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A comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg
antiferromagnets within unified molecular field theory versus temperature T , magnetic field H , and anisotropy
field parameter hA1 is presented for systems comprised of identical crystallographically-equivalent local moments.
The anisotropy field for collinear z-axis antiferromagnetic (AFM) ordering is constructed so that it is aligned
in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to
the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment
onto the xy plane, again with a magnitude proportional to the moment. Properties studied include the zero-field
Néel temperature TN, ordered moment, heat capacity, and anisotropic magnetic susceptibility of the AFM phase
versus T with moments aligned either along the z axis or in the xy plane. Also determined are the high-field
magnetization perpendicular to the axis or plane of collinear or planar noncollinear AFM ordering, the high-field
magnetization along the z axis of a collinear z-axis AFM, spin-flop (SF), and paramagnetic (PM) phases, and the
free energies of these phases versus T , H , and hA1. Phase diagrams at T = 0 in the Hz-hA1 plane and at T > 0
in the Hz-T plane are constructed for spins S = 1/2. For hA1 = 0, the SF phase is stable at low field and the PM
phase at high field with no AFM phase present. As hA1 increases, the phase diagram contains the AFM, SF, and
PM phases. Further increases in hA1 lead to the disappearance of the SF phase and the appearance of a tricritical
point on the AFM-PM transition curve. Applications of the theory to extract hA1 from experimental low-field
magnetic susceptibility data and high-field magnetization versus field isotherms for single crystals of AFMs are
discussed.
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I. INTRODUCTION

Collinear and planar noncollinear Heisenberg antiferro-
magnets (AFMs) always have at least a small amount of some
type of magnetocrystalline anisotropy present that establishes
the axis or plane, respectively, along which the ordered
magnetic moments are aligned with respect to the crystal
axes. These include single-ion anisotropy, spin exchange
anistropy in spin space, and anisotropy due to classical
magnetic dipole interactions. These anisotropies are known
to change the AFM ordering (Néel) temperature TN as well
as the magnetic and thermal properties of the spin system
[1,2]. Recently, we carried out comprehensive studies of the
influence of dipolar and uniaxial quantum DS2

z magnetocrys-
talline anisotropies on the thermal and magnetic properties
of Heisenberg AFMs containing identical crystallographically
equivalent spins [3,4], where the Heisenberg interactions are
treated within unified molecular-field theory (MFT) [5–7]. In
this MFT, the properties of collinear and planar noncollinear
AFMs are calculated on the same footing and the theory is
expressed in terms of directly measurable quantities instead of
exchange interactions or molecular-field coupling constants
[5,6]. The theory for DS2

z anisotropy applies only to spins
S � 1, a serious limitation, since the magnetic properties of
S = 1/2 systems are of great interest.

A generic classical anisotropy field HA has been used
sporadically in the past to study the effects of anisotropy. In
particular, this field can give rise to an energy gap in the spin-
wave spectrum ∼√

2HAHexch, where Hexch is the exchange
field, and can affect macroscopic properties such as yielding
an anisotropy in the external field-induced magnetization [8].
For collinear AFMs, a field applied along the easy axis can

give rise to a spin-flop transition, where the ordered moments
flop to an orientation roughly perpendicular to the easy axis,
given by Eq. (140) below [9], which again involves HA.

However, a complete formulation of the classical anisotropy
field and comprehensive study of its influence on the thermal
and static magnetic properties of Heisenberg AFMs are
lacking. Here we report results from such investigations.
An important advantage of this type of anisotropy is that
such uniaxial and planar (XY) anisotropies apply to systems
with S = 1/2 in addition to S � 1. Another is that the
anisotropy parameter in a system is much more easily derived
from experimental magnetic data on single crystals compared
to that for single-ion anisotropy. The Heisenberg exchange
interactions are treated within the unified MFT, again assuming
identical crystallographically equivalent spins.

Results from the unified MFT of Heisenberg AFMs that are
needed to develop the theory incorporating classical anisotropy
fields are summarized in the Appendix. A summary of notation
and thermodynamics expressions used in the paper are given
in Sec. II. We use two forms of anisotropy field depending on
whether the anisotropy field induces collinear AFM ordering
along the z axis or collinear or planar noncollinear AFM
ordering in the xy plane. A detailed discussion of these is
presented in Sec. III.

