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Superfluid density and carrier concentration across a superconducting dome:
The case of strontium titanate

Clément Collignon,1,2 Benoît Fauqué,1,3 Antonella Cavanna,4 Ulf Gennser,4 Dominique Mailly,4 and Kamran Behnia1,*

1Laboratoire Physique et Etude de Matériaux (UMR 8213-CNRS), ESPCI, UPMC, PSL, F-75005, Paris, France
2Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada

3JEIP, (USR 3573 CNRS), Collège de France, PSL Research University, 11, place Marcelin Berthelot, 75231 Paris Cedex 05, France
4Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris Sud, Université Paris Saclay, 91120 Palaiseau, France

(Received 7 June 2017; published 14 December 2017)

We present a study of the lower critical field, Hc1, of SrTi1−xNbxO3 as a function of carrier concentration
with the aim of quantifying the superfluid density. At low carrier concentration (i.e., the underdoped side),
superfluid density and the carrier concentration in the normal state are equal within experimental margin. A
significant deviation between the two numbers starts at optimal doping and gradually increases with doping.
The inverse of the penetration depth and the critical temperature follow parallel evolutions as in the case
of cuprate superconductors. In the overdoped regime, the zero-temperature superfluid density becomes much
lower than the normal-state carrier density before vanishing all together. We show that the density mismatch
and the clean-to-dirty crossover are concomitant. Our results imply that the discrepancy between normal and
superconducting densities is expected whenever the superconducting gap becomes small enough to put the system
in the dirty limit. A quantitative test of the dirty BCS theory is not straightforward, due to the multiplicity of the
bands in superconducting strontium titanate.
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I. INTRODUCTION

In many superconductors with an insulating parent, the
critical temperature is a nonmonotonic function of carrier
concentration. The very existence of such a superconducting
dome raises a fundamental question. How does the superfluid
density nS evolve in such a context? Does it remain equal
to the concentration of electrons in the normal state? Or
does it follow the nonmonotonic variation of the critical
temperature? In the case of high-Tc cuprates, the doping
dependence of the superfluid stiffness [1–3] has remained
the subject of an intense debate, focused on the link between
critical temperature and superfluid stiffness [4–8]. A recent
subject of debate has been the correlation between superfluid
density and critical temperature in overdoped cuprates. It has
been interpreted as incompatible with the standard Bardeen-
Cooper-Schrieffer (BCS) description [8] or in good agreement
with the dirty BCS theory [9]. However, a comparison
between the magnitude of nS with the normal-state carrier
concentration nH was absent in this debate. To the best of
our knowledge, and in spite of abundant experimental data,
such a textbook [10] link has never been verified in any
superconductor.

Among doped semiconductors with a superconducting
ground state [11], SrTiO3 [12–16] distinguishes itself. With
only 10−5 electron per formula unit (f.u.), it becomes a
superconductor and when carrier density exceeds 0.02/f.u.,
it ceases to be so. The existence of this superconducting dome
raises many questions: How does superconductivity persist
in the dilute limit in spite of a hierarchy inversion between
Fermi and Debye temperatures? Why does it disappear
on the overdoped side despite the steady increase in the
electronic density of states? Do plasmons play a role in
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binding Cooper pairs in the extreme dilute limit [17,18]? The
vicinity to a ferroelectric instability has motivated theoretical
scenarios invoking ferroelectric quantum criticality [19,20],
which have found support in a number of recent experiments
[21,22].

On the other hand, the case of SrTiO3 offers a unique
opportunity to explore the behavior of superfluid density
when the critical temperature is not a monotonic function
of carrier density. The superconducting instability occurs in a
well-documented Fermi surface in which carrier concentration
is known with a reliable accuracy [16] and can be tuned
across orders of magnitude. Here, we present an extensive
study of the lower critical field in SrTi1−xNbxO3 across the
superconducting dome with a focus on the relative magnitude
of superfluid and normal-carrier density. In the underdoped
regime, we find that the superfluid density extracted from
the magnitude of the lower critical field is in agreement
with the carrier concentration in the normal state. Deep in
the overdoped regime, a mismatch between the extracted
superfluid density and the concentration of normal electrons
is detectable and steadily increases with doping. We show that
this mismatch is concomitant with the passage from clean
to dirty limit. However, we fail to achieve a quantitative
account in the dirty limit in a single-band picture. This
is most probably because the multiplicity of the electronic
bands significantly affects the nS/nH ratio. The results have
implications beyond the case of strontium titanate. Comparing
SrTiO3 with a dense s-wave superconductor, namely niobium,
we find that when a superconductor is clean, the magnitude
of the penetration depth correlates with its carrier density. It
is also instructive to compare optimally-doped YBCO with
these two systems. Its reported penetration depth in the ab

