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Systematic motion of magnetic domain walls in notched nanowires under ultrashort current pulses
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The precise manipulation of transverse magnetic domain walls in finite/infinite nanowires with artificial defects
under the influence of very short spin-polarized current pulses is investigated. We show that for a classical 3d

ferromagnet material like nickel, the exact positioning of the domain walls at room temperature is possible
only for pulses with very short rise and fall time that move the domain wall reliably to nearest neighboring
pinning position. The influence of the shape of the current pulse and of the transient effects on the phase diagram
current-pulse length are discussed. We show that large transient effects appear even when α = β, below a critical
value, due to the domain wall distortion caused by the current pulse shape and the presence of the notches.
The transient effects can oppose or amplify the spin-transfer torque (STT), depending on the ratio β/α. This
enlarges the physical comprehension of the domain wall (DW) motion under STT and opens the route to the DW
displacement in both directions with unipolar currents.
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I. INTRODUCTION

Current induced magnetic domain wall motion (CIDWM)
in nanowires or nanostrips is a highly active research field
[1,2] with applications in high-density and ultrafast nonvolatile
data-storage devices like the racetrack memory [3] or for logic
devices [4]. In the racetrack memory, the data processing
is based on the controlled displacement between precise
distinct positions of the domain walls (DWs) due to the
transfer of angular momentum (spin-transfer torque) from a
spin-polarized electric current. To achieve precise positioning
of DW, artificial constrictions, or others, patterned geometrical
traps are usually used, which create an attractive pinning
potential for the DW. Different types of traps were studied
in cylindrical or flat/strip nanowires [5–8], along with the
possible interaction between the DWs [9,10]. In some cases,
depending on the pinning potential, the DW displacement
between pinning sites can display a chaotic behavior [11] or a
stochastic resonance [12] under harmonic excitation.

The required currents for STT based DW movement are
usually high (∼1 A/μm2), which limits the applicability due
to Joule heating. To displace accurately the DWs between the
pinning sites, the current density should be kept at relatively
low values and/or very short current pulses should be applied.
Experimentally, it was observed that an efficient DW motion
is reached for pulses in the nanosecond regime [13] and that
the resonant excitation of the DW by a short train of current
pulses decreases the depinning current [14]. More recently, the
effect of the temporal and spatial shape of the current pulse was
highlighted [15–17]. It was shown that a fast changing current
with an ultrashort pulse rise time decreases the critical current
density due to the dependence of the DW motion on the time
derivative of the current [18] and leads to high DW velocity
[19]. Another aspect of the CIDWM under short pulses is
the existence of important transient effects related with the
DW inertialike behavior [13,20–23] due to deformation of the
wall. The consequences are a delayed response at the current
onset and at the end of the current pulse. The theoretical
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and experimental results show that the distance traveled by
a DW is almost proportional to the current pulse length and
that the transient motion depends on the variation of the
generalized angle of the wall, the wall width, and the ratio of
the damping (α) and nonadiabatic (β) parameters [20,21]. For
very short pulses (one nanosecond), the transient displacement
is comparable with the steady-state motion [24]. A DW that
propagates without deformation should display no inertia [25]
like in cylindrical nanowires [26] or in certain perpendicular
magnetic anisotropy systems [27]. The absence of inertia will
allow a fast response to external forces while the transient
DW displacement after the application of the pulse limits the
application in fast devices. In the main time, it was recently
demonstrated that inertialike behavior of a DW can be also an
advantage when ultrashort optical pulses are used [28] with
applications in the optical recording. Moreover, in systems
with strong spin-orbit coupling where additional contributions
from spin-Hall effect complicate the DW dynamics, a DW
tunable inertia was proposed [29]. Before studying more
complex systems, the influence of the transient effects on
the systematic DW movement under ultrashort spin-polarized
current pulses should be completely understood in a classical
3d ferromagnet like nickel, which is the aim of this paper.

In this paper, we address the systematic motion of a
magnetic transverse DW between fixed artificial constrictions
(notches), when submitted to a series of ultrashort spin-
polarized current pulses (transient regime) at low and room
temperature. The artificial constrictions are situated at regular
positions in a flat finite or infinite nanowire with only in-plane
(shape) anisotropy like in a classical 3d ferromagnet. We
determine the influence of the current pulse shape (rise and
fall time) on the motion of the DW. We show that, even at zero
temperature, there is a transition region between the different
bands in the current-pulse time phase diagram, each band
corresponding to the positioning of the DW at a well-defined
notch. Our results show that, at room temperature, the precise
positioning can be achieved only by very short pulses with very
short rise and fall times that displace the DW by only one notch
at a time. Therefore, to move a DW several notches reliably, a
sequence of very short pulses should be used. By examining
the influence of the damping and nonadiabatic parameters, we

2469-9950/2017/96(22)/224431(10) 224431-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.224431


A. PIVANO AND V. O. DOLOCAN PHYSICAL REVIEW B 96, 224431 (2017)

t (ps)