Calculations of the AFM ordering (Néel) temperature TN

and ordered moment versus temperature T in the presence
of both the exchange and anisotropy fields in zero applied
field H are given in Sec. IV for arbitrary antiferromagnets
containing identical crystallographically equivalent spins.
Laws of corresponding states for these properties and others
are the same for all AFMs and ferromagnets (FMs) when
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expressed in terms of the universal reduced parameters of the
unified MFT. Expressions for the magnetic internal energy,
heat capacity, entropy, and free energy of the AFM phase in
zero field for both uniaxial and planar anisotropy are also
derived and plotted in Sec. IV. The anisotropic magnetic
susceptibilities χ arising from the classical anisotropy field
are derived for the paramagnetic (PM) phase in Sec. V and for
the AFM phase in Sec. VI, and the perpendicular high-field
magnetizations for the PM and AFM states are calculated in
Sec. VII.

The high-field magnetization parallel to the easy axis of
a collinear AFM is of special interest. This is derived for
the PM phase together with its free energy Fmag versus H in
Sec. VIII B. The spin-flop (SF) phase is treated in Sec. VIII C,
in which are presented the ordered moment versus T in H = 0,
the thermal-average moment μiz versus H using two different
approaches, the spin-flop critical field hcSF at which the SF
phase exhibits a second-order transition to the PM phase
with increasing H , the zero-field internal energy Umag versus
T , and the (Helmholtz) free energy Fmag versus T and H .
The more involved calculations of the magnetic properties
of the AFM phase in high longitudinal fields are given
separately in Sec. IX, including the z-axis sublattice, average
and staggered moments, and Fmag versus T , H , and anisotropy
parameter hA1.

Phase diagrams are constructed in Sec. X. We start with the
determination of the low-temperature properties of the AFM,
SF, and PM phases and their dependencies on the parameters
of the MFT in Sec. X A. The Hz versus hA1 phase diagrams
at T = 0 are then constructed. In addition, μz versus Hz

plots are provided for various values of hA1 to compare with
experimental data at T � TN. In this section, T = 0 phase
diagrams in the H⊥-hA1 plane for fields H⊥ perpendicular to
the easy z axis of a collinear AFM or easy plane of a planar
noncollinear AFM are presented.

We then move on to construct phase diagrams in the Hz-T
plane in Sec. X B from free energy minimization with respect
to the SF and z-axis collinear AFM phases (the PM phases are
high-field extensions of these phases beyond their respective
critical fields). Representative phase diagrams are presented
for spins S = 1/2 for six values of hA1. For hA1 = 0, the only
stable phases with increasing Hz are the SF and higher-field
PM phases, as expected. With increasing hA1, the AFM phase
appears at low fields for T � TN followed by the SF and PM
phases with increasing field. Further increasing hA1 results
in the gradual disappearance of the SF phase and appearance
of a tricritical point on the AFM-PM phase boundary. When
hA1 is sufficiently large, the SF phase disappears, leaving
only the AFM and PM phases in the phase diagram with
both first- and second-order transitions between them along
the transition curve with a tricritical point separating the two
regions. At T = 0, the AFM to PM transition is a 180◦ spin-flip
transition of the moment initially opposite in direction to
the field to being parallel to the field, whereas at finite T

the transition is a “gradual” spin flip where the magnitude
of the initially oppositely directed moment smoothly decreases
to zero and then that moment increases with field in the
direction of the field, eventually becoming the same in a
second-order transition to the PM phase as that of the moment
that was initially in the direction of the field.

A summary is given in Sec. XI. We discuss in depth how hA1

and another parameter fJ can be derived from experimental
data using our formulas for different magnetic properties.
Also discussed are the relationships between the formulas
for TN and the Weiss temperature θp in the Curie-Weiss
law for the present classical anisotropy field treatment with
those with DS2

z anisotropy [4] and arrive at a proportional
relationship between hA1 and D for small values of D. In
general, magnetic anisotropy data are much easier to analyze
in terms of the present classical anisotropy field than in terms
of DS2

z anisotropy.

II. NOTATION AND THERMODYNAMICS

A. Notation summary

Henceforth we designate two parameters changed by the
presence of the anisotropy field by removing the subscript J

to indicate that these values contain the contribution of the
anisotropy field in zero applied field:

TNJ → TN, θpJ → θp. (1a)

The TNJ , θpJ , and fJ parameters retain their meanings in terms
of the Heisenberg exchange constants and magnetic structure
as given in Eqs. (A6a), (A6b), and (A7), respectively. We
normalize energies, fields, and temperatures by TNJ in this
paper, as given in the following summary and definitions of
parameters:

μ̄α = μα

μsat
= μα

gSμB
, (1b)

hα ≡ gμBHα

kBTNJ

, (1c)

TA1 ≡ gμBHA1

kB
, (1d)

hA1 ≡ TA1

TNJ

= gμBHA1

kBTNJ

� 0, (1e)

fJ ≡ θpJ

TNJ

, (1f)

t ≡ T

TNJ

, (1g)

TN = TNJ + TA1 (1h)

TN

TNJ

= 1 + TA1

TNJ

= 1 + hA1, (1i)

tA ≡ T

TN
= t

1 + hA1
. (1j)

The magnetic susceptibility per spin χα in the α principal-
axis direction is rigorously defined in the absence of a
ferromagnetic component to the magnetization as

χα = lim
Hα→0

μα(Hα)/Hα. (2)

We define two reduced magnetic susceptibilities in the α

principal-axis direction. The first is

χ∗
α ≡ μ̄α

hα

∣∣∣∣
hα→0

. (3a)
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The second is

χ̄α ≡ χαTNJ

C1
=

(
3

S + 1

)
χ∗

α , (3b)

where the single-spin Curie constant C1 is given in Eq. (A1b).

