
PHYSICAL REVIEW B 96, 224503 (2017)

Effective model for a supercurrent in a pair-density wave
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We extend the standard effective model of d-wave superconductivity of a single band tight-binding Hamiltonian
with a nearest-neighbor attraction to include finite range periodically modulated pair hopping. The pair hopping
is characterized by a fixed wave number QQQ = Qx̂ breaking lattice rotational symmetry. Within self-consistent
BCS theory we study the general variational state consisting of two incommensurate singlet pair amplitudes
�Q1 and �Q2 and find two types of ground states; one of the Larkin-Ovchnnikov (LO) or pair-density wave
(PDW) type with �Q1 = �Q2 and Q1 = −Q2 ≈ QQQ, and one of the Fulde-Ferrell (FF) type with �Q2 = 0 and
Q1 ≈ ±QQQ. An anomalous term in the static current operator arising from the pair hopping ensures that Bloch’s
theorem on ground state current is enforced also for the time-reversal and parity breaking FF state, despite no
spin-population imbalance. We also consider a supercurrent by exploring the space of pair momenta Q1 and
Q2 and identify characteristics of a state with multiple finite momentum order parameters. This includes the
possibility of phase separation of current densities and spontaneous mirror-symmetry breaking manifested in the
directional dependence of the depairing current.
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I. INTRODUCTION

It is well established that various coexisting orders, in
particular, spin- and charge-density wave order, are a ubiq-
uitous phenomenon of the cuprate high-temperature super-
conductivity. Less clear is the degree of interdependency
between these orders and superconductivity [1–6]. Regard-
less of the detailed microscopic physics, for a state with
coexisting superconductivity (SC) and charge-density wave
(CDW), the superconducting order must be modulated with a
corresponding wavelength, which has indeed been observed
recently [7]. A distinct state where the superconducting order
is modulated around a mean of zero has also been discussed,
referred to as a pair-density wave (PDW) state [8–10]. This
state is suggested to play a significant role for the anomalous
suppression of superconductivity in LBCO at 1/8 doping
[4,11] by decoupling the CuO2 layers [10,12].

The PDW order is a unidirectional singlet superconducting
order that varies in space as �(r) = �Q cos(Q · r) (with r
as the center of mass coordinate). For superconductors with
Zeeman split population of spins, finite momentum pairing
is a natural consequence of mismatched time-reversed Fermi
surfaces [13,14]. Although in cuprates there is no symmetry
breaking field, and the physics may be quite different, similar
states are discussed. Here one may distinguish between two
types of states. The Larkin-Ovchinnikov (LO) state [14], with
two pair fields �Q = �−Q and broken translational symmetry,
is the PDW defined above. The Fulde-Ferrell (FF) state [13],
with one pair field �−Q = 0 such that �(r) = �QeiQ·r, is
translational invariant but breaks time reversal and parity. From
a symmetry perspective FF is identical to a current-carrying
SC state.

A PDW without coexisting uniform order has not been
directly observed, and neither is a mechanism for its formation
in systems without population imbalance clear [1]. Such a state
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was first suggested in variational Monte Carlo study of the 2D
t-t ′-J model [8]. From variational calculations using tensor
networks it is also clear that a striped PDW is near degenerate
with the uniform d-wave superconductor [15]. On the other
hand, from DMRG studies of t-J ladders the evidence for
PDW order is weaker [16]. Regardless of the microscopic
mechanism, the implications of a PDW state has been explored
in some detail. In 2D the PDW becomes unstable to topological
excitations and a rich phase diagram develops as the PDW
melts [17–19]. The natural Fermi arc type Fermi surface of
the PDW has also been discussed [20], as has the possible
connection to quantum oscillations in high magnetic fields
[21]. In addition, there are suggestions of a close connection
between a PDW state and the elusive pseudogap state, possibly
of a form with broken time-reversal symmetry [22–25].

The aim of this paper is to present an interacting Hamil-
tonian with a PDW BCS-like ground state and study its
destruction as a function of current. In ordinary BCS theory
with an attractive interaction there is an infinite susceptibility
towards forming Cooper pairs with zero momentum, 〈ckc−k〉,
due to perfect nesting of the Fermi surface. For finite
momentum, 〈c↓k+Q/2c↑−k+Q/2〉, this is in general not the case,
i.e., a weak coupling instability would require fine tuning and
we have to consider finite interaction strength [26].

Even with finite interaction strength, it is unexpected that
Q �= 0 would be preferable over Q = 0 since portions of the
Fermi surface will remain ungapped. A possible exception
could be for an interaction that promotes d-wave order;
the already reduced nodal gap might conspire with a finite
momenta condensate and form an effectively less gapped
Fermi surface. Indeed such a result was reported by Loder
et al. [27] who find that for sufficiently strong nearest-
neighbor attraction finite momentum pairing triumphs over
zero momentum. However, we find the interaction strength
needed to make finite momentum pairing a global minimum
to be higher than reported (see Appendix A for details).

In order to consider moderate interaction strengths we tailor
a Hamiltonian which promotes PDW order. As inspiration, we
take stripe domain walls acting as π junctions of superconduct-
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ing order [9]. The interaction is a generalized nearest-neighbor
attraction which includes periodically modulated pair hopping
with period and range similar to experimentally observed stripe
periods [28]. The model breaks lattice rotational invariance by
assuming that pair hopping is modulated (with wave number
QQQ) along one of the crystal axes, but preserves translational
invariance. This would be consistent with a preexisting nematic
order with susceptibility to smectic (PDW or stripe) order
of a certain wavelength [29]. The model allows for doing
self-consistent calculations of a PDW state and explores the
doping and other parameter dependence. Unexpectedly, we
find that the lowest energy PDW/LO state is typically near
degenerate with an FF state, and a phase transition between the
two states may occur as a function of doping (see Fig. 3). The
FF state carries zero current (despite breaking time-reversal
and parity symmetry) due to an anomalous current arising
from the interaction, consistent with Bloch’s theorem on the
absence of ground state current [30,31].