0

j e
(A

/μ
m

2
) t r

t s

t f
t z

100 300 500 700 900
x (nm)

0

0.17

0.34

E
 (e

V
)

100 300 500 700 900
x (nm)

0

0.13

0.26

E
 (e

V
)

(a)

(b)

(c)

(d)
-1 1mx

y

x

FIG. 1. (a) Simulated structure: planar nanowire with ten symmetric double notches. The equilibrium position of a pinned DW is shown in
the finite case. (b) Definition of current pulse with its temporal characteristics. Two successive current pulses with opposite polarity are shown.
The normalized potential pinning energy for finite and infinite cases as determined by micromagnetic simulations (symbols) are shown in (c)
and (d), respectively. The line is a fit as described in the text.

show that when β = 0 the transient effects (automotion) of
the DW are very large and oppose the STT, being observed in
the phase diagrams as predicted [20]. The transient effects are
related with the change in the DW structure that is due to a
combination of factors: pinning potential of the notches which
induces a sufficient variation of the DW angle [30], position of
the DW inside the potential well (different restoring force), low
damping parameter, and shape of the current pulse. Contrary
to expectations, the transient effects also appear when α = β,
below a critical value. For β > α, the transient effects can
oppose or amplify the STT, thus explaining the oscillatory DW
depinning at higher currents observed experimentally [13].
This brings new physical insight into CIDWM under STT and
paves the way for systematically displacing DW in nanowires
in both directions using only unipolar current pulses.

This article is organized as follows. In Sec. II, we present
the micromagnetic and the stochastic 1D model used to
calculate the pulsed DW dynamics. In Sec. III, we compute
and investigate the phase diagram of the DW dynamics
for a finite and infinite nanostrip at T = 0 K and room
temperature. Discussion and concluding remarks are presented
in Sec. IV.

II. MODEL

We study numerically the systematic motion of a pinned
transverse domain wall in a finite or infinite Ni nanostrip with
symmetric rectangular notches. The finite strip has a length
Lx = 1 μm, a cross section of Ly × Lz = 60 × 5 nm2, and
has ten rectangular symmetric double notches separated by
80 nm. The results presented below are for notch dimensions
of 20 × 9 × 5 nm3. The variation of length and depth of the
notches does not influence much the physics of phase diagrams
presented in Sec. III. The notch depth influences the depinning
current as the potential barrier increases, while the notch length
influences lightly the depinning current and mostly the slope
of the potential wells.

Figure 1(a) shows the equilibrium position of a head-to-
head transverse DW in the notched nanostrip using the pa-
rameters of nickel: saturation magnetization Ms = 477 kA/m,
exchange stiffness parameter A = 1.05 × 10−11 J/m, spin
polarization P = 0.7, and damping parameter α = 0.05. The
DW is moved by a series of spin polarized current pulses
applied along the x axis. The geometry of the current pulse
is described in Fig. 1(b), with tr , ts , tf , and tz the rise, stable,
fall time, and zero-current time, respectively. The nonadiabatic
parameter is set to β = 2α, if not specified otherwise.

The DW dynamics was computed using 3D micromagnetic
simulations with the MUMAX3 package [31] and with the
one-dimensional DW model [32,33]. In both cases, the mag-
netization dynamics is determined from the Landau-Lifschitz-
Gilbert (LLG) equation with adiabatic and nonadiabatic spin-
transfer torques [34]:

Ṁ = −γ0M × Heff + α(M × Ṁ) − (u · ∇)M

+βM × (u · ∇)M, (1)

where γ0 is the gyromagnetic ratio, u = jePμB/eMs is the spin
drift velocity, P the spin polarization of conductions electrons,
μB the Bohr magneton, and je the applied current density. No
additional exotic torques (like the ones due to the spin-Hall or
Rashba effect) were considered.

For the micromagnetic computations, the strip was dis-
cretized into a mesh with a cell size of 2 × 3 × 2.5 nm3,
inferior to the exchange length (∼5 nm). The DW dynamics
in a finite wire is compared with the one of an infinity long
wire where the magnetic charges at the ends of the nanostrip
are compensated. The average position of the DW center (X)
is extracted for each simulation (in the axial x direction)
along with the azimuthal angle (ψ) of magnetization in the yz

plane. No magnetocrystalline anisotropy is considered; the
shape anisotropy insures that the easy axis is in-plane. The
effect of the temperature is studied both micromagnetically
and with the 1D model. The 1D model of the DW (collective
coordinates X and ψ) supposes that the DW is rigid and gives a
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quasiquantitative understanding of the motion of the DW. The
Langevin equations of motion of the DW [2,35] are detailed
in the Supplemental Material [36].