B. Thermodynamics

In this section, we give thermodynamics expressions
needed in this paper assuming that the ordered and/or induced
moment of a representative spin 
μi versus field and temper-
ature has already been determined within the unified MFT
as outlined in the Appendix in the case of zero applied and
anisotropy fields.

The magnetic internal energy Umag of spin i for a local
magnetic induction Bi in the α principal-axis direction is

Umagi = −μiαBiα, (4)

where here Biα is written in general as

Biα = 1
2 (Hexchiα + HAiα) + Hα, (5)

and HAiα is the local anisotropy field seen by spin i discussed
later. We have seen that the exchange field seen by a spin is
proportional to μiα . This is also true for the anisotropy field by
assumption in Sec. III below. Thus the parts of Umagi associated
with these fields are both proportional to μ2

iα , indicating that
they both ultimately arise from interactions between pairs of
spins, hence the prefactor of 1/2 in the first term of Eq. (5) as
discussed in regard to Eq. (A16) where only the exchange field
was present. We write the sum of the exchange and anisotropy
fields as

Hexchiα + HAiα = aμiα, (6)

where the constant a contains the parameters associated with
these fields. Then Eq. (5) becomes

Biα = aμiα + Hα. (7)

1. Properties in zero applied field

When Hα = 0, Eqs. (4) and (5) yield the internal energy
per spin as

Umag(Hα = 0,T ) = −a

2
μ2

α(T ). (8)

We always assume that the spins are identical and crystallo-
graphically equivalent, so the subscript i is suppressed when
Hα = 0. Then the magnetic heat capacity per spin Cmag is

Cmag(Hα = 0,T ) = dUmag(Hα = 0,T )

dT
= −aμα

dμα

dT
. (9)

The magnetic entropy Smag(Hα = 0,T ) per spin is then
obtained as

Smag(Hα = 0,T ) = Smag(Hα = 0,T = 0)

+
∫ T

0

Cmag(Hα = 0,T )

T
dT , (10)

and the (Helmholtz) free energy Fmag(Hα = 0,T ) as

Fmag(Hα = 0,T ) = Umag(Hα = 0,T ) − T Smag(Hα = 0,T ).

(11)

2. Properties at nonzero temperature and nonzero applied field

It is most convenient in this paper to calculate the thermody-
namic state functions in the Hα-T plane by choosing the path
from (Hα = 0,T = 0) to (Hα = 0,T ) as in the previous section
and then at constant T from (Hα = 0,T ) to (Hα,T ). The
differential of the free energy for the second part of the path at
constant T , dFmag = −SmagdT − μαdHα with dT = 0, yields

dFmag(Hα,T ) = −μαdHα. (12)

Then using Eq. (11) one obtains

Fmag(Hα,T ) = Fmag(Hα = 0,T ) −
∫ Hα

0
μα(Hα,T )dHα,

(13)

where Fmag(Hα = 0,T ) is found as described above.
The variation of the magnetic entropy with field at constant

temperature is found from the Maxwell relation

(dSmag)T =
(

∂μα(Hα,T )

∂T

)
Hα

dHα. (14)

Then using Eq. (10) one obtains

Smag(Hα,T ) = Smag(Hα = 0,T )

+
∫ Hα

0

(
∂μα(Hα,T )

∂T

)
Hα

dHα. (15)

An increment of internal energy is

dUmag = T dSmag − μαdHα. (16)

Using Eq. (14) for dSmag at fixed T gives

(dUmag)T =
[
T

(
∂μα(Hα,T )

∂T

)
Hα

− μα

]
dHα, (17)

and hence

Umag(Hα,T ) = Umag(Hα = 0,T )

+
∫ Hα

0

[
T

(
∂μα(Hα,T )

∂T

)
Hα

− μα

]
dHα.

(18)

In the free-energy expression (13), the integral of
(∂μα(Hα,T )/∂T )Hα

over Hα in Smag and Umag is not present
because it canceled out in the definition Fmag = Umag − T Smag.