Having access to an interaction it is possible to generalize
the standard formalism for a uniform current in a supercon-
ductor by allowing both the momenta and magnitudes of the
two coupled order parameters of the LO state to be varied self-
consistently. From this, we identify two characteristic features
that may be found in a multicomponent finite momentum
pairing superconductor. Considering current Jx alongQQQ = Qx̂

we find, for a certain parameter regime, a first order phase
transition as a function of current between an LO and FF state
(see Figs. 7 and 8). Consequently, for a range of currents, we
anticipate a phase-separated state with inhomogeneous current
density. For a different parameter regime, and for currents close
to the depairing current, we find two distinct LO states that are
related by mirror symmetry with respect to x̂. Consequently,
there is a cusp in the directional dependence of depairing
current (see Figs. 9 and 10) as the system switches between
these two branches. In principle, this may also manifest itself
in terms of a spontaneous transverse current (Jy).

This paper is organized as follows. In Sec. II the proposed
Hamiltonian is discussed and its mean-field decomposition is
introduced in Sec. II A, where approximations are discussed.
The ground state and phase diagram of the model is presented
in Sec. II B, and the cancellation of current in the FF state
is discussed in relation to Bloch’s theorem on ground state
current in Sec. III. We proceed in Sec. IV to discuss the
generalized description of a current carrying state with two
order parameters; the results are presented in Secs. IV A and
IV B. We conclude with a summary and an outlook in Sec. V.

II. MODEL HAMILTONIAN

We start with a tight-binding Hamiltonian on a square lattice
(length a = 1)

H =
∑
kσ

ε(k)c†kσ ckσ + Hint (1)

with the dispersion ε(k) = −2t(cos(kx) + cos(ky)) −
4t ′ cos(kx) cos(ky) where t ′ = −0.3t and t = 1. (All energies
will be measured in units of t .) The interaction is given by

Hint = −V
∑
ijkl

∑
σ,σ ′

T (r+
ij −r+

kl)t(r
−
ij ,r

−
kl)c

†
σ,ic

†
σ ′,j cσ ′,lcσ,k , (2)

+

-

-

FIG. 1. Sketch of the interaction (3) with local attraction and
longer range phase-flip pair hopping. Solid (dashed) rings indicate
positive (negative) pair amplitudes of a commensurate pair-density
wave.

with r±
ij = (ri ± rj )/2, illustrated in Fig. 1 [32].

r−
ij refers to the relative coordinate between elec-

trons with t(r−
ij ,r

−
kl) = δr−

ij ,x̂/2δr−
kl ,x̂/2 + (x̂ → −x̂, ± ŷ) assur-

ing pair-creation and annihilation on nearest-neighboring
sites. The pair hopping is accounted for by T (r+

ij −r+
kl) where

r+
ij −r+

kl is the relative coordinate between pairs. This defines a
class of Hamiltonians without explicitly broken translational
invariance. To make contact with observed striped orders we
consider an explicitly broken rotational invariance with pair
hopping in the x direction with length P/2 [33],

T
(
r+
ij −r+

kl

) = κyκx

2π
e
− ∑

μ

κ2
μ

(
r
+
ij,μ

−r
+
kl,μ

)2

2
cosQ

(
r+
ij,x−r+

kl,x

)
, (3)

where QQQ = Qx̂ = 2π
P

x̂ represents the modulation (P = 8 is
considered in this paper). Here κμ,μ = x,y sets the hopping
range and in the limit κx,y → ∞ (3) reduces to an ordinary
nearest-neighbor interaction. In order to have a negligible
zero-momentum pairing the modulation needs to be well
resolved by the hopping range, thus we will consider κx � 2

P
.

We have also included a possible finite hopping range along
the y direction, but it is of secondary importance and the value
κy will only be specified when it is essential.

Going over to reciprocal space and identifying the singlet
pairing we find

Hint = 1

N

∑
k,k′,q

V (k,k′,q)c†↑,k+ q
2
c
†
↓,−k+ q

2
c↓,−k′+ q

2
c↑,k′+ q

2
,

(4)
where

V (k,k′,q) = −V v(q)
(
gd (k)gd (k′) + gs(k)gs(k′)

)
. (5)

Here gd (k) = cos(kx) − cos(ky),gs(k) = cos(kx) + cos(ky)
and

v(q) = e
− q2

y

2κ2
y

(
e
− (qx−Q)2

2κ2
x + e

− (qx+Q)2

2κ2
x

)
(6)

is a Gaussian potential that benefits finite momentum pairing,
with κx,y acting as the potential width. Subsequently, we will
only present and discuss the d-wave part explicitly since the s

wave turns out to be negligible.
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A. Mean-field solution

We will study the interacting model in BCS mean-field
theory using the following quadratic Hamiltonian

HMF =
∑

k

(εk−μ)nk+
∑

q=Q1,Q2

(�∗
q(k)c↓,−k+ q

2
c↑,k+ q

2
+H.c.),

(7)

with nk = ∑
σ c

†
kσ ckσ where μ is tuned to get the cor-

rect particle number (see Appendix B). That there are
two pair fields with different momenta Q1 and Q2 com-
plicates the model compared to standard BCS, as CDW
operators ρQCDW = ∑

σ c
†
kσ ck+QCDWσ [with QCDW = n(Q1 −

Q2), n ∈ Z] and higher order pair fields of the type �q+QCDW

are induced. (For the FF state with only one pair field, no
other terms are generated, and (7) is complete.) Note that
other possible self-consistent charge or spin orders (such as
the striped magnetic order shown in Fig. 1) are not considered.