plane happens to be where it is expected according to its
carrier density, the effective mass of its carriers and the BCS
theory.
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FIG. 1. (a) Typical field dependence of the Hall resistivity of
a microprobe with a superconducting sample above. The measured
signal, directly proportional to the local magnetic field, suddenly rises
when the first vortex penetrates the sample. The sharpness indicates
the absence of surface-barrier effects or gradual vortex leak from
sample corners [27]. The inset shows, in false colors, a picture of the
array of Hall microprobes used for this experiment and a scheme of
how a sample is mounted on the array of probes. (b) Raw data for the
nH = 2.1 × 1020 cm−3 sample at different temperatures.

II. EXPERIMENTAL

We measured the lower critical field, Hc1, with Hall probes
realized using a high-mobility AlGaAs/GaAs heterostructure
with a two-dimensional electron gas (2DEG) 160 nm below
the surface. The 2DEG has a mobility of 320 000 cm2/Vs and
a carrier density of 2 × 1011 cm2 at liquid helium temperature.
The devices were fabricated using electron beam lithography
and 250 V argon ions to define the mesa. As shown in the inset
of Fig. 1(a), each probe is a 5 × 5 μm2 square, 100 μm spaced
from its immediate neighbor.

Such a device can monitor local magnetization at micron
scale and was used before to study vortex avalanches in
superconducting niobium [23]. Similar Hall microprobes have
been used before to measure Hc1 in heavy-fermion [24] and in
iron-based [25] superconductors.

The Hall resistance of a 2DEG probe yields the local
magnetic field, B:

Rxy,probe = B2/ne. (1)

Here n is the carrier density of the electron gas. In our case with
1/ne ∼ 0.3�/G, we could easily resolve very small variations
in the magnetic field. We checked that the 1/ne coefficient does
not change with temperature below 1 K. To measure Hc1, the
sample is laid on the array as depicted in the inset of Fig. 1(a).

TABLE I. Sample characterization: Hall number, low-
temperature resistivity, and the geometrical coefficient extracted from
width and thickness in order to extract the lower critical field using
Eq. (2).

nH ρ0(2 K)
x (1020 cm−3) (μ� cm) Hc1

Hp

0.002 0.41 49 2.32
0.08 1.9 53 2.64
1 2.1 71 2.57
1.4 2.6 109 2.37
2 3.2 56 1.78
2 3.5 45 2.28

At low field, the sample is in the Meissner state and the
probes below do not feel any magnetic field, which is screened
by the sample. When the first vortex penetrates the sample,
the microprobe detects a rise in the measured magnetic field.
The field value at which it occurs gives the penetration field
Hp. The data for one sample at one temperature, presented
in Fig. 1(a), illustrates how clearly one can detect Hp. Each
isothermal curve was obtained by two sets of sweeps from
zero to positive and from zero to negative fields. Between
the two sweeps the sample was heated up to a temperature
significantly larger than the critical temperature and back to the
measuring temperature. The intrinsic lower critical field Hc1

is proportional Hp. In the case of a platelet, the geometrical
factor is:

Hc1 = 1

tanh(
√

0.36t/w)
Hp, (2)

where t and w are, respectively, the thickness and the width of
the slab [26]. This geometrical factor is given for each sample
in Table I.