3. Expressions in reduced variables

In order to formulate laws of corresponding states for
the thermodynamic properties, we normalize all energies by
kBTNJ , where TNJ is the Néel temperature in zero field arising
from exchange interactions alone as discussed in the Appendix.
We also define the following dimensionless reduced variables:

bα = gμBBα

kBTNJ

, (19a)

A = a

kBTNJ

, (19b)

bα = Aμ̄α + hα. (19c)
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Then also using Eqs. (1), the expressions in the above two
subsections become

Umag(hα = 0,t)

kBTNJ

= −AS

2
μ̄2

α(hα = 0,t), (20a)

Cmag(hα = 0,t)

kB
= −ASμ̄α(t)

dμ̄α(hα = 0,t)

dt
, (20b)

Smag(hα = 0,t)

kB
= Smag(hα = 0,t = 0)

kB

+
∫ t

0

Cmag(hα = 0,t)/kB

t
dt, (20c)

Fmag(hα = 0,t)

kBTNJ

= Fmag(hα = 0,t)

kBTNJ

− t
Smag(hα = 0,t)

kB
.

(20d)

Fmag(hα,t)

kBTNJ

= Fmag(hα = 0,t)

kBTNJ

− S

∫ hα

0
μ̄α(hα,t)dhα, (20e)

Smag(hα,t)

kB
= Smag(hα = 0,t)

kB

+ S

∫ hα

0

(
∂μ̄α(hα,t)

∂t

)
hα

dhα, (20f)

Umag(hα,t)

kBTNJ

= Umag(hα = 0,t)

kBTNJ

+ S

∫ hα

0

[
t

(
∂μ̄α(hα,t)

∂t

)
hα

− μ̄α(hα,t)

]
dhα. (20g)

III. AFM ORDERING IN A CLASSICAL
ANISOTROPY FIELD

The lowest-order uniaxial anisotropy free energy FAi per
spin associated with a uniaxial or planar anisotropy symmetry
as in Figs. 1 and 2, respectively, for an ordered and/or magnetic
field-induced thermal-average magnetic moment 
μi is written
as [2]

FAi = K1i sin2 θi, (21)

where θi is the polar angle between 
μi and the uniaxial z

axis. Here, we assume that this relation is valid for the entire
angular region 0 � θ � π . The z axis for FAi from which
θi is defined is assumed to be a uniaxial axis of the lattice,
and hence the anisotropy is fundamentally magnetocrystalline
in origin. This generic model is assumed to apply to spin
systems with any spin angular momentum quantum number
S (in units of h̄, which is Planck’s constant divided by 2π )
and can therefore treat systems with S = 1/2 for which a
magnetocrystalline DS2

z term in the Hamiltonian gives no
anisotropy. The anisotropy constant K1 is in general different
for different moments 
μi because of their different magnitudes
as discussed below, hence the subscripts i in Eq. (21). If
K1i is positive and H = 0, then the lowest free energy of a

FIG. 1. The orientation of a representative magnetic moment 
μi

described by spherical coordinates θi and φi in an applied magnetic
field H = Hz k̂ and a generic classical anisotropy field HAi directed
along the ±z axis. For such an anisotropy field, collinear AFM
ordering along the z axis is favored if Hz = 0.

system occurs with sin θi = 0 for all 
μi , for which the ordered
moments are collinear and aligned parallel or antiparallel to
the uniaxial z axis, whereas if K1i is negative the lowest
free energy occurs when sin θi = 90◦ for all 
μi , resulting in
collinear or coplanar ordering in the xy plane. Using Eq. (21),
the magnitude τAi of the torque on each 
μi by its anisotropy
field HAi (see below) has the same form for all moments and
is given by

τAi =
∣∣∣∣∂FAi

∂θ

∣∣∣∣ = 2|K1i sin θi cos θi |. (22)

A. Collinear ordering along the z axis: Uniaxial anisotropy

For collinear AFM ordering along the z axis in H = 0 with
uniaxial anisotropy, one has θi = 0 or 180◦ in Fig. 1. The
anisotropy field HAi along the z axis in such a collinear AFM

FIG. 2. The orientation of a representative magnetic moment 
μi

in an applied magnetic field H = Hz k̂ and an anisotropy field HAi

in the xy plane that is directed along the projection of 
μi onto the
xy plane as shown. For such an anisotropy field, collinear or planar
noncollinear AFM ordering within the xy plane is favored if Hz = 0.
The azimuthal angle φi is in general different for different moments
but the value for each moment is not affected by H.
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FIG. 3. Comparisons of the free energy and anisotropy fields, respectively, for (a) and (b) axial z-axis anisotropy and ordering and (c) and
(d) xy-plane anisotropy and ordering. The anisotropy free energy per spin FAi normalized by |K1i | is given in Eq. (21), where K1i > 0 for
axial anisotropy and K1i < 0 for planar anisotropy. The anisotropy fields HAi for axial and planar anisotropies are given in Eqs. (23) and (27),
respectively.