In Appendix B we show that the CDW fields are expected
to be small, partly due to the particular form of the interaction
studied, and will be neglected. Also discussed there is a ne-
matic distortion of the single-particle energies which we have
not included in the present study. With these approximations,
the self-consistency equation for the gap functions is given by

�q(k) = 1

N

∑
k′

V (k,k′,q)〈c↓,−k′+ q
2
c↑,k′+ q

2
〉 . (8)

Even if the additional CDW and pair fields are set to zero,
the Hamiltonian (7) cannot be directly diagonalized except
for short commensurate periods. Since we are interested in
studying the system for continuous (incommensurate) varia-
tions of the pair momenta we have to truncate the matrix form
of the Hamiltonian. A convenient way to formalize this is to
work with the Gorkov equations for the single-particle Greens
functions. The spin-independent imaginary time Greens
function takes the form Gk,k′ (τ ) = −〈Tτ cσ,k(τ )c†σ,k′(0)〉 with
σ =↓ , ↑ and the anomalous Greens functions Fk,k′(τ ) =
−〈Tτ c↓,−k(τ )c↑,k′(0)〉, F∗

k,k′(τ ) = 〈Tτ c
†
↓,−k(τ )c†↑,k′ (0)〉.

The general expressions for the full Greens functions in
terms of Matsubara frequencies z = iωn (ωn = 2π

β
(n + 1

2 )) are
derived as

Gk,k′(z) = G0.k(z)

(
δk,k′ +

∑
q

�q(k − q
2

)F∗
k−q,k′(z)

)
(9)

F∗
k,k′(z) = −G0.k(−z)

∑
q

�∗
q

(
k + q

2

)
Gk+q,k′ (z) . (10)

Considering the diagonal part (k = k′) of the full Greens
function

Gk(z) = G0.k(z)

⎛
⎝1 −

∑
q,q′

�q

(
k − q

2

)
�∗

q′

(
k + q

2

′
− q

)

×G0.k−q(−z)Gk+q′−q,k(z)
)

(11)

we see that it couples to off-diagonal Greens functions, with
a static part corresponding to the ρQCDW . Consistent with the
discussion of the mean-field Hamiltonian these off-diagonal
Greens functions induce correspondingly shifted anomalous

FIG. 2. Free energy as a function of Q = Qx̂ for ρ =
0.8; 0.65,κ = 0.2; 0.3,T = 0.01. The solid lines correspond to LO
with �−Q = �Q and the dashed lines to FF with �−Q = 0.

Greens functions. With the same motivation, we will truncate
this proliferation at the lowest level neglecting all off-diagonal
Greens functions. With this approximation (also used by Loder
et al. [27]) we find a simple expression for the diagonal part
of the Greens function and a self-consistency equation of the
form

Gk(z) =
(

G−1
0.k(z) +

∑
q

|�q

(
k − q

2

)
|2G0.k−q(−z)

)−1

(12)

�q(k) = − 1

Nβ

∑
k′,z

V (k,k′,q)Fk′− q
2 ,k′+ q

2
(z) . (13)

The Matsubara sum is conveniently handled by analytic
continuation where we can sum over residues of the anomalous
Greens function. We evaluate this system over a 350 × 350
grid, at zero and finite temperature.

B. Ground state, phase diagram

To solve the system, (12) and (13) were iterated until
convergence. Stable solutions were found for V � 1.2 and
V = 1.5 is used throughout the paper. Assuming �Q1 ,�Q2

with Q1 = −Q2 two types of locally stable states could be
identified: one LO state which breaks translation invariance
�Q1 = �Q2 , but also an FF state with �Q1 = 0,�Q2 �= 0 or
�Q2 = 0,�Q1 �= 0, which breaks time reversal and parity
but preserves translational invariance. The self-consistency
relation (8) only ensures local stability, and Q1 = (Q,0) was
varied for both LO and FF to find the global minimum in
energy

E = 1

N

∑
kσ

ε(k)nkσ −
∑

q=Q1,Q2

|�q|2
V v(q)

. (14)

In Fig. 2 the equilibrium state free energy F = E − T S

is plotted against Q for κx = 0.2; 0.3 and electron densities
ρ = 0.65; 0.80. A finite temperature T = 0.01 was used as a
regularization (see Appendix C for details on the entropy). The
lowest energy state Q0 = (Q0,0) coincides well with Q = 2π

8 ,
however there is a slight deviation which grows with the width

224503-3
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FIG. 3. Phase diagram for Q = 2π/8, V = 1.5, κx = 0.2. The
color shading represents the energy difference between LO and FF.
The full (dashed) lines represent the energy difference between LO
(FF) and normal state, respectively. The red dot indicates the quantum
critical point and the red dashed line shows the approximate phase
transition which cannot be identified for higher temperature within
our numerical precision.

of the potential, κx . Note that we lose the ability to form a
condensate for |Q − Q0| � κx and there is a negligible zero-
momentum pairing. For ρ = 0.8 LO is the ground state, but at
ρ = 0.65 FF has the lowest energy, nevertheless, they are near
degenerate. In fact, the LO or FF character of the ground state
is not heavily dependent on κx , and we set κx = 0.2 throughout
the paper.

In Fig. 3 we report the phase diagram [34] for doping
x = 1 − ρ and temperature T . The free energy F was
calculated for LO, FF, and the normal state, respectively.
We see the emergence of two domes where LO and FF
dominate, respectively, and a region of near degeneracy. At
low temperature, we can identify a phase transition between
the two distinct symmetry states with a quantum critical point
at x ∼ 0.27. We have noted that the phase diagram is quite
sensitive to the interaction modulation momentum QQQ, but we
will not explore that dependence in the present work.

At higher dopings, FF is the ground state despite it breaking
time-reversal symmetry. In general, one would expect such a
time-reversal breaking state to carry current. However, this is
not possible due to the theorem, attributed to Bloch, stating
that even with interaction included the ground state must
have zero current [30,31]. For the present model, and for the
FF state, this theorem is obeyed due to the appearance of
an anomalous current emanating from the interaction which
cancels the ordinary current. This will be the topic of Sec. III.

