case of the
four-atom molecule, it is the only term existent. For all the
other 4N molecules with N � 2, the second term must be
considered as well, taking account for the allowed excitations
between double degenerate states symmetrically placed below
and above the midspectrum. The summation is over the
values q = 2π

Ns
, 4π

Ns
, . . . , (Ns−4)π

2Ns
. Equation (19) therefore shows

a negative sign of the spin-splitting energy (i.e., 	E < 0) and
therefore a singlet ground state and anti-Hund situation for the
half-filled 4N molecule.

V. EXAMPLES

In this section, we show calculations of the singlet-triplet
level spacing for some simple molecules (either made of atoms
or of quantum dots), using for the Hubbard or long-range
interactions values or formulas proposed in literature.

Two situations when the Hund or anti-Hund situations are
decided by the ratio between the Hubbard and the long-range
interactions are shown in Table I for a triangle molecule and
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TABLE I. Singlet-triplet splitting when the last two degenerate
occupied orbitals are away from half-filling. The calculations are
done in the first-order approximation.

System Electron configuration 	E = ES − ET

	E =
1
3 [UH − V (R1)]

	E =
1
8 [UH + V (R4)]

− 1
4 V (R2)

for an octagon molecule at various filling factors except for
the half-filling.

For an artificial molecule constructed with quantum dots,
one may use, for instance, the dot confinement model described
in [59] where the authors calculate the interaction parame-
ters as

UH = e2

2
√

2πεd
, (20)

V (Rn) = e2

4πεRn

, (21)

with d the dot diameter and Rn the interdot distance of order
n. One can modify the V (Rn) and UH by varying either the dot
diameters or interdot distances. Using Eqs. (20) and (21) the
energy splitting for the triangle molecule in Table I is always
positive for the dot confinement d < R1

√
2π � 2.5R1, which

is true in this case. We mention also that in [60] the exact results
for a triangle are calculated and our results are recovered in
the limit UH − V (R1) 
 |t |.

As a matter of fact, using the condition from Eq. (14), it is
easy to show that the triplet state is always the ground state
away from half-filling (as for situations in Table I) for the
dot diameter d < R1 when considering the model in Eqs. (20)
and (21).

The above values for UH and V (Rn) may also be used to
compute, for instance, the singlet-triplet splitting in half-filled
4N molecules, when one has always an anti-Hund rule. For
the square and the octagon, the results are given in Table II.

We now present results obtained by the formula of 	E from
Table II to approximate the singlet-triplet energy splitting in the

TABLE II. Negative singlet-triplet splitting for the half-filled
square and octagon molecules.

System
Electron

configuration
	E = ES − ET

	E = − 1
16|t | [UH − V (R2)]2

	E = − 1
16

√
2|t | [UH − V (R4)]2

− 1
64|t | [UH + V (R4) − 2V (R2)]2

case of chemical molecules. As an example, we consider the
square model of a cyclobutadiene molecule which has Ns = 4
carbon atoms. We use standard parameters of hydrocarbons
from [51,61], UH = 11.26 eV, hopping energy t = 2.4 eV,
and distance between atoms R1 = 1.44 Å. The long-range
interaction is calculated now with the Pariser-Parr-Pople model
Hamiltonian [62] and the Ohno formula [51]:

V (Rn) = 14.397√(
14.397

UH

)2 + R2
n

, (22)

with V (Rn) and UH in eV and Rn in Å. From the formula
of Table I we obtain the value 	E = −0.72 eV for a square
model of cyclobutadiene, close to numerical values 	ESP =
−0.71 eV obtained in [35] considering the spin-polarization
effect and minimal base for molecular calculation.

For the planar model of the cyclooctatetraene molecule
with Ns = 8 carbon atoms, if we keep the same parameters
as above, except R1 = 1.40 Å, we obtain 	E = −0.88 eV,
which is lower than other values reported in literature, but
comparable to 	EST = −0.68 eV or −0.34 eV in [63].

The perturbative approach described in this paper, although
valid only for small values of the interacting potential, offers
a good qualitative description of the spin configuration of the
ground state in the case of circular molecules with a large
number of atoms. Full analytical results in the presence of
interaction are only available for the smallest N = 3 molecule
[60], while exact diagonalization numerical results are already
somewhat computationally demanding even for the N = 8 (see
[26]). Such methods are not at all feasible for large N . In
a direct comparison, for the smaller circular molecule with
N = 3, our perturbative result from Table I differs from the
exact result [60] by less than 2% for UH − V (R1) < 0.1t and
less than 6% for UH − V (R1) < 0.3t . In [26], for N = 8, if
only the on-site Hubbard interaction is considered, we find
good correspondence between the perturbative results and the
exact diagonalization ones for UH < t .

VI. CONCLUSION

In this paper we have studied the first Hund rule in circular
molecules, for cases when the two most energetic electrons
occupy a pair of degenerate levels. The quantity of interest
is the singlet-triplet energy gap 	E, which was expressed in
terms of the Fourier transform of the interacting potential.
Both on-site (UH ) and long-range (VL) interactions have been
considered within an extended Hubbard model.