We monitored the Hall resistance of several probes in the
proximity of the sample edges. Our data is based on a probe
located below the sample and about 150 μm distant from
the edge. We chose this option to avoid two phenomena,
which can disrupt an accurate determination of Hc1. Vortices
can penetrate by the corner of the sample below Hp [27].
Therefore, the sample corners are to be avoided. On the other
hand, vortex pinning may generate a nonuniform distribution
of magnetic field [28]. Like a previous study [29], the
probe was located close to the edge in order to avoid this.
The sharpness of the increase in Rxy,probe at Hp in our

TABLE II. Penetration depth, superfluid density, and normal-state
carrier density in three superconductors. Note that in the case of
YBCO, the largest effective mass [48] was measured at p = 0.15,
below optimal doping (p = 0.18) and it is the in-plane penetration
depth, λab, which is considered.

Tc λ m� nS nH

System (K) (nm) (me) (1020 cm−3) (1020 cm−3)

STO 0.3 952 4.2 1.3 2.1
Nb 9.3 31.5 [43] 1.5–4 [46] 520 620 [47]
YBCO 89 103 [44] 3.6 [48] 96 50 [45]
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data indicates that these phenomena do not contaminate our
measurements.

A perfect surface may forbid the flux lines to penetrate the
sample and thus artificially increase the penetration field [30].
Experimentally, this surface barrier effect will be manifested
as a slow increase above Hp and then a sharp rise when the
barrier is overcome [27]. Such an effect is absent from our
data [see Fig. 1(a)]. Most probably, this is because the surface
roughness of our samples is of the same order as the penetration
depth [31].

Another experimental challenge is the presence of residual
and Earth magnetic field. Their magnitudes are not negligible
compared to the lower critical field measured here. We
compensated them by applying a small magnetic field. As
seen in Fig. 1, the magnitude of Hp was identical for the two
field polarities. The small asymmetry for the most overdoped
sample quantifies the limits of our compensation method.

Still using the Hall probes, we were also able to quantify the
upper critical field of our samples. At a given fixed field, Happ,
when the temperature is decreased below Tc(Happ) the sample
starts to expel the magnetic field. Thus, for a probe under the
sample, the signal will be constant at T > Tc(Happ) and then
start to drop in the superconducting phase. By repeating this
measurement at several fixed fields, we can finally extract the
field dependency of Tc, or the other way around, the temper-
ature dependency of Hc2. In practice, for applied field larger
than 10 Oe, the expelled field is two or three orders smaller
than the applied one. Hence, the drop we want to observe in
Rxy,probe is below the resolution of the range we have to use to
not get a saturation of the signal. We consequently measured
the difference between the signals of two probes, one under
the sample and another outside of it, in order to cancel the
large and uninteresting signal from the applied field. This
method gives us directly a signal proportional to the magnetic
susceptibility.

We measured six SrTi1−xNbxO3 samples (source: CrysTec
GMbH) with labeled niobium concentrations of 0.2, 0.8, 1, 1.4,
2, and 2%. Two slabs were cut from each sample: one to mea-
sure resistivity and Hall effect and one for the magnetometry
measurement of approximate size 1 × 1 × 0.5 mm3 (except for
one sample with a thickness of 1 mm). We performed resistivity
temperature sweeps from T = 300 to 2 K at zero field and
Hall effect field sweeps from H = 0 to ±12 T at T = 2
K via a Quantum Design physical property measurement
system (PPMS). The extracted ρ0 and nH values are listed
in Table I. Similar samples were studied previously using
multiple experimental techniques, such as electrical resistivity
[32], thermal conductivity [33], thermoelectric response [34],
and specific heat [33]. Thanks to their high mobility, quantum
oscillations can be detected in a moderate magnetic field
[16,34]. Their Nb content was checked by secondary ion beam
mass spectroscopy (SIMS) [33].

III. RESULTS

We measured the lower critical field Hc1 of all six samples
and the upper critical field Hc2 of three of them. These two
sets of data allowed us to extract the Ginzburg parameter, κ .
The penetration depth λ can be computed using κ and Hc1.
The penetration depth combined with effective mass yields

superfluid density, which is the quantity we wish to put under
scrutiny.