As a comparison, the density of states (DOS) is included
in Fig. 4 alongside the normal state and an ordinary d-wave

FIG. 4. The density of states for LO and FF at T = 0,ρ = 0.8,
note that LO is the true ground state at this doping. An ordinary
d-wave SC is shown in comparison to the same parameters but with
v(q) = 1, as well as the corresponding normal state.

SC at the same coupling. The spectral function shows similar
features as previous works [20,22,23] with a finite DOS at the
Fermi surface. Since the calculation of the spectral function is
not dependent on the self-consistency of order parameters we
have not addressed these in detail here.

III. CURRENT OPERATOR AND BLOCH’S THEOREM

In this section we will investigate cancellation of current
in the FF state, predicted by Bloch’s theorem on ground state
current. Consider a uniform current Jq=0 derived from the
continuity equation lim

q→0 q · Jq = [H,ρq] giving

J =
∑
k,σ

vknk,σ + 1

N

∑
k,k′,q

2(∇qV (k,k′,q))

× c
†
↑,k+ q

2
c
†
↓,−k+ q

2
c↓,−k′+ q

2
c↑,k′+ q

2
. (15)

(Here and subsequently, we drop the q = 0 subscript on J).
Alternatively, and with the same result, the expression for the
current operator can be derived from a Peierls substitution of a
constant vector potential in the lattice Hamiltonian, through
J = dH

dA |A=0. The first term is the ordinary single-particle
current operator, Jsing, and the second is related to the pair
hopping and will be referred to as the anomalous current
operator Jan. The anomalous term vanishes in the limit where
the interaction is q independent [V (k,k′,q) = V (k,k′)], which
is the case for a density-density interaction. Bloch’s theorem
implies that the ground state of an interacting Hamiltonian
cannot carry a current. This is readily shown using the
polarization operator P = 1

N

∑
i rini , which (up to a total

derivate) satisfies Ṗ = J. Assuming a current carrying ground
state |φ〉, with current Jφ , we can construct another state
|ψ〉 = eiδδδ·P|φ〉, with δδδ as a vector parameter. Evaluating the
energy (assuming T = 0) of this state to linear order in δδδ we
find

Eψ = 〈ψ |H |ψ〉 = Eφ + iδδδ · 〈φ|[H,P]|φ〉 = Eφ + δδδ · Jφ ,

(16)
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where Eφ = 〈φ|H |φ〉 and Jφ = 〈φ|J|φ〉. With a suitable
choice of δδδ we can always lower the energy compared to
a putative ground state with a current. The proof of this
theorem is typically presented for a Hamiltonian with density-
density interactions [30,31], which trivially commutes with
the polarization operator, but here we see that it holds more
generally. Also, note that the theorem applies to all locally
stable states and not just the ground state.

A mean-field calculation is a minimization within a sub-
space of states and therefore it is not, a priori, obvious that
it will respect Bloch’s theorem. This problem was already
discussed by Fulde and Ferrell [13]. However, by using the
same arguments as before, we can show that Bloch’s theorem
will be obeyed also within the mean-field subspace. Focusing
on the FF state with arbitrary momentum Q we have the explicit
representation of the BCS-like ground state at self-consistency

|Q〉 =
′∏

kσ

c
†
kσ

′′∏
k

(uk + vkc
†
k,↑c

†
−k+Q,↓)|0〉 , (17)

where u2
k,v

2
k = 1

2 (1 ± ξk+ξ−k+Q√
(ξk+ξ−k+Q)2+4�2

Q(k−Q/2)
). Here

∏′ is

over momenta k such that ξk < 0, ξ−k+Q > 0 and |ξkξ−k+Q| >

�2
Q(k − Q/2) for which the quasiparticle has lower energy

than the finite momentum Cooper pair, consequently
∏′′ is

over the remaining momenta. Assuming that this state has
current JQ and energy EQ we construct a new state

˜|Q + 2δQ〉 = eiδQ·P|Q〉 =
′∏

kσ

c
†
k+δQσ

×
′′∏
k

(uk + vkc
†
k+δQ,↑c

†
−k+Q+δQ,↓)|0〉 , (18)

where vk and uk are unaffected by the shift. To linear order it is
easy to show that this state has energy EQ+δQ = EQ + δQ · JQ,
indeed in accordance with (16). Thus the energy can be lowered
by an appropriate small shift of the pair momenta antiparallel

to the current. The state ˜|Q + 2δQ〉 is not a self-consistent
solution at pair momentum Q + 2δQ, but it has the correct
particle number (inherited from the unshifted state, given
by n = ∑′

k 2 + ∑′′
k 2v2

k ) and is contained in the variational
space of the Hamiltonian at Q + 2δQ, so its energy will be
higher than the corresponding self-consistent state. Thus by
successive iterations of momentum shift and convergence to
self-consistency, we can continue to lower the energy until the
ground state is found. Hence the mean-field calculation is true
to Bloch’s theorem.

In Fig. 5 we show the energy and current as a function of
Q1 = Qx̂ for the FF ground state with �Q1 �= 0. The anoma-
lous current, Jan, exactly compensates the single-particle
current, Jsing, at the energy minimum in accordance with
Bloch’s theorem. Stated differently: Since Jsing is everywhere
positive, the anomalous current Jan is a necessity to make it a
valid ground state.

As a consequence, any time-reversal breaking ground state
must have a mechanism for cancellation of current. We have
seen that pair hopping yields such a mechanism through the
introduction of an anomalous current. Another mechanism,
which does not require an anomalous term, is to consider

FIG. 5. Free energy (red) and current (blue) for an FF state
(�Q1 �= 0,�Q2 = 0) as a function of Q1 = Qx̂ at T = 0.02,ρ =
0.65. The single-particle current (dashed) is always positive for Q > 0
while the anomalous current (dot-dashed) cancels the former exactly
at the minimum in energy, marked by diamonds.

the original Fulde-Ferrell state which arises because of spin-
population imbalance [13]. In this case, the single-particle term
cancels itself because of the counterpropagating quasiparticle
excitation current. However, a system with spin-population
imbalance explicitly breaks time-reversal symmetry, while
our system breaks it spontaneously. In the ordinary nearest-
neighbor attraction model without anomalous current or
population imbalance, it seems not possible for FF to be the
ground state (see Appendix A).