is defined to be in the same direction ±k̂ as that of the ordered
moment 
μi , which can be written as

HAi = HA0i cos θi k̂, (23a)

HAiz = HA0i cos θi, (23b)

where HA0i � 0 is the amplitude of the anisotropy field for
axial anisotropy. For uniaxial ordering K1i > 0 in Eq. (21),
so that the minimum free energy FAi = 0 occurs for collinear
AFM ordering with the moments oriented along the z axis as
shown in Fig. 3(a). If the moments all rotate with increasing
field into a “spin-flop” phase to give θi � 90◦ for each spin,
then from Eq. (21) and Fig. 3(a) the anisotropy free energy of
each moment increases to ≈K1i .

Using Eq. (A27a) for a representative moment 
μi , the
torque due to the anisotropy field on the moment tilted by
an angle θ with respect to the z axis is


τAi = 
μi × HAi = μiHA0i sin θi cos θi[sin φi î − cos φi ĵ],

(24a)

with magnitude

τAi = |μiHA0i sin θi cos θi |, (24b)

where μi is the magnitude of the (thermal-average) 
μi and θi

is the polar angle in Fig. 1. Comparing Eqs. (24b) and (22)

gives the anisotropy constant for moment i as

K1i = μiHA0i

2
> 0, (25)

where K1i is positive for uniaxial collinear ordering in zero
field as discussed above. As noted above, K1 can depend on
the specific moment i if the magnitude μi is not the same for
all moments.

The maximum magnitude of HAi from Eqs. (23) occurs at
θi = 0 or 180◦, at which the anisotropy free energy in Eq. (21)
is minimum (zero) as shown in Fig. 3(a). A plot of HAiz/HA0i

versus θi from Eq. (23b) is shown in Fig. 3(b), which by
comparison with Fig. 3(a) demonstrates that the maximum
magnitude of the anisotropy field occurs at the ordering angles
for collinear AFM ordering, for which the free energy is
minimum.

B. Collinear or planar noncollinear ordering in the x y plane:
Planar anisotropy

When planar (XY) anisotropy is present, the ordered AFM
structure in H = 0 can be either a collinear structure or a planar
noncollinear structure with the ordered moments aligned in the
xy plane for both structures. In either case, the polar angle for
the orientations of all ordered moments for H = 0 is θi = 90◦
in Fig. 2. In order that these magnetic structures have a lower
magnetic free energy than for collinear AFM ordering along
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the z axis requires that

K1i < 0 (26)

in Eq. (21), as shown in Fig. 3(c).
From Fig. 2, HAi is directed along the projection of 
μi

onto the xy plane instead of along the z axis as described
in Eq. (23a) for uniaxial anisotropy. Therefore, instead of
Eq. (23a), we now write HAi in spherical coordinates as

HAi = HA0i sin θi(cos φi î + sin φi ĵ), (27a)

HAi xy ≡ HA0i sin θi, (27b)

where HA0i is the magnitude of HAi when θi = 90◦. The torque
exerted by HAi on 
μi is obtained from Eqs. (27a) and (A27)
as


τAi = 
μi × HAi = −μiHA0i sin θi cos θi(sin φi î − cos φi ĵ),

(28)

with magnitude

τAi = |μiHA0i sin θi cos θi |. (29)

This is the same expression as in Eq. (24b) for collinear AFM
ordering along the z axis, but here the zero-torque condition
applies to θi = π/2 instead of 0 or π as appropriate for z-axis
collinear ordering.

Comparing Eqs. (29) and (22) and using (26) gives

K1i = −μiHA0i

2
< 0, (30)

which is the same as in Eq. (25) for axial anisotropy except
for the sign. A plot of HAi xy/HA0i versus θi from Eq. (27b)
is shown in Fig. 3(d), which by comparison with Fig. 3(c)
demonstrates that the anisotropy field is maximum at the
ordering angle θi = π/2 for planar AFM ordering for which
the free energy is minimum.