A. Lower critical field Hc1

For each sample, we performed measurements at different
temperatures extending from Tbase ∼ 30–50 mK up to Tc and
above and extracted Hp(T ). The raw data for nH = 2.1 ×
1020 cm−3 is shown in Fig. 1(b). The measured local field B

can be used to extract magnetization through M = B/μ0 − H .
In all six samples, magnetization is proportional to −H

at low field, sharply drops at Hp, and decreases smoothly
afterwards (see Fig. 2). Superconducting slabs with a small
Ginzburg parameter typically behave in this way [35]. For each
temperature, Hp is taken to be the magnetic field at which M

deviates significantly from −H (see Fig. 2). The temperature
dependence of ±Hp for opposite orientations of magnetic field
in the six samples is shown in the same figure. The small
difference between +Hp and −Hp indicates that residual
(including Earth) magnetic field has been compensated in a
satisfactory manner.

The temperature dependence of Hc1 for all six samples is
exposed in Fig. 3. We note that the temperature dependence
of Hc1 is somewhat different among different samples. The
observed variety in the temperature dependence of lower
critical field in different samples may be a consequence
of multigap superconductivity, which is known to produce
additional structure in the temperature dependence of Hc1

[36]. One may expect that the curvature of Hc1 is set by the
way disorder tunes the contribution of different bands. This
variety in the temperature dependence has little effect on the
extraction of a reliable Hc1(0), which is the purpose of the
present study. We note an agreement between our data and
what was reported in an early study on the lower critical field
of two SrTi1−xNbxO3 samples near optimal doping [37]. As
one can see in Fig. 3(b), the doping dependence of Hc1 and Tc

are similar to each other, both presenting a domelike structure.

B. Upper critical field Hc2

We managed to measure the upper critical field Hc2 for
three of our samples with carrier densities nH = 2.1,3.2, and
3.5 × 1020 cm−3, with the methods explained in Table I. The
signal difference between one probe under the sample and one
far from, proportional to the magnetic susceptibility ξ , is flat
at high temperature and starts to drop at Tc as seen in the
upper panels of Fig. 4. The field dependence of Tc allows us to
plot the temperature dependence of Hc2 depicted in the lower
panel of Fig. 4. We then proceeded to fit the data points with
the Werthamer, Helfand, and Hohenberg (WHH) function [38]
in order to extract the value in the T = 0 limit. Those fits give
the values reported in Table III.

The upper critical field is set by the superconducting
coherence length, ξ , while the lower critical field is set by
the magnetic penetration depth, λ. Roughly speaking, at Hc1

the whole magnetic flux is contained by a single vortex of
radius λ. A more elaborate treatment takes into consideration
energy corrections due to the internal structure of the vortex
and the Ginzburg parameter κ , the ratio of the penetration
depth over the superconducting coherence length. When κ is
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FIG. 2. Upper panels show magnetization M as a function of magnetic field at different temperatures for the six samples. Lower panels
show the extracted penetration fields Hp for opposite orientations of magnetic field by taking the crossing point of M(H ) at a given temperature
with the dashed lines shown in the panels. Black dashed lines are empirical fits to Hp(T ) = Hp(0) (1 − (T/Tc)α).

large, the ratio Hc1/Hc2 is given with negligible error by the
following approximation [10,39,40]:

Hc1

Hc2
= ln(κ) + 0.5

2κ2
. (3)

Noting that Hc2 = φ0/2πξ 2, where φ0 is the quantum of
magnetic flux, this leads to the following relation between Hc1

and λ:

Hc1 = φ0

4πλ2
(ln(κ) + 0.5). (4)

This widely-used expression is to be used with caution
given its implicit assumption of a large κ . The question is
particularly relevant in the case of SrTi1−xNbxO3 where the
κ is relatively low. Harden and Arp [41] made numerical
calculations for κ values ranging from 0.3 to 100. They
found that when κ = 5, Hc2/Hc1 = 22.44, which is to be
compared with Hc2/Hc1 = 23.74 deduced from Eq. (3). This
represents an error of 6%. At κ = 10 the same comparison
yields an error of 1.4%. Therefore, if the ratio Hc1/Hc2

ratio plugged in to Eq. (3) yields a κ larger than 5, then
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FIG. 3. (a) Lower critical field vs temperature for all six samples
deduced from Hp and geometrical correction of the demagnetization
field. (b) Doping dependence of the critical temperature determined
by Hall probe magnetometry (blue disks) and thermal conductivity
(black squares) [33]; the blue line is a guide to the eye. (c) Doping
dependence of Hc1; the blue line is a guide to the eye.

we can legitimately use Eq. (4) to extract the penetration
depth λ.