IV. CURRENT IN A SUPERCONDUCTOR

We will now turn to the LO state and discuss how it is
affected by a homogeneous current (for details about the
physical relevance of this approach see Appendix D). We
will first review the procedure in an ordinary superconducting
state with one order parameter and then discuss the necessary
generalizations in order to consider current in a PDW state
with two order parameters.

The usual procedure [35,36] is to construct a finite mo-
mentum condensate �qs

= 〈c↓,k+ qs
2
c↑,−k+ qs

2
〉, which carries a

current Jc = en
m

qs . As a result the spectrum becomes Doppler

shifted [37–40] E = ∇kε · qs +
√

(ε − μ)2 + |�|2 and states
with E < 0 will be excited already at T = 0. These excited
states constitute a counterpropagating current Je, and we write
the total current as J = Jc − Je. The destruction of the total
current as a function of qs is twofold: (i) More quasiparticles
will be excited, which enhances Je, and (ii) excitations
will change the self-consistent condition and deplete the
condensate, resulting in a smaller Jc. In general the function
J(qs) will be concave [35,36] and one identifies the depairing
current, Jd , with the greatest possible current ∇qs

J |Jd
= 0.

This procedure can be understood within the mean-field
construction outlined in Sec. II A, where one considers
different mean-field Hamiltonians parametrized by qs , which
is varied to find the lowest energy state with a specific current.
For the ordinary superconductor, one obtains a mapping,
qs → J, consisting of two branches (i.e., two qs correspond to
the same J) and one picks the lowest energy branch.
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For PDW we proceed in a similar manner by considering
the effective Hamiltonian HMF in (7), but with Q1 = Q0 +
q1,Q2 = −Q0 + q2, shifted from the minimum. Thus we
are considering the mapping q1,q2 → J, which is no longer
just doubly degenerate but the degeneration is spanned by
two continuous dimensions. Nevertheless the procedure is in
principle straightforward: We should minimize the energy over
a subset of q1,q2 which corresponds to one specific current J.

In the remainder of this paper, we will focus on systems with
LO ground state picking ρ = 0.8. We need to probe all states
spanned by Q1,Q2. Even though the ground state is an LO
state the current carrying metastable state might not be, thus
we will consider FF and LO states independently. (Note that we
extend the meaning of LO to include �Q1 �= �Q2 ,|�Q(1,2) | >

0.) Because of the rather complex minimization problem, we
do not aim to fully investigate the various parameter-dependent
possibilities, instead we focus on two features characteristic
of the PDW state: A phase separation between LO and FF
solutions and spontaneous mirror-symmetry breaking.

A. Current induced phase separation

From a symmetry perspective, driving current transverse
to QQQ = Qx̂ is similar to an ordinary superconductor since
the state is expected to be invariant under order-parameter
exchange, �Q1 ↔ �Q2 . In contrast, a state with the current
along QQQ is not symmetric under order-parameter interchange
and we expect this case to be fundamentally different, hence,
current along QQQ will be the main target of the investigation.

As mentioned, the problem with considering two order
parameters is the extended parameter space. In general, we can
construct a state for each pair of Q1,Q2, however, we are only
interested in the lowest energy state for each current, which
reduces the relevant parameter space to a two-dimensional
subspace of Q1,Q2. By considering current along QQQ we may
confine to the parametrization Q1 = (Q1x,0),Q2 = (Q2x,0),
which only induces current along x. There are however
additional states that only have current along x which we can
construct by shifting Q1 and Q2 in opposite y directions. These
states would break mirror symmetry Q(1,2)y → −Q(1,2)y , and
we explore this possibility in Sec. IV B. Here we prevent
this symmetry breaking by picking κy sufficiently small,
making this shift energetically expensive. (This assumption
was confirmed for κy = κx = 0.2.)

In Fig. 6 the free energy for the LO states as a function of
the order-parameter momenta is presented. The energy forms
circular equipotent contours for Q1x,Q2x near the energy
minimum (at ±Q0); in this region LO is stable and both
order parameters are nonzero. When increasing the momenta
further the LO state becomes unstable towards an FF state.
These FF states are independent of Q1x (Q2x) indicating that
�Q1 = 0 (�Q2 = 0). (Note that there exist FF states of higher
energy even where the LO state is stable.) The extreme energy
states for a specific current in the positive x direction is traced
out in red dots (also shown in Fig. 7).

The extreme energy LO and FF solutions as a function of
current are presented in Fig. 7 for T = 0.02; 0.08 where we
identified the lowest energy solution for each current. Note
that we include two types of FF states with �Q1 �= 0,�Q2 = 0
and �Q1 = 0,�Q2 �= 0, respectively. At higher temperatures

FIG. 6. The free energy F of the LO state (compared to the normal
state energy FN ) as a function of Q1x and Q2x for T = 0.02, ρ = 0.8.
The solid black lines are solutions of equal current. The red dots
correspond to the extreme energy values for each current, also shown
in Fig. 7. Note that the LO state is only stable in the center region
where the energy forms circular equipotent contours, in the outer
regions it decays to an FF state, indicated by the independence of
either Q1x or Q2x .

LO dominates over FF for all currents, however, they also
become more degenerate. For low temperatures the FF state
survives for higher current and near depairing current [shown
as a function of temperature in Fig. 7(i)] the system makes a
transition from LO to FF. In this region the energy is concave,
highlighted in the inset Fig. 7(ii), which suggest a phase
separation, indicative of a first order transition. The lowest
energy configuration for a state in this interval is given by a
superposition of an LO and FF state situated at the intersection
with the black line, in accordance with Maxwell’s construction.
The phase separation is not very strong in this system, but since
it arises from near degenerate FF and LO solutions we expect
it to be a generic feature in systems with this property.