C. Fundamental anisotropy field HA1

In the present treatment of either uniaxial or planar
anisotropy, we write the anisotropy field amplitude HA0i � 0
in Eqs. (23) and (27) as

HA0i(T ) = 3HA1

S + 1
μ̄i(T ) = 3HA1

gμBS(S + 1)
μi(T ), (31a)

where the subsidiary anisotropy field

HA1 � 0 (31b)

does not depend on the moment 
μi or on T and is therefore
a more fundamental anisotropy field than HA0i . The reason
for including the factor 3/(S + 1) in Eq. (31a) is explained
in Sec. IV below. The reduced ordered moment μ̄i ≡ μi/μsat

can be numerically calculated for all moments in H = 0 using
Eqs. (37) below but the value can be different for different
moments if H �= 0. Inserting Eq. (31a) into (25) or (30) gives

|K1i | = 3gμBSHA1

2(S + 1)
μ̄2

i (T ) = 3HA1

2gμBS(S + 1)
μ2

i (T ), (32)

where we used Eq. (1b). Since μ̄i(T = TN) = 0 if H = 0
where TN is the Néel temperature in the presence of both
exchange and anisotropy fields (see below), one has K1i(T →
T −

N ) = 0 if H = 0 [10]. However, for H > 0, a field-induced
thermal-averaged moment μi arises in the paramagnetic state
at T � TN, and this anisotropy therefore influences both the
AFM and PM (FM-aligned) states.

IV. NÉEL TEMPERATURE, ORDERED MOMENT,
INTERNAL ENERGY, HEAT CAPACITY, ENTROPY,

AND FREE ENERGY OF THE ANTIFERROMAGNETIC
PHASE IN ZERO APPLIED FIELD

The definition of the anisotropy field HAi in Eq. (23a) for
collinear AFM ordering along the z axis (θi = 0 or 180◦)
and in Eq. (27a) for ordering in the xy plane shows that for
H = 0, HAi is parallel to each ordered magnetic moment 
μi in
the ordered state below TN, just as the exchange field Hexch i is.
Since the local exchange and anisotropy fields are both in the
same direction as that of the respective ordered moment in the
AFM state in H = 0, they reinforce each other, and also have
the same values for each moment because all moments are
identical and crystallographically equivalent by assumption.

For H = 0, the parameters μ0, μ̄0, K1, and HA0 do not
depend on the spin i and hence we drop the subscript i when
discussing these quantities for H = 0. Here the parameters μ0

and μ̄0 respectively refer to the ordered moment and reduced
ordered moment in H = 0 but in the presence of both the
exchange and anisotropy fields as appropriate.

From Eqs. (A9) for the exchange field in H = 0 together
with Eq. (A1b), one obtains

gμBHexch0

kBT
= 3TNJ

(S + 1)T
μ̄0. (33)

Using Eq. (31a), a similar expression for the anisotropy field
is

gμBHA0

kBT
= 3gμBHA1

(S + 1)kBT
μ̄0 = 3TA1

(S + 1)T
μ̄0, (34)

where the anisotropy temperature TA1 (not a real temperature)
is defined in terms of HA1 in Eq. (1d). For H = 0, the magnetic
induction obtained by MFT that is seen by each moment is
B = Hexch0 + HA0. Using Eqs. (33) and (34), μ̄0 is governed
by the Brillouin function BS(y) according to Eqs. (A10) as

μ̄0 = BS(y0), y0 = 3

S + 1
(TNJ + TA1)

μ̄0

T
. (35)

The ordering temperature occurs as μ̄0 → 0. Using the first-
order Taylor series expansion term of the Brillouin function
in Eq. (A11b), Eq. (35) gives the Néel temperature T = TN in
the presence of both the exchange and anisotropy fields as

TN = TNJ + TA1 = TNJ (1 + hA1), (36)

where hA1 is defined in terms of TA1 and HA1 in Eqs. (1e)
and (1i). Thus the presence of the reinforcing anisotropy field
hA1 > 0 increases the Néel temperature, as expected. From
Eq. (36), the fractional increase in the Néel temperature due
to the anisotropy field, TN

TNJ
− 1, is equal to hA1, an appealing

physical interpretation of hA1. This behavior is comparable to
the influence of a DS2

z anisotropy on TN at small D where TN is
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FIG. 4. Reduced ordered moment μ̄0 vs reduced temperature
tA in zero applied field but in the presence of an anisotopy
field. These behaviors are valid within MFT for both uniaxial and
planar anisotropies for any type of magnetic ordering of identical
crystallographically equivalent spins.

proportional to D, but is very different from the behavior of TN

versus D at larger D where TN varies nonlinearly with D [4].
However, for the classical anisotropy treated in this paper both
the ordering temperature TN and the Weiss temperature θp (see
below) vary linearly with hA1 in the same way for arbitrary
values of hA1.

To determine the zero-field ordered moment versus temper-
ature for T � TN, we use Eqs. (1j) and (36) and then Eqs. (35)
become

μ̄0 = BS(y0), (37a)

y0 = 3μ̄0

(S + 1)tA
. (37b)

These equations, which are used to numerically calculate
μ̄0(tA), have the same form as Eqs. (A14) for H = HA1 = 0,
except with tA ≡ T/TN in Eq. (1j) replacing t ≡ T/TNJ as
shown in Fig. 4 [11]. Hence the reason we introduced the
factor of 3/(S + 1) in the definition of the anisotropy field
HA0i in Eq. (31a) was to require Eqs. (37) to have the same
form as Eqs. (A14).