A special case is found for the 4N molecule at half-filling,
for which the first-order energy correction (i.e., the exchange
energy) vanishes and the second order gives always the singlet
as ground state, and thus an anti-Hund situation. Since the 4N

molecule is a bipartite lattice, we find ourselves in the frame
of the Lieb theorem [64], but with a more complex potential
including arbitrary long-range interaction.

For all the other cases, the exchange energy does not
vanish and its sign decides the ground state. Our results
show that, depending on the total number of electrons in
the system (i.e., the wave number k0 of the highest occupied
levels) we meet the two distinct situations. A triplet ground
state is realized for any values of interaction parameters
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if k0 ∈ (0,π/6) or k0 ∈ (5π/6,π ). On the other hand, for
k0 ∈ [π/6,π/2) ∪ (π/2,5π/6] the singlet ground state is math-
ematically possible, with the highest probability for k0 close to
π/2. A necessary condition for a singlet ground state around
k0 = π/2 is VL/	 > UH/(2 ln 2) (	 is the nearest-neighbor
distance measured on the circle, i.e., 	 = 2πR/Ns).

The described formalism is applied for some few-atoms
circular molecules, either real or artificial, in Sec. V.

The results hold for arbitrary Hubbard or long-range
interactions, as well as for any number of atoms in the
circular molecule. Such generality is owed to the fact that
the singlet-triplet level spacing was analytically expressed in
terms of the Fourier transform of the interaction potential.

Apart from providing detailed spectral calculations for
molecules of potential interest, our studies may be also
relevant for understanding various origins of nontrivial spin
alignment.
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APPENDIX: THE FOURIER TRANSFORM OF THE
INTERACTION POTENTIAL [THE V (k) FUNCTION]

The long-range part of the potential Vnm in Eq. (2) depends
only on the distance Rnm between the points n,m that, for
the ring geometry, counts only the minimum number of sites
from n to m. Then we can define the potential V (Rn) for any
integer n:

V (Rn) = VL

Rn

(1 − δRn,0) + UHδRn,0

with Rn = 2R| sin πn/Ns |, (A1)

with the length Rn measuring the distance between two points
separated by n successive sites on a circle of radius R.

The potential V (Rn) from Eq. (A1) has the periodicity
V (Rn) = V (Rn+Ns

) and we define the Fourier transformation

V (k) = 1

Ns

Ns∑
n=1

eiknV (Rn), (A2)

with the wave number k = 2π
Ns

l with l an integer.

In the calculation of ground-state properties from Sect. IV
we use the following properties of V (k):

V (k) = V (k)�, (A3)

V (k) = 1

Ns

Ns∑
n=1

cos knV (Rn) = UH

Ns

+ VL

Ns

Ns−1∑
n=1

cos kn

Rn

.

(A4)

Equation (A3) is immediate using V (Rn) = V (RNs−n) in
Eq. (A2) and Eq. (A4) follows from Eq. (A3) using also the
explicit form of the potential from Eq. (A1).

Using the definition of the Fourier transform from Eq. (A2)
we obtain the relation

V (q) + V (π − q) = 2

Ns

Ns∑
n=2(even)

cos qnV (Rn) (A5)

that is used to derive Eqs. (17) and (18).
As mentioned also in the main text, if we treat k as a

continuous variable, then the derivative of Eq. (A4) cancels
for k = π , where the function has a minimum (as seen in
Fig. 2). Whether this minimum is negative or remains positive,
depends on the ratio VL/UH . In order to calculate V (π ) in the
limit of a large number of sites (Ns → ∞) one evaluates, up
to a constant,

lim
N→∞

[
π

N

N−1∑
n=1

cos πn

sin πn/N

]
. (A6)

This is done by taking into account that

lim
N→∞

N∑
n=1

(−1)n

n
= − ln 2, (A7)

an equality that reproduces the first terms in Eq. (A6), since
for small n, cos nπ = (−1)n while sin πn/N � πn/N in the
limit N → ∞. Terms calculated for intermediate values of n

generate vanishing contributions. The last terms in Eq. (A6)
(n → N ) reproduce in magnitude terms present in Eq. (A7),
as sin(π − a) = sina. Whether the terms are reproduced with
the same sign or the opposite one is decided by the parity
of N .

As a result, the limit of Eq. (A6) is −2 ln 2 for N = even
and 0 for N = odd. This proves Eq. (14).
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[41] S. S. Gylfadottira, M. Niţă, V. Gudmundsson, and A. Manolescu,
Physica E 27, 278 (2005).

[42] J. M. Mercero, A. I. Boldyrev, G. Merino, and J. M. Ugalde,
Chem. Soc. Rev. 44, 6519 (2015).

[43] G. D. Mahan, Many-Particle Physics (Kluwer Aca-
demic/Plenum Press, New York, 2000).

[44] B. R. Bułka, T. Kostyrko, and J. Łuczak, Phys. Rev. B 83, 035301
(2011).

[45] K. Wrześniewski and I. Weymann, Phys. Rev. B 92, 045407
(2015).

[46] I. Ozfidan, M. Vladisavljevic, M. Korkusinski, and P. Hawrylak,
Phys. Rev. B 92, 245304 (2015).
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