In Fig. 8(a) the evolution of the order parameters is
presented as a function of current. The FF and LO state
shows similar behavior, however, FF carries more weight
in its nonvanishing component than LO does in each of its
components. [Note that FF �Q1 (�Q2 ) refers to different states
�Q1 �= 0,�Q2 = 0 (�Q1 = 0,�Q2 �= 0) while LO �Q1 (�Q2 )
refers to the same state.] One might expect that the LO state
would enhance the condensate running in the forward directing
and deplete the trailing one in order to create a current running
forward. Surprisingly we see that orders remain (to high
accuracy) of the same size, albeit Q1 �= −Q2 as is seen in
Fig. 8(b). It seems as the LO state can utilize the anomalous
current from the pair hopping, which is equally benefited by
both orders. Without pair hopping this feature is expected to
change and the phase separation is likely not to occur since the
near degeneracy between FF and LO is expected to be lifted
(see Appendix A). In the next section we will see a different
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FIG. 7. Lowest energy solution as a function of current along
QQQ = Qx̂ for T = 0.02 (red) and 0.08 (blue), ρ = 0.8 (and for small
enough κy , see text). Solid (dashed) lines represents LO (FF) states.
FF Q1 (Q2) refers to Q1 �= 0 (Q2 �= 0). The circles represent the
same solution as in Fig. 6 and squares the depairing current. Inset
(i): Temperature dependence of the depairing current. Inset (ii) : A
magnified graph over the LO to FF transition; the lowest energy
solution is a phase-separated one with weight in both LO and FF,
indicated by the intersection of the black line.

scenario emerge, where instead two distinct LO states are near
degenerate.

For reference, currents are measured in units of e
h̄

t
ac

with t,a,c being the hopping parameter and lattice axes,
respectively. As an order-of-magnitude estimate we find Jd,x �
2.0 × 108 A/cm2 (with t = 350 meV and a,c appropriate for
YBCO [41]) which is in line with measured values [42].

B. Mirror-symmetry breaking

In this section we remove pair-hopping transverse to
QQQ = Qx̂, corresponding to κy → ∞. In Fig. 9 the directional
dependence of the depairing current is shown and we note a
rather high anisotropy of Jd,x/Jd,y � 3.2.

More striking is the apparent cusp at θ = 0, which is
highlighted in Figs. 10(a) and 10(b). To understand where
this comes from we look at two subbranches of the solution,
one where Q2y > 0 and one where Q2y < 0. The highest J for
every angle is shown for each branch in Fig. 10(a). In contrast
to what we saw in Sec. IV A we can optimize current along
QQQ, (i.e., in the x direction) by picking finite values of Q(1,2)y .
In Fig. 10(c) the evolution of Q1 (rightmost curves) and Q2

(leftmost curves) are shown; we see that the two branches
are mirror-symmetric partners that map to each other under
Q(1,2)y → −Q(1,2)y . The cusp results from the crossing of
the two branches, see Fig. 10(a). In Fig. 10(b) we see that

FIG. 8. (a): The order parameters for lowest energy solution as a
function of current alongQQQ = Qx̂ for T = 0.02 (red) and 0.08 (blue),
ρ = 0.8 (same solution as in Fig. 7). FF �Q1 (�Q2 ) refers to different
states �Q1 �= 0,�Q2 = 0 (�Q1 = 0,�Q2 �= 0) while LO �Q1 (�Q2 )
refers to the same state. (b): Evolution of Q1 (rightmost side) and Q2

(leftmost side), note that Q(1,2)y = 0 and the displacement between
FF and LO in the y direction is just for distinguishability.

|�Q1 | > |�Q2 |, thus the condensate running in the forward
direction is promoted, in contrast to Fig. 8(a).

At Jy = 0 there are two degenerate solutions, one from
each branch. Jy cancel since the difference in the order
parameters |�Q1 | > |�Q2 | [see Fig. 10(b)] are compensated
by a corresponding difference in momenta |Q1y | < |Q2y |. In
fact, increasing Jx slightly, the system spontaneously picks one
of the branches and starts to conduct current along y as well.
This induced current along y is conceptually similar to what
was found by Doh et al. [43] (for a quite different system) who
also proposed an experimental test of this property by putting

FIG. 9. The directional dependence of the depairing current with
κy → ∞. The highest current solution for each angle was extracted.
(Calculations were done for angles in the first quadrant, and the results
were symmetrized.)
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FIG. 10. Highest current solution along QQQ = Qx̂ separated into
the mirror-symmetry connected branches Q2y > 0 (blue) and Q2y <

0 (red) (κy → ∞). Square and circle markers indicate the end of
the interval shown in (c) while the diamond markers indicate Jy =
0. In (a) we see the emergent cusp at Jy = 0 where both mirror-
symmetric branches meet. (b) The evolution of the corresponding
order parameters. (c) The evolution of Q1 (rightmost side) and Q2

(leftmost side). (The data was interpolated over a denser Q(1,2) grid
and (b) was fitted to a fourth degree polynomial with maximum error
0.007 in �Q(1,2) .)

the system on a cylindrical geometry (with y in the circular
direction) and measuring flux induced by Jy .

V. SUMMARY AND OUTLOOK

We have studied an extension of the standard effective
model of d-wave superconductivity in the cuprate supercon-
ductors where the nearest-neighbor attraction is extended into
a modulated longer range pair hopping. The pair hopping is
such that it only breaks the rotational symmetry of the lattice
and is modulated by a wave vector QQQ = Qx̂ (aligned with a
crystal axis). By construction, it suppresses uniform supercon-
ductivity while promoting the formation of a pair-density wave
(PDW) with a periodically modulated superconducting order.
We have used the model to make a self-consistent exploration
of the space of two finite momentum order parameters �Q1

and �Q2 . Interestingly, there is a close competition between
two different types of ground states: a Larkin-Ovchinnikov
(LO) state with �Q1 = �Q2 and Q1 = −Q2 ≈ QQQ (the sought
for PDW) and a Fulde-Ferrell (FF) state with only one finite
�Q (Q ≈ ±QQQ). The former spontaneously breaks translational

symmetry while the latter spontaneously breaks time reversal
and parity. Which state has lower energy depends sensitively
on the detailed form of the interaction and parameters of the
model. A quantum critical point separating the two solutions
as a function of doping may be realized.