The pinning potential energy is determined from quasistatic
micromagnetic simulations and is shown in Figs. 1(c) and
1(d) for the finite case and the infinite case, respectively.
The pinning potential determined by fitting the micromagnetic
results is harmonic inside the notches and sinusoidal between
them:

Vp(x)

=
{

1
2ki(x + xi)2, for xi − L � x � xi + L,

V0 cos(2πf x + φi,i+1), for xi + L < x � xi+1 − L,

(2)

with ki the stiffness constant and xi the DW stable equilibrium
position of the site i, and φi,i+1 the phase between the i site and
its nearest neighbor. V0 and f correspond respectively to the
effective height of the potential and its spatial frequency. For
the finite case, the stiffness constant varies from 7.07 × 10−5

N/m to 6.77 × 10−5 N/m, when moving from the center of the
nanowire to its ends. In the infinite case, the stiffness constant
is equal to 7.16 × 10−5 N/m for all the pinning sites and L =
16.5 nm. The expression [Eq. (2)] was used in the equations
of the 1D model through the pinning field Hp included in Heff .

The pinning energy is controlled by the dimensions and
distance between the notches. A clear difference is observed
between the two potentials due to edge dipolar energy. In the
finite strip, the depinning field decreases from 39 Oe, in the
central wells, to 26 Oe when the DW is closed to the two ends
of the strip. This is due to the attractive interaction between
the DW and magnetic surface charges located at the sides [37].
As a result, the potential wells are asymmetric in energy along
the strip and their energy minima decrease when the distance
between the notches and the ends of the strip is reduced. In
contrast, for the infinite case, each well has the same depinning
field and energy barriers.

III. RESULTS

Our analysis of the DW dynamics begins with the study of
the differences between a finite and an infinite nanostrip at T =
0 K. Afterwards, the influence of the pulse shape is discussed
and the particularities of the DW motion at room temperature.
The last subsection details the results when the damping and
nonadiabatic parameters are varied and their influence on the
transient displacement.

A. Phase diagrams at T = 0 K

To characterize the systematic motion of the DW between
the notches, we computed point-by-point phase diagrams for
all systems with the 1D DW model for a large range of
pulse duration and current amplitude. We compare our 1D
results with phase diagrams computed micromagnetically on
less points than the 1D calculus. A similar micromagnetic
computation will require an enormous execution time. The
control parameters are the amplitude, the duration, and the
shape of the current pulses. The range of the current amplitude
(�10 A/μm2) is chosen to have only viscous motion (no

FIG. 2. Phase diagram for a DW at T = 0 K in a finite (a)
and infinite (b) nanostrip in the parameter space stable-time–current
amplitude with tr = tf = 5 ps and tz = 10 ns. The total time of
the periodic pulses is 350 ns. The micromagnetic results (scattered
symbols) are compared to the 1D model (colored regions). The
diagrams show only a few bands due to the finite size of the wire
or due to the number of notches used. The upper right region is
due to the finite size of the nanowire or of the simulated window
(infinite case).

precession) for the pulse duration used (�1.5 ns). The pulse
duration range is selected to be on the same order of magnitude
with access or reading/writing time in possible magnetic
memories based on DW.

The phase diagram, in the parameter space stable time–
current amplitude, which characterizes the DW dynamics
in the finite nanostrip at T = 0 K, is shown in Fig. 2(a).
The diagram represents 200 × 400 point-by-point integration
with a fourth order Runge-Kutta scheme. The micromagnetic
results (scattered symbols) are compared with the 1D results
(colored regions). The DW is initialized in the left central
well and a series of periodic bipolar current pulses are applied
during 350 ns to move periodically forth and back the DW
between two desired notches. The pulse characteristics are
tr = tf = 5 ps and tz = 10 ns. The influence of tr and tf
is discussed below. The value of tz (10 ns) was chosen to
correspond to the return to equilibrium time of the DW at
room temperature. The tz can be reduced to 3 ns for T = 0 K,
without a change of the phase diagrams. In Fig. 2(a), several
regions are visible, each region corresponding to one state
of the DW oscillation. The first state which appears is the
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pinned state, noted state zero in the micromagnetic simulation,
and corresponds to the DW being pinned in the initial notch.
After the pulse ends, the DW behaves like a damped harmonic
oscillator. The state zero is observed for all ts , when the external
current je is inferior to the depinning current 2.31 A/μm2.
This state is also observed at higher currents (until 10 A/μm2),
when the stable time ts is low (between 0 ps and 55 ps).
The diagram displays other bands, where the DW oscillates
periodically between the same two potential wells, which
can be next neighbors (noted as band 1) or not, until the
fifth state that corresponds to the periodic oscillation between
the initial notch and the fourth notch to the right (band
4) hopping the three notches in between. The number of
bands is given by the considered finite size of the nanostrip.
The second state (next-neighbors notches noted band 1) is
observed up to ts = 0.96 ns at je = 2.3308 A/μm2, while
the other bands continue above ts = 1 ns. Thus the DW can
cross several notches back and forth for a given current pulse
characteristic. We observe that the interband transitions are
characterized by an unintended state (state u), where the DW
oscillation does not take place between the desired positions.
This transition is more pronounced between the last two bands.
The micromagnetic results, which are superimposed on the
1D results, give quantitatively the same results until the fourth
state, after which a small shift appears in the ts and je values,
but the bands are qualitatively the same. The upper right region,
which corresponds to an unwanted state, is due to the finite
size of the nanowire; here the DW is pinned at the nanowire
end.