To determine μ̄0 in terms of t = T/TNJ instead of tA =
T/TN, one can use Eqs. (1j) and (37) to obtain

μ̄0 = BS

[
3μ̄0(1 + hA1)

(S + 1)t

]
. (38)

Setting hA1 = 0, one recovers Eqs. (A14) for the case of zero
anisotropy.

In zero field, all spins have the same internal energy per
spin Ui according to Eq. (5), which has two contributions for
either z-axis or xy-plane ordering given by

Ui = Uexch0 + UAi (39a)

Uexchi = − 1
2μHexch0, (39b)

UAi = − 1
2μHA0i . (39c)

FIG. 5. Magnetic internal energy per spin Umag normalized by
kBTNJ of the AFM phase vs reduced temperature tA in zero applied
field in the presence of a reduced anisotopy fields hA1 = 0 to 1 for
spins (a) S = 1/2 and (b) S = 7/2 obtained using Eqs. (37) and (40c).

Normalizing the energies by kBTNJ , Eqs. (A17), (1), (23b)
or (27b), and (31a) yield

Uexch0

kBTNJ

= − 3S

2(S + 1)
μ̄2

0, (40a)

UAi

kBTNJ

= − 3S

2(S + 1)
hA1μ̄

2
0, (40b)

Ui

kBTNJ

= − 3S

2(S + 1)
(1 + hA1)μ̄2

0. (40c)

Shown in Fig. 5 are plots of Ui/kBTNJ versus reduced
temperature tA for a range of reduced anisotropy parameters
hA1 = 0 to 1 and for spins S = 1/2 and S = 7/2 obtained
using Eqs. (37) and (40c). One sees that the zero-temperature
internal energy decreases (becomes more stable) with in-
creasing hA1 as expected. Also, the internal energy goes to
zero when the ordered moment goes to zero with increasing
temperature.
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FIG. 6. Magnetic heat capacity per spin Cmag of the AFM phase vs
reduced temperature tA in zero applied field for any reduced anisotopy
field hA1 � 0 and spins S = 1/2 to 7/2 in half-integer increments.
The hump that develops with increasing S at a temperature ∼tA/4
is intrinsic to molecular-field theory. (b) Magnetic entropy per spin
Smag/kB vs tA for the same parameters as in (a).

The magnetic heat capacity per spin is

Cmag

kB
= d(Ui/kBTNJ )

dt

= −
(

3S

S + 1

)
(1 + hA1)μ̄0(tA)

dμ̄0(tA)

dt
,

= −
(

3S

S + 1

)
μ̄0(tA)

dμ̄0(tA)

dtA
, (41)

where we used Eq. (1j) to obtain the third equality, μ̄0(tA) is ob-
tained by solving Eqs. (37), and dμ̄0(tA)/dtA is obtained from
Eq. (A11c) where y = y0 is given in Eq. (37b). Equation (41)
for Cmag is identical in form to the equation for Cmag with
hA1 = 0 and with t replacing tA [11]. The presence of hA1 in
Eq. (41) is therefore equivalent to the replacements TNJ → TN

and t → tA in the equation for hA1 = 0. Plots of Cmag/tA
versus tA are shown for S = 1/2 to S = 7/2 in Fig. 6(a). One
sees that with increasing S, on approaching TN from below
Cmag/tA approaches a constant value for increasing S given by

Cmag(tA → 1,S → ∞)

kB
= 5/2, (42)

consistent with the exact expression for finite S [6]:

Cmag(tA → 1)

kB
= 5S(S + 1)

1 + 2S(S + 1)
. (43)

The broad hump that develops in Cmag/kBtA at tA ∼ 1/4 for
large S is intrinsic to the MFT [6], and is therefore prominantly
observed in the AFM state of compounds containing spin-only
Eu+2 and Gd+3 ions with large spin S = 7/2 [6]. It arises from
a practical point of view in order that the statistical mechanics
value for the magnetic entropy per spin at TN, given by

Smag(tA = 1)/kB = ln(2S + 1), (44)

continues to increase with increasing S, since as just stated
the Cmag(tA ∼ 1) is bounded with increasing S and hence the
increasing entropy must arise by increasing Cmag at lower and
lower temperatures with increasing S.

The Smag/kB versus tA for hA1 > 0 is obtained using

Smag(tA)

kB
=

∫ tA

0

Cmag(tA)/kB

tA
dtA, (45)

where Smag(tA = 0) = 0 because the energy levels are nonde-
generate at tA = 0 due to the presence of nonzero Hexch and
HA, and Cmag(tA)/kB is obtained as described above. The Smag

is plotted versus tA for S = 1/2 to S = 7/2 in Fig. 6(b), where
the high-T limit in Eq. (44) is indeed obtained for each value
of S for T � TN.