An important aspect of the analysis is an “anomalous”
term in the static current operator that is due to the pair
hopping and instrumental to a proper consideration of Bloch’s
theorem on no ground state current. It is this term that
enables a BCS ground state given by a single component
finite momentum condensate, i.e., the FF state, without spin-
population imbalance. This in contrast to a density-density
type attraction for which we find, as expected, that FF states
are only metastable with a finite current. We expect that
this observation should be pertinent to the suggestions of
an FF-like state related to loop current order by Agterberg
et al. [23].

By finding the self-consistent �Q1 ,�Q2 for any Q1,Q2 one
can explore the effect of uniform current in this model and a
number of interesting scenarios emerge. In a parameter range
where the LO state is the ground state, it may happen that
the largest current can be carried by an FF state, giving the
depairing current. For a range of currents close to the depairing
current it turns out in this case that there is phase-separation; a
smaller current LO type state coexisting with a larger current
FF state. In a real system, and ideally, this could presumably
manifest itself as a filamentary phase separation along the
direction of the current.

Another interesting scenario, occurring in a different
parameter regime, is that there are two degenerate LO type
states, related by mirror symmetry with respect to the crystal
axis x, that carry the highest currents. Here there is a cusp
in the depairing current as a function of angle with respect
to this axis, as the system switches from one to the other of
the mirror-symmetry partners. The depairing current along
x is actually larger when a small transverse current com-
ponent is allowed. Thus in a cylindrical geometry, arranged
such that the transverse current is free to flow around the
cylinder, there would be a spontaneous circumferential current
when the current along the axis is sufficiently large.

Translational symmetry breaking manifested by CDW
order seems quite generic in cuprate superconductors. This
observation would rule out the possibility of a pure FF state that
was studied in this paper. Nevertheless, it is still conceivable
that such a pairing state is FF-like in the sense of breaking
time reversal and parity, but with a secondary pair amplitude
generated by the coupling to the CDW. Another aspect of
the model that should also be explored are the effects of
nematic distortion of the single-particle energies, which may
change aspects of the interplay between LO and FF ground
states.
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FIG. 11. Nearest-neighbor interaction model [T (r+
ij −r+

kl) = δr+
ij

,r+
kl

in (2)] with finite momentum Q = Qx̂ for FF and LO states at T = 0.
(a) Energy as a function of Q, LO with finite momenta becomes
the ground state for V � 6. (b),(c) d- and s-wave order parameter,
respectively; for higher interactions the s-wave component becomes
substantial.

APPENDIX A: LO STATE IN ORDINARY
NEAREST-NEIGHBOR INTERACTION

Loder et al. [27] reported that one can obtain a finite
momentum condensate from an ordinary nearest-neighbor
interaction [setting T (r+

ij −r+
kl) = δr+

ij ,r
+
kl

in (2)] with interaction
strength about V = 2.2, however we find the actual value to
be V � 6. The calculation is at fixed particle number, thus the
chemical potential varies over the range of paring momenta.
This was wrongly accounted for in Fig. 1 of Loder et al.
[27], rather the value −μN needs to be subtracted from each
point of the curve (as discussed in Appendix B). The authors
of this paper have confirmed that this shift was indeed not
included [44].

In Fig. 11 we show the corrected graphs using the same
method as described above. In Fig. 11(a) we see the momentum
dependence on the total energy and we note that an LO ground
state indeed occurs but for interactions V � 6, which is far
outside the weak coupling regime. In Figs. 11(b) and 11(c) we
present the d- and s-wave order for corresponding momentum
and interaction. First, we see that the order parameters are very
big and will heavily deform the Fermi surface, secondly, we
also acquire a substantial extended s-wave order.

A final remark is that the FF state never becomes the
ground state, instead it monotonically increases with Q. Thus,
if we consider a Landau-Ginzburg type formulation of the
free energy in terms of two order parameters with opposite
momenta, we see that it is the attraction between the two that
stabilizes the LO state. This is in contrast to the pair-hopping
model that has been the main focus of this paper, where
each finite momentum component may order independently.
The interaction between the two may be attractive or weakly
repulsive, corresponding to an LO ground state, or highly
repulsive, leading to an FF ground state.

APPENDIX B: ON THE MEAN-FIELD CALCULATIONS

For completeness we recapitulate the variational mean-field
formulation in terms of a Hamiltonian HMF = ∑

i μiAi , where
Ai are (normal and anomalous) quadratic fermion operators
and μi are variational parameters [45]. The parameters
μi are chosen to minimize the free energy � = 〈H 〉MF −
μ〈N〉MF − T SMF. With SMF the entropy corresponding to
the density matrix of the quadratic Hamiltonian and H the
full Hamiltonian. Stationary points ∂�

∂μi
= 0 correspond to the

equations

∑
j

(
∂〈H − μN〉MF

∂〈Aj 〉MF
− μj

)
∂〈Aj 〉MF

∂μi

= 0 , (B1)

such that the variational parameters should satisfy

μi = ∂〈H − μN〉MF

∂〈Ai〉MF
. (B2)

Importantly, stationarity implies that the full set of quadratic
operators Ai generated by a complete Wick decomposition of
〈H 〉MF should be included in the variational Hamiltonian.

For the problem at hand with the proposed varia-
tional parameters {�Q1 (k),�Q2 (k),μk} (where μk couples to∑

σ c
†
kσ ckσ ) this means that we also generate terms related

to CDW and higher harmonic pair fields, as discussed in
the main text. (This is true for the LO states where both
orders are nonzero. For the FF state, similarly to an ordinary
single component superconductor, the mean-field Hamiltonian
is complete.)