In the infinite case, the DW is initialized in the first well
from the left. A phase diagram similar to the finite case
is shown in Fig. 2(b). This diagram contains three more
bands than the finite case, which correspond to additional
states where the DW oscillates between two notches, starting
from the initial one, separated by four intermediate notches
(band 5) until six intermediate notches (band 7). To have
a better visibility over these new bands we computed the
DW dynamics for ts up to 1.5 ns on 300 × 400 points. We
observe that the bands 1 and 2 exist until ts = 1.045 ns and
ts = 1.27 ns, respectively, at je = 2.3308 A/μm2, while the
other bands continue above 1.5 ns. The interband transition
(band u) is observed between the bands zero and one around
je = 3 A/μm2 and ts = 250 ps. For the superior bands, the
interband transition at boundaries is quasi-nonexistent, which
shows that the infinite case is more stable than the finite case. In
both cases, the 1D model gives quantitatively the same results
as the micromagnetic simulations in the three first bands and
quasiquantitatively in the others (a shift in values is visible).
As for the finite case, the upper right region appears due to
the finiteness of the simulated length of the nanowire, even if
the end charges are suppressed. If a longer simulated window
is considered, other superior bands will follow as seen for
example in Fig. 5 or Fig. 6.

The influence of the pulse shape is detailed in Fig. 3 for
the infinite wire as calculated with the 1D model. In panel (a),
the pulse shape is symmetric as tr = tf = 5 ps and tz = 10 ns,
while in panels (b) and (c) the pulse shape is asymmetric,
tr �= tf , with tz is kept constant at 10 ns. The values of tr and
tf were varied between 5 ps and 300 ps. In panel (b), the case
with tr = 5 ps and tf = 300 ps is shown, while in panel (c),
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FIG. 3. Influence of the pulse shape on the phase diagram for a

DW at T = 0 K in an infinite nanostrip. The parameter space is the
total time (tr + ts + tf ) vs current amplitude. (a) Symmetric pulse
with tr = tf = 5 ps and tz = 10 ns; asymmetric pulse with (b) tr = 5
ps, tf = 300 ps, and tz = 10 ns and (c) tr = 300 ps, tf = 5 ps, and
tz = 10 ns. The upper right region is due to the finite size of the
simulated window.

the one with tr = 300 ps and tf = 5 ps. In the three panels, the
total time (ttot = tr + ts + tf ) is shown starting from 300 ps,
to be able to compare the diagrams evolution with the pulse
shape. We observe that the first depinning current depends
mainly on the rise time as depicted in panels (a) and (b),
where only the fall time is varied. In these cases, the first
depinning current is the same and equal to 2.31 A/μm2. The
influence of the tf is an offset of the bands along the total time
axis; therefore, if tf is decreased the second band is shifted
to shorter times and almost disappears from the shown phase
diagram. The influence of the rise time manifests itself also
as an offset of the bands to larger times, but also to larger
currents and therefore a higher first depinning current equal
to 2.69 A/μm2. The first depinning current for a total time
of 0.3 ns is 2.78 A/μm2 for the symmetric pulse, rising to
4.54 A/μm2 [panel (b)] and 5.03 A/μm2 [panel (c)] in the
asymmetric case. The micromagnetic calculation (not shown)
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FIG. 4. Probability of DW motion in different bands for the finite strip (a) and the infinite strip (b)–(d) at T = 293 K. (a), (b) A symmetric
pulse is applied with the characteristics tr = tf = 5 ps, after an initial and final tz of 10 ns. (c) An asymmetric pulse is applied with pulse shape
tr = 5 ps, tf = 300 ps, after an initial and final tz of 10 ns. (d) An asymmetric pulse is applied with pulse shape tr = 300 ps, tf = 5 ps, after
an initial and final tz of 10 ns. The damping parameter is taken as α = 0.02 and β = 2α. The band pockets, which appear in the panels (b) to
(d) on the left, correspond to the band −1. The dotted lines are guide to the eyes and represent the band’s edges.

gives similar results as the ones shown in Fig. 2, meaning a
small offset of the bands compared with the ones calculated
with the 1D model starting from the fourth band.

The dependence of the depinning current on the rise time
was deduced from the linearized equation of motion in the
1D approximation, as the force on the DW can be written as
[15,18]

Ẍ = − Ẋ

τd

− 1

m

dE

dX
+ β

ατd

u + 1 + αβ

1 + α2
u̇, (3)

where m = 2αSμ0Msτd

	γ0
is the DW mass, τd = 1+α2

αγ0Hk
is the

damping time, with Hk the anisotropy field, 	 is the DW width,
and E is the pinning energy. The force on the wall depends
on the current and its derivative; therefore, a shorter rise time
increases the derivative term which leads to a decreasing of
the depinning current and vice versa. For the present results,
the damping time is 0.27 ns (0.68 ns for α = 0.02); therefore,
the DW is in the transient regime for the pulse duration used.