From the measured bulk Hc2 in three of our samples
(combined with unpublished AC susceptibility data in the case
of the nH = 2.6 × 1020 cm−3 sample [42]), we extracted κ .
When carrier concentration is low and the system is in the clean
limit κ � 8.5. It increases to 17 at high concentration when
the mean-free path shortens and pulls down the coherence
length. This allowed us to extract the penetration depth
from Hc1 using Eq. (3). Since κ > 5, our use of Eq. (4) is
legitimate.

FIG. 4. Upper panels show the temperature dependence of the
difference in signal between one probe under the sample and one
probe far from it at various fixed fields and for three dopings. The
difference is proportional to the magnetic susceptibility ξ . The lower
panel shows the temperature dependence of the upper critical fields
Hc2 extracted from the upper panels. The lines are WHH fits [38] to
the data points.

IV. DISCUSSION

A. Penetration depth

The superfluid density and the penetration depth are
intimately linked through the London equation [10]:

λ−2 = μ0e
2 ns

m�
. (5)

The doping dependency of λ−2 is shown in Fig. 5. It also
presents a domelike structure, reminiscent of the case of
cuprates [6]. Uemura and co-workers [1] were the first to notice
that the correlation between the superfluid stiffness (∝ ns

m� ) and
the critical temperature in cuprates.

B. Comparison with other superconductors

The penetration depth of optimally-doped strontium titanate
is 870 nm. Let us now compare this with two other super-
conductors [Fig. 4(b)]. In niobium, it is 31.5 nm [43]. Given
the large difference in their carrier concentration, this is not
surprising. The figure compares λ(nH ) for these two systems
with what is expected according to Eq. (5), and assuming
nH = ns . One can see that the data points fall close to their
expected position. It is instructive to compare the measured
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TABLE III. Parameter for SrTi1−xNbxO3 and for clean [43,56] and dirty [54,55] niobium.

nH Tc Hc1 Hc2 λ ns ρ2K τ

Sample (1020 cm−3) (mK) (Oe) (Oe) κ (nm) (1020 cm−3) (μ�.cm) (ps) ns

nH

π�τ

h̄

0.41 183 1.6 1647 0.44 49 7.43 1.07 0.980
1.9 300 4.8 943 1.34 53 1.50 0.70 0.326
2.1 303 4.7 240 8.2 952 1.31 71 1.34 0.62 0.294

STO
2.6 382 6.05 480 10.5 881 1.53 109 0.52 0.58 0.144
3.2 192 2.8 210 10.5 1292 0.72 56 0.84 0.22 0.116
3.5 118 0.5 85 17 3305 0.11 45 0.95 0.03 0.081

620 9.3 K 1800 4000 0.85 31.5 520 2 × 10−4 5.8 0.84 38
Nb 620 9.3 K 44 264 1.2 8 × 10−2 0.42 0.53

620 8.3 K 90 63 3.9 3 × 10−2 0.10 0.20

λab in optimally-doped YBCO (103 nm [44]) with these two
systems. As seen in Fig. 4(b), assuming the carrier density
given by the Hall coefficient in the vicinity of optimal doping
[45] (see Table II for details), this value of the penetration
depth is what is expected in this system. This confirms a key
expectation of the BCS theory: Absent disorder, what sets the
magnitude of the penetration depth in a given superconductor
is its carrier density (and not its critical temperature).

FIG. 5. (a) Doping dependence of the penetration depth plotted
as λ−2 vs nH . It exhibits a domelike structure comparable to Tc, as in
the case of cuprates [6]. (b) Penetration depth plotted as a function
of nH /m� in three different superconductors with m� being unitless.
The values are detailed in Table II. The dashed lines represent the
expectation of Eq. (5), assuming nH = ns . The penetration depth in
cuprates is the ab plane one λab.