Considering the lowest order CDW terms ρq(k) =∑
σ 〈c†kσ ck+qσ 〉MF with q = ±(Q1 − Q2) we can quantify its

importance by calculating the energy in the state acquired by
solving the approximate equations (12) and (13). Here, the
CDW magnitudes are calculated from the expression for the
off-diagonal Greens function (9) and (10), to lowest (second)
order in �, i.e., neglecting higher order anomalous Greens
functions other than F∗

k−Q1/2,k. The energy related to the CDW
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order is then given by

ECDW = − V

N2

∑
k,k′,q=Q1,Q2

×v(2k+)gs,d (k−+q)gs,d (k−)ρ−q(k)ρq(k′), (B3)

where k± = k±k′
2 , and ρq(k) = 1

β

∑
n Gk,k+q(iωn). In contrast

to the superconducting condensate the Gaussian v(2k+) will
restrict the summation over k+. In general we can make ECDW

negligible by picking a small enough κx,y . Indeed ECDW
E−EN

�
0.01 for parameters used in this paper. The energy contribution
of the CDW is tiny, consequently, we expect a relatively small
CDW order parameter and that the coupling between different
harmonics of the pair fields are weak such that we can treat
these independently for each set of Q1 and Q2.

An additional aspect of the interaction (2) is that it
breaks the discrete rotational symmetry of the tight-binding
lattice. Therefore the Hartree-Fock (density-density) terms
will generate an anisotropic single-particle energy. (For a
nearest-neighbor attraction, the additional terms would be
momentum independent in standard fashion and absorbed in
μ.) The variational single-particle energy now reads

μk = εk − μ − 1

N

∑
k′

V (0,0,k + k′)〈nk′ 〉 + exchange ,

(B4)

with V given by 5 and where “exchange” indicates a similar
(slightly more complicated) term arising from the exchange.
This implies that the single-particle energies also need to be
solved for self-consistently, even in the normal state, leading to
a nematic distortion of the Fermi surface. A numerical check
of the magnitude of the contribution of the Hartree-Fock terms
to the energy indicates that they are of similar magnitude
and sign as the condensation energy. However, for a proper
study of this effect it would seem appropriate to also include
a (local) Coulomb interaction which would counteract the
distortion. Although an interesting topic for future studies
we have ignored this aspect in the present paper and taken
μk = εk − μ.

For completeness, we also comment on the role of the
chemical potential μ in these calculations. We are working
with a fixed particle number but with different variational
Hamiltonians specified by the two pair momenta Q1 and Q2

(one momentum for the FF states). For each realization, the
chemical potential must be tuned in order to get the correct
particle number, while minimizing the free energy � within
the variational space. Clearly, at the correct particle number
N the state which minimizes � (corresponding to some value
of μ) also minimizes the free energy F = 〈H 〉MF − T SMF at
this particle number. It is the latter F that should be used as
a measure to compare mean-field solutions at different Q1,2

when working at fixed particle number.

APPENDIX C: ENTROPY

The excitations of our mean-field Hamiltonian can in prin-
ciple be found as Bogoliubov quasiparticles γα = ∑

i Aiαci +
Biαc

†
i where i range over 2N degrees of freedom (spin and

momenta) and α over 2N quasiparticles. The entropy can then
be found through the standard expression

S = −
∑

α

fα ln fα + (1 − fα) ln(1 − fα), (C1)

where fα is the Fermi-Dirac distribution of εα . Using∑
i |Aiα|2 + |Biα|2 = 1 we can make contact with the

sum over all single-particle Greens function
∑

i G
singl.
i (z) =∑

α,i
|Aα,i |2
z−εα

+ |Bα,i |2
z+εα

. Thus the entropy can be written as
weighted sum over all residues of the full set of Greens
functions Gi

S = −
∑

p

Res(p)(fp ln fp + (1 − fp) ln(1 − fp)), (C2)

where fp is evaluated at the corresponding pole εp. Since we
truncate the Gorkov equations by throwing away off-diagonal
Greens function we do not have access to the exact single-
particle states, however, we can still use expression (C2) as a
consistent approximation of entropy.

APPENDIX D: DEPAIRING CURRENT AND
CRITICAL CURRENT

The physics of a supercurrent is a treacherous subject with
various limits and considerations. Considering a homogeneous
current flowing in a superconductor is formally justified in a 3D
material in the limit d � ξ,d � λ, where d is the sample size
and ξ,λ the correlation and penetration depth, respectively.
d � λ implies that we can neglect the effect of self-field
from the current [40,46], thus we set A = 0 (given that there
is no background field). The limit d � ξ ensures that the
order parameter can be taken homogeneous [47]. However
this regime can be hard to accomplish for cuprates and the
depairing limit is not anticipated to be reached because of
two main reasons: (i) inhomogeneous current distribution in
samples of sizes larger than the penetration depth [48] d � λ

and (ii) proliferation of vortices [46] for sample sizes bigger
than the coherence length d � ξ . Realizing the limit d � λ

is often not a problem for thin enough samples since the
effective penetration depth is governed by the Pearl length
[49] λP = λ2/dt , where dt is the sample thickness. With ξ

typically quite small, the limit d � ξ is harder to accomplish
[50]. However in the intermediate limit, ξ � dw � λP , dt ∼ ξ

(with dw being the sample width) the onset of resistivity due to
vortices is only slightly lower than the depairing current [46],
thus the calculation considered in this paper should hold even
in this limit.

In 2D, where the relevance of a PDW has been discussed in
connection to the decoupling of layers at 1/8 doping in LBCO
[10,12], resistivity occurs at any finite current [51]. Thus the
influence of topological excitations on the PDW current should
be considered. Nevertheless, a superconducting order will
remain until the depairing current is reached, i.e., resistivity
will reach normal values and the diamagnetic response will
disappear. Thus the presented analysis should give an upper
estimate to the critical current.
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