B. Temperature dependence

The temperature influences the systematic motion of the
DW by modifying the DW relaxation in a potential well
after an applied current pulse. The oscillations during the DW
relaxation could be sustained by the thermal noise, which could
lead to a jump to the wrong well while the following pulse
occurs, or on the contrary, the thermal noise could counter the

effect of the current pulse and the DW could stay pinned in the
nondesired potential well.

To carry out this study, we computed the DW dynamics
at T = 293 K for finite/infinite nanostrip and different pulse
shapes. The results are shown in Fig. 4. In all cases, panels
(a) to (d), the DW first oscillates freely (relaxation) in the
presence of the thermal noise in its initial well during 10 ns
and afterwards a current pulse is applied to push the DW to
another well (corresponding to one of the bands in Figs. 2
and 3), followed by a DW relaxation during another 10 ns.
The damping parameter α is taken as 0.02, lower than the
one at T = 0 K [38], and the nonadiabatic parameter is taken
as β = 2α = 0.04. The same phase diagrams, as presented in
Figs. 2 and 3, were recalculated with α = 0.02 and β = 0.04
at T = 0 K and these bands, from one to four, are indicated
by dotted lines in Fig. 4(a) for the finite nanostrip, while the
bands from one to seven are indicated in panels (b) to (d) for the
infinite nanostrip. Starting from the fourth band, the shape of
the bands changes showing a reentrant transition [except panel
(c)], and the phase diagrams from panels (b) to (d) show band
pockets to the left corresponding to negative DW displacement
of one notch (noted as band −1) even though the STT pushes
the DW in the positive direction. These features are discussed
in Sec. III C.

The stochastic motion of the DW was computed for a
number of bands with the stochastic 1D model, and only on
a certain number of points micromagnetically. Figure 4(a)
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shows the probability of the DW motion in the first four
bands for a finite nanowire, when a symmetric current pulse
(tr = tf = 5 ps) is applied after a relaxation time of 10 ns.
At the end of the pulse, the DW is relaxed another 10 ns
before its position is considered acquired. A certain number of
realizations was computed for a quarter of the phase diagram
points of each band: 2700 realizations for each point shown
from the first band and 500 realizations for each point of the
superior bands. The maximum of probability (100%) for the
precise positioning of the DW to the nearest notch is found only
for 0.76% of the first band’s calculated points (17 points), while
on 32.18% of the points the probability is superior to 95%. The
maximum of probability decreases rapidly with increasing the
band number, being 98.6% (for three points) for the second
band, 67.4% for the third band, and 71% for the fourth band.
These results are to be compared with panel (b), where the
same pulse is applied in an infinite nanowire and the same
number of realizations were computed for each band. The
maximum probabilities are similar for the first two bands, for
similar band point number density, indicating that at room
temperature only few current pulse characteristics give 100%
probability of precise positioning. The points in the first band,
that correspond to 100% probability of desired motion, appear
for an applied current superior to 7.7 A/μm2 and a pulse length
between 100 ps and 130 ps for the finite strip and superior to
8.1 A/μm2 and a pulse length between 90 ps and 120 ps for
the infinite case, respectively. For superior bands, starting with
the fourth, the maximum of probability and band point number
density are increased in the infinite nanostrip compared to the
finite case, as in the latter the potential barrier is weaker for
the more distant notches [see Fig. 1(c)]. Micromagnetically,
we computed the probability for the phase diagram points
corresponding to the 100% values found with the 1D model
(which appear only in the first band) on 200 realizations/point.
These probabilities vary between 92% and 97%. The small
difference between the probability calculations of the micro-
magnetic and 1D model is attributed to the small shift in the
phase diagrams that was shown to exist between the two.

Figures 4(c) and 4(d) show the probability of DW motion
when an asymmetric current pulse is applied after 10 ns initial
and final relaxation. The pulse shape is tr = 5 ps, tf = 300 ps
in panel (c) and tr = 300 ps, tf = 5 ps in panel (d). The
maximum of probability in the first band of panel (c) is
96.77%, with only 2.31% of calculated band points having
a probability superior to 95% (from 2700 realizations). For the
superior bands, the maximum of probability diminishes with
only 2.93% of points having a probability superior to 90%
in the second band and 2.32% of points having a probability
superior to 80% in the third band. For panel (d), the maximum
of probability in the first band is found to be 98.07%, with
7.69% of points having a probability superior to 95%. The
maximum of probability diminishes faster in the superior
bands as compared with the panel (c) results, with less points
having maximum band probability. For example, only 0.79%
of points have a probability superior to 90% in the second
band and 0.54% of points have a probability superior to 80%
in the third band. The difference in probability between the
two asymmetric pulses is due to the fact that the long rise
time of the pulse [panel (d)] produces the shift up and right
of the bands compared with panel (c); therefore, more points

with maximum probability are found in the first band (as these
points are usually close to the band center) and lower points
with maximum probability in the superior bands as there are
less points on these bands.