C. Disorder

Disorder can reduce superfluid density through two distinct
mechanisms. The first mechanism is relevant to all supercon-
ductors. The energy scale of Drude metallic conductivity h̄/τ

increases with increasing disorder and decreasing scattering
time τ . When the superconducting gap � is much larger than
this energy scale, the condensate density and the density of
normal quasiparticles are comparable. In the opposite limit
(when h̄/τ � �), a small fraction of normal-state charge
carriers have subgap energies and one expects ns � nH

[49,50].
Quantitatively the superfluid density can be described by

the following equation [49,50]:

ns � 2m�

πe2

∫ 2�/h̄

0
dωσ1(ω), (6)

where σ1(ω) is the real part of the optical conductivity. If we
assume that σ1(ω) behave as a Lorentzian of width 1/τ and
zero frequency value σ0 = ne2τ/m� as described by the Drude
model we can simply integrate Eq. (6):

ns � 2n

π
arctan

(
2π�τ

h̄

)
. (7)

Note that in the dirty limit (i.e., �τ → 0), leading to the Homes
law which states that ns/m� ∝ σ0Tc [2,3].

Another distinct disorder-driven mechanism is specific to
nodal superconductors like cuprates and is associated with
nonmagnetic pair breaking. Note that in both cases, the crucial
parameter is the ratio of h̄/τ to �. Since experiments indicate
that n-doped SrTiO3 is s wave [33,51], only the first mechanism
is relevant here.

D. Superfluid density

According to band calculations [52], metallic strontium
titanate has three distinct bands. This was confirmed by an
extensive study of quantum oscillations [16], finding new
frequencies emerging above two critical doping levels. Early
tunneling studies [15] and more recent thermal conductivity
measurements [33] detected two distinct gaps. The cyclotron
masses of the three bands are different. The lower band (or the
outer sheet of the Fermi surface) is heavier (m�

1 = 3.85 ± 0.35)
compared to the higher bands (m�

2,3 = 1.52 ± 0.25). These
numbers are consistent with what was found by ARPES (1.5me
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and 6me) at a higher concentration [53]. In our window of
interest, three fourth of all carriers reside in the lower band
[16]. The electronic specific heat, γ = 1.55 mJ mol−1 K−2 (at
nH = 2.6 × 1020 cm−3) is known. Assuming that all carriers
reside in one band, one obtains m� = 4.2me [33].

Let us assume a single band with an effective mass of
4.2 me and nH extracted from Hall coefficient, which is close
to the total number of carriers residing in different Fermi
surface pockets and detected by quantum oscillations [16].
The results can be seen in Fig. 6(a), which shows the ratio of
the extracted ns over the normal state carrier density nH for our
six samples. As seen in this figure, the superfluid density and
the normal carrier density match each other at low doping. A
deviation starts at optimal doping before drastically increasing
at higher doping levels. Thus, the superfluid stiffness (that is
λ−2) follows the doping dependence of the critical temperature,
because nS becomes lower than nH in the overdoped regime.

In order to document the passage to the dirty limit,
we extracted the scattering time τ from low-temperature
resistivity (1/ρ0 = ne2τ/m�) and estimated the magnitude of
the superconducting gap using the BCS relation � ∼ 1.76kBTc

[15,57]. The product of the two tells us on which side of the
clean/dirty limit the system is. Note that �/ξ = π�τ/h̄. When
π�τ/h̄ < 1, one enters the dirty limit. Figure 6(b) compares
the evolution of ns/nH and π�τ/h̄. The two quantities
deviate from unity concomitantly, but are not proportional
to each other in the dirty limit as one may expect in the
crudest conceivable approximation. It is also instructive to
compare our data with available data on Nb from three
different studies [43,54,55]. Figure 6(c) shows the variation
of ns/nH with π�τ/h̄ in SrTi1−xNbxO3 and in Nb. One
can see that in both systems, as theoretically expected [3],
the clean-to-dirty crossover and the loss of superfluid density
are concomitant. However, in the case of strontium titanate,
ns/nH and π�τ/h̄ are not simply proportional to each other.
This is a presumably due to the inadequacy of a single-band
approach.

E. Comparison with the interface superconductor

Let us compare our quantification of superfluid density in
the bulk superconducting strontium titanate with the case of
the superconducting LaAlO3/SrTiO3 interface. Bert et al. [58]
studied how a gate voltage tunes the two-dimensional super-
fluid density in this system. The maximum superfluid density
found was n2D

s = 3 × 1012 cm−2. This is much more dilute
than the maximum three-dimensional superfluid density found
here, which is n3D

s = 1 × 1020 cm−3. The two densities can be
contrasted by comparing the average distance between carriers.
In their case, the peak n2D

s corresponds to dee = 5.7 nm. In our
case, n3D

s corresponds to dee = 2.15 nm. In other words, the
peak density for the interface system is significantly more
dilute than in the bulk system. The most plausible explanation
for this difference is the presence of additional disorder in the
interface superconductor. As discussed above, the larger the
disorder, the lower the superfluid density.

V. SUMMARY

In summary, we found that superconducting SrTi1−xNbxO3

has a domelike λ−2 reminiscent of cuprates. Comparing three

FIG. 6. (a) Evolution of superfluid density as a function of carrier
density. The straight line represents nS = nH . (b) The ratio of super-
fluid density over normal-state carrier density (red discs) compared
to the product of the scattering time and the superconducting gap
(blue squares) as a function of doping. Lines are guides to the
eye. (c) The evolution of superfluid density in Nb (blue squares
[43,54,55]) and in Nb-doped SrTiO3 (red discs). The continuous black
line is the analytic solution of the Ferrell Glover Tinkham sum rule
Eq. (7).

different systems, one sees that when a superconductor is
clean, its λ is primarily set by its carrier density and not
by its critical temperature. The density mismatch between
superconducting and normal states is concomitant with the
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entry to the dirty limit. Since in all superconducting domes,
the Tc and the gap eventually vanish, the mismatch is expected
in any superconducting dome far from optimal doping. Finally,
we notice that a quantitative account of disorder-driven
loss of superfluid density needs to take into account the
multiplicity of the electronic bands and the superconducting
gaps.

ACKNOWLEDGMENTS

We thank A. J. Millis, J. Orenstein, and L. Taillefer for
helpful discussion and comments. This work is supported by
Agence Nationale de la Recherche through the QUANTUM
LIMIT project, by Fonds-ESPCI-Paris and by JEIP-Collège
de France.

[1] Y. J. Uemura, G. M. Luke, B. J. Sternlieb, J. H. Brewer, J. F.
Carolan, W. N. Hardy, R. Kadono, J. R. Kempton, R. F. Kiefl,
S. R. Kreitzman, P. Mulhern, T. M. Riseman, D. L. Williams, B.
X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A. W. Sleight,
M. A. Subramanian, C. L. Chien, M. Z. Cieplak, G. Xiao, V. Y.
Lee, B. W. Statt, C. E. Stronach, W. J. Kossler, and X. H. Yu,
Phys. Rev. Lett. 62, 2317 (1989).

[2] C. C. Homes, S. V. Dordevic, M. Strongin, D. A. Bonn, R. Liang,
W. N. Hardy, S. Komiya, Y. Ando, G. Yu, N. Kaneko, X. Zhao,
M. Greven, D. N. Basov, and T. Timusk, Nature (London) 430,
539 (2004).

[3] C. C. Homes, S. V. Dordevic, T. Valla, and M. Strongin, Phys.
Rev. B 72, 134517 (2005).

[4] C. Bernhard, C. Niedermayer, U. Binninger, A. Hofer, C.
Wenger, J. L. Tallon, G. V. M. Williams, E. J. Ansaldo, J. I.
Budnick, C. E. Stronach, D. R. Noakes, and M. A. Blankson-
Mills, Phys. Rev. B 52, 10488 (1995).

[5] J.-P. Locquet, Y. Jaccard, A. Cretton, E. J. Williams, F. Arrouy,
E. Mächler, T. Schneider, O. Fischer, and P. Martinoli, Phys.
Rev. B 54, 7481 (1996).

[6] T. R. Lemberger, I. Hetel, A. Tsukada, M. Naito, and M.
Randeria, Phys. Rev. B 83, 140507 (2011).

[7] D. Deepwell, D. C. Peets, C. J. S. Truncik, N. C. Murphy, M. P.
Kennett, W. A. Huttema, R. Liang, D. A. Bonn, W. N. Hardy,
and D. M. Broun, Phys. Rev. B 88, 214509 (2013).
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