These results suggest that to achieve a well defined DW
positioning at room temperature by STT alone, individual
pulses should be applied with very short rise and fall time.

C. Influence of α and β on the DW dynamics

The influence of the damping parameter α and of the
nonadiabatic parameter β on the phase diagram for an infinite
strip at T = 0 K is detailed in Fig. 5. The damping parameter
α was varied between 0.02 and 0.05, which correspond to
the zero and room temperature values [38]. The nonadiabatic
parameter was varied between zero and 2α. The case with
β = 2α is shown in Fig. 2(b) and Fig. 4(b) for α = 0.05 and
0.02, respectively. The computations with β = 0 are presented
in panels (a) and (b) of Fig. 5, while the ones with β = α are
displayed in panels (c) and (d). We observe that for α = 0.05,
when β is diminished from 2α to zero, important changes
appear in the phase diagram only when β is less than α. In
this case [panel (a)], the results obtained with the 1D model
(colored regions) exhibit only the first band (band +1) with
large pockets of negative numbered bands. In all cases, the
DW is pushed initially by the current pulse in the positive
direction (to the right), so a negative band expresses a DW
position at the end of the pulse to the left of the initial
notch, in the opposite direction of the STT. The micromagnetic
computations confirm this behavior, which was predicted and
observed before [13,20,21,27]. Due to the pinning potential,
the DW deforms and can change its internal structure giving
rise to a transient motion associated with DW inertia. The
transient DW movement is proportional to the variation of the
generalized angle of the wall:

δX = −	

α

(
1 − β

α

)
δψ, (4)

with ψ the azimuthal angle of the wall. For β = 0, the
transient motion is increased for large DW width or small
damping parameter. This effect is displayed in Fig. 5(b) for
α = 0.02, as compared with panel (a), where an increased
number of negative bands are visible. For the ultrashort
current pulses used, which are comparable with the DW
damping time τd , the transient effects dominate at low damping
parameter.

A discrepancy is found between the micromagnetic results
(symbols) and the 1D results in the upper right quadrant (high
current, longer pulse) for the phase diagrams with β = 0.
This discrepancy is due to the large angle variation at large
current and longer pulse that leads to the transformation of the
transverse DW and the creation of an antivortex close to the
initial notches before depinning [39] (see figure and movie in
the Supplemental Material [36]). DW velocity boosting was
predicted through antivortex generation at a singular notch in a
nanostrip [40]. The antivortex disappear quickly after the end
of the current pulse, and in certain cases can reverse the
orientation of the magnetization at the center of the transverse
DW leading to DW motion in the opposite direction. The
antivortex does not appear in all the computed micromagnetic
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FIG. 5. Influence of the damping parameter α and nonadiabatic parameter β on the phase diagram for an infinite strip at T = 0 K: (a)
α = 0.05 and β = 0, (b) α = 0.02 and β = 0, (c) α = β = 0.05, and (d) α = β = 0.02. A sequence of symmetric pulses with the same
characteristics as in Fig. 2 are applied. The scattered symbols represent the micromagnetic results, while the colored regions are calculations
with the 1D model. Trajectories in the phase space (X,ψ) corresponding to the −1 band in panels (b) [(d)]: (e) ts = 250 ps, je = 3.4 A/μm2,
α = 0.02, β = 0 and (f) ts = 300 ps, je = 3.6 A/μm2, α = β = 0.02. The scattered symbols and the full line represent the micromagnetic and
the 1D results, respectively. The dotted part of the full line indicates the applied pulse duration. (g) DW angle variation for α = 0.02, β = 0
for several points in the panel (b). (h) Comparison of the DW angular variation for α = β = 0.02 and ts = 300 ps, je = 3.6 A/μm2 for the
infinite strip with notches [band −1 in panel (d)] and strip without notches.

results in the upper right quadrant of these phase diagrams.
In the 1D model, the antivortex nucleation is not taken into
account.

As is obvious from Eq. (4), for β = α the transient motion
is somehow blocked and the DW travels rigidly. This seems
to be the case for β = α = 0.05, as computed in the phase
diagram shown in Fig. 5(c). However, when β = α = 0.02,
the negative bands are still present at low currents [panel (d)]
without the apparition of an antivortex. This effect was verified
micromagnetically on a number of points (empty symbols),
which compare very well with the 1D results. The pocket
form of the −1 band is respected with a small shift, even a −2
band was observed micromagnetically corresponding to the
small −2 pocket inside the −1 band. The DW motion in the
case β = α can be well explained analyzing the 1D equations
of motion of the DW:

(1 + α2)Ẋ = − αγ	

2μ0MsS

∂E

∂X
+ γ	

2
Hk sin 2ψ + (1 + αβ)u,

(1 + α2)ψ̇ = − γ

2μ0MsS

∂E

∂X
− γα

2
Hk sin 2ψ + β − α

	
u,

(5)

where S is the section of the wire, γ the gyromagnetic
ratio, and Hk the DW demagnetizing field. E is the pinning
potential energy which is assumed parabolic inside the notch.
The DW width variation is given by 	(t) = 	[�(t)] =
π

√
2A

μ0MS
2 sin2 ψ+μ0MSHk

. From the above equations, one can

notice that the azimuthal DW angle ψ and DW position X

depend on the pinning potential (restoring force) created by
the symmetric notches. When a current pulse is applied, the
DW is first compressed and distorts on the potential barrier
moving in the direction of the STT, while the azimuthal
angle decreases in some cases below −10◦ (dotted line), as
is displayed in Fig. 5(h) (videos and additional figures in
the Supplemental Material [36]). Initially, the STT pushes
the DW in the positive direction, resulting in a positive DW
velocity and a negative restoring force (negative DW angle).
If the DW does not have enough velocity to surpass the
potential barrier in this direction, it goes down the potential
well towards the center of the notch and the restoring force
still stays negative, while the velocity and angle continue to
decrease with the velocity becoming negative. When the DW
starts to mount the potential well in the other direction, the
restoring force becomes positive so the velocity and DW angle
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start to increase [Fig. 5(f)]. When the current pulse ends, the
velocity decreases abruptly (increases in absolute value) and
ψ increases lightly due to the short fall time. At this moment,
the DW position inside the potential well is important as it
imposes a restoring force in the direction of movement or in
the opposite direction. However, the velocity and the DW angle
are equally important for the jump to the previous notches to
happen (see Supplemental Material [36]). The jump occurs
therefore due to a combination of factors, even if the restoring
force is positive or negative. The presence of the notch pinning
potential induces the DW distortion and therefore the transient
motion, as for the same pulse parameters no observable angle
variation is determined for a perfect strip. As the variation of
the DW angle is directly related to the variation in position,
the automotion is possible in this case triggered by the pinning
induced DW distortion, restoring potential force and smallness
of the damping parameter.

In Fig. 5(g), several angular variations are presented
corresponding to the −1 and −2 bands from panel (b). We
observe that the amplitude of angular variation is directly
proportional with the spatial displacement. When an antivortex
appears, the DW angle rotates out of plane and the DW position
does not correspond anymore to the 1D results and the motion
opposite to the STT can be completely blocked. In general,
we observe the automotion in all the cases when the DW
angle increases above 10◦ (in absolute values) during or after
the current pulse and the maximum DW velocity is close or
superior to 400 m/s (details in the Supplemental Material
[36]). Exactly at the boundary between the −1 band and the
zero band (pinned state), a small increase in the azimuthal
angle of 0.2◦ and of the DW velocity by 5 m/s at the end of the
current pulse, between two points in different bands, is enough
to promote a DW jump to a previous notch.

The transient effects also appear when β > α, as depicted
in Fig. 4 for β = 2α = 0.04. A low value of the damping
parameter α is required to obtain observable consequences.
A particularity of the case β > α is that the transient effects
oppose or amplify the STT, as negative bands are determined
and a reentrant transition is seen at higher currents and pulse
length in panels (b) and (d). The transient effects depend on
the pulse shape (see Supplemental Material [36]), as for the
asymmetric pulse with tr = 5 ps, tf = 300 ps, the band −1 is
barely visible and no reentrant transition of the bands is seen,
while the −1 band increases when the pulse is symmetric and
continues to increase, with even a second −1 band appearing at
larger ts for the asymmetric pulse with tr = 300 ps, tf = 5 ps.
The fall time tf plays an important role in the value of the DW
velocity and DW angle at the end of the current pulse, as a short
tf leads to a very high DW velocity and a higher DW angle at
the end of the pulse increasing the impact of transient effects
and inducing a DW depinning. Contrary to earlier beliefs [13],
the DW depinning does not necessarily result from a large DW
angle or the DW position at the end of the pulse. A maximum
DW angle and DW velocity large enough during the current
pulse suffice to ensure for example the jump to the previous
notch, even if the angle is not that large (and at its maximum)
at the pulse end, as observed in the case of the asymmetric
pulse with tr = 5 ps, tf = 300 ps (see Supplemental Material
[36]). This is purely a transient effect due to a combined action
of the pinning potential, low α and pulse shape.

FIG. 6. Influence of the pulse raise time tr on the phase diagram
for a DW at T = 0 K in an infinite nanostrip for different parameters
α and β. The parameter space is the raise time vs current amplitude.
In all cases, ts = tf = 5 ps and tz = 10 ns. (a) α = 0.02 and β =
0.04, (b) α = β = 0.02, and (c) α = 0.05 and β = 0.1. In (a) the
micromagnetic results (scattered symbols) are compared to the 1D
model (colored regions), while in (b) and (c) only 1D model results
are shown. At high currents, the micromagnetic results give several
unintended states [the empty scattered symbol region to the right
of (a)].

The influence of the rise time tr on the phase diagrams is
presented in Fig. 6 for ts = tf = 5 ps and several parameters
α and β. The rise time is varied between 0 and 1.5 ns (case of
a very asymmetric pulse). A first observation is that the first
depinning current is increased as the force term that depends on
the current derivative in Eq. (3) diminishes. The first depinning
current actually oscillates with tr due to resonant effects, as
the resonant frequency of the potential well is around 1.75
GHz. This resonant effect is more important for the bands
with negative numbers for low α, as is depicted in panels (a)
and (b) for α = 0.02 and β = 0.4 or 0.2, respectively. The 1D
model gives good quantitative results as compared with the
micromagnetic calculations, as shown in panel (a), although a
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small shift is again found at high currents and more unwanted
states. When β � α, the positive bands are shifted to very high
current, with only negative bands remaining for β = 0 (image
not shown). The phase diagram for α = 0.05 and β = 0.1, also
shown in panel (c), still does not present negative bands but
the same oscillation of the first depinning current and of the
interband transitions.

The influence on the phase diagram is less dramatic when
varying the fall time tf (images shown in the Supplemental
Material [36]). For α = 0.02 and β > α no negative bands
appear and the positive bands are shifted to larger currents.
When β � α = 0.02, only a small pocket of the −1 band
appears and the positive bands are shifted as compared with
Fig. 5(d).

IV. DISCUSSION AND CONCLUSION

The presence of artificial constrictions in a nanostrip
influences drastically the movement of a magnetic DW.
When ultrashort current pulses are applied, the DW can
exhibit an important distortion at the notch depending on
the pulse characteristics. Thereby, the DW displays inertialike
effects, which can have dramatic consequences on its transient
displacement. These effects depend largely on the damping
parameter α and on the nonadiabatic parameter β. For β < α,
these effects generally oppose the STT effect after the pulse
end and DW motion in the direction of the electric current
is possible. If β > α, these effects oppose or amplify the
STT effect and jumps to the left or the right notches are
possible after the end of the pulse. The transient effects in this
case depend on the pulse characteristics. This could constitute
another way of experimentally comparing the two parameters
α and β for a ferromagnetic material.

At room temperature, the jump probability to the desired
notches decreases with increasing band number, each band
number corresponding to a positioning to desired notches in
the direction of the STT. Maximum positioning probability
is reached only for very short rise and fall time to the
nearest neighbors notches only. Therefore, to shift reliably
the DWs between notches, current pulses corresponding
to displacement from one symmetric notch to the closest
neighbors should be used. The shape of the current pulse
influences the depinning current and shifts the bands. The
phase diagram for the case of two domain walls situated
at different symmetric notches (images not shown), that are
displaced by the same current pulse in the same direction, is
very similar with the ones presented in Sec. III, but the bands
are narrower and the interband depinning is larger between the
first bands.

The main drawback of the classical DW displacement under
STT alone compared with more exotic torques (of spin-orbit
origin) is the high current values necessary. The current
induces Joule heating in the nanostrip that can largely increase
the temperature and could even destroy the ferromagnetic
state. The increase in temperature is even more important at
the constrictions in the nanostrip. Several theoretical studies
were dedicated to Joule heating in nanowires [41–44], usually
considering a standard Py nanostrip on a Si/SiO2 substrate.
We evaluated the temperature increase for our Ni strips on
different substrates like pure Si, SiO2, or Ni3Si4 membranes
for a current pulse length of 1 ns. On pure Si, considering
an infinite 3D substrate [41], the temperature increase is
negligible being of 4 K for j = 5 A/μm2 (17 K for j =
10 A/μm2). However, on SiO2 substrate of 300 nm thickness
[42], the temperature increase is larger, being 26 K for
j = 5 A/μm2 (103 K for j = 10 A/μm2). If 100 nm thick
Ni3Si4 membranes are used [15,42], the temperature increase
is of 41 K for j = 5 A/μm2 (163 K for j = 10 A/μm2). The
variation in temperature depends on the material parameters
of the substrate (like thermal conductivity) and on the
conductivity of the nanostrip. In the above estimations, the
bulk Ni room temperature conductivity was used (σ−1 =
7.3 μ� cm) [45]. If the dimensions are reduced to nanometers
[46], the conductivity of Ni can vary drastically (a factor
four) and the temperature increase can be more important,
but in the main time the length of the current pulse that
amounts to the maximum probability at room temperature is
around 0.1 ns, which reduces significantly the temperature
increase.

In conclusion, systematic DW motion between precise
artificial pinning constriction by very short current pulses is
possible at room temperature in a classical ferromagnet. The
constrictions induce DW distortions and important transient
effects can be observed. Depending on the ratio β/α, the
inertialike effect can oppose or amplify the STT effect on
the DW motion after the pulse end. As the value of β is still
under debate, this could constitute another way of determining
its relative value. Our results open the path to DW motion in
both directions by unipolar current pulses.
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