The reduced Helmholtz free energy per spin versus reduced
temperature tA is given in general by

Fmag

kBTNJ

= Umag

kBTNJ

− tA
Smag

kB
. (46)

Shown in Fig. 7 are plots of Fmag/kBTNJ for H = 0 versus
tA with hA1 values from 0 to 1 for spins S = 1/2 and 7/2
obtained from the data in Figs. 5 and 6. One sees that Fmag

varies monotonically with tA, but that the sign of the slope
depends on the value of hA1. Another important feature is that
Fmag is independent of hA1 for tA � 1 because Umag = 0 in
that temperature range and Smag versus tA is independent of
hA1 for a given value of the spin S because the influence of
hA1 is already included via its effect on TN in the definition
tA ≡ T/TN.

V. MAGNETIC SUSCEPTIBILITY OF THE
PARAMAGNETIC PHASE

In the paramagnetic (PM) phase at T � TN, there is no
ordered or induced moment in the absence of a field H
applied along a principal-axis direction. When Hα > 0, the
field-induced thermal-average moment of each spin points in
the direction of H. From Eq. (A21a), the magnitude of the
exchange field seen by each moment is

Hexchα = 3kBθpJ

gμB(S + 1)
μ̄α, (47)

where θpJ is the Weiss temperature due to the exchange
interactions alone, which is defined in terms of the exchange
constants in the spin system in Eq. (A6b), and μ̄α = μα/μsat =
μα/gSμB is the normalized thermal-average moment induced
by Hα in the α direction.
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FIG. 7. Reduced magnetic free energy per spin Fmag/kBTNJ of
the AFM phase vs reduced temperature tA in zero applied field for
anisotopy fields hA1 as listed and spins (a) S = 1/2 and (b) S = 7/2,
obtained using Eq. (46) and the data in Figs. 5 and 6.

A. Anisotropic paramagnetic susceptibility with a uniaxial
anisotropy field along the z axis

1. H ⊥ z

Here, we consider a uniaxial anisotropy field HAi along the
z axis as in Eq. (23a) and Fig. 1 with the induced moments in
the PM state with T � TN aligned perpendicular to the z axis
due to an infinitesimal H applied in the xy plane. According
to Eqs. (24) with θi = 90◦, the torque of HAi on 
μi is zero.
Hence the anisotropy field has no influence on μ⊥, where the
⊥̂ direction is perpendicular to the easy axis or plane for AFM
ordering. Therefore the low-field susceptibility χ⊥ follows the
Curie-Weiss law given by Eq. (A23b) for exchange interactions
alone as

χ⊥PM(T � TN) ≡ χxy(T � TN) = C1

T − θpJ

. (48a)

The xy-plane susceptibility at TN is thus

χ⊥PM(TN) = C1

TN − θpJ

= C1

TNJ + TA1 − θpJ

, (48b)

where we used Eq. (36) for TN to obtain the second equality.
The presence of the infinitesimal H⊥ does not measurably

affect TN. The reduced susceptibilities defined in Eqs. (3) are

χ̄⊥PM(T � TN) ≡ χ⊥PMTNJ

C1
= 1

t − fJ

= 1

tA(1 + hA1) − fJ

,

(49a)

χ̄⊥PM(T = TN) = 1

1 + hA1 − fJ

, (49b)

χ∗
⊥PM(T � TN) ≡ μ̄⊥

h⊥
=

(
S + 1

3

)
χ̄⊥PM(T � TN)

= S + 1

3(t − fJ )
= S + 1

3[tA(1 + hA1) − fJ ]
, (49c)

χ∗
⊥PM(T = TN) = S + 1

3(1 + hA1 − fJ )
. (49d)

2. H ‖ z

If H is along the z axis, then an anisotropy field in the
direction of H and of the induced moment is present with
magnitude HA0 given by Eq. (31a). The normalized induced
moment in the z direction (μ̄‖) is given by Eqs. (A10), (A21b),
(31a), and (1d) as

μ̄‖PM = BS

[
gμB

kBT
(Hexch + HA0 + Hz)

]

= BS

[
3

S + 1
(θpJ + TA1)

μ̄‖
T

+ gμBHz

kBT

]
. (50)

Using the first-order term in the Taylor series expansion of the
Brillouin function in Eq. (A11b) one obtains the Curie-Weiss
law

χ‖PM(T � TN) = μ‖
Hz

= C1

T − θp
, (51a)

χ‖PM(TN) = C1

TN − θp
(51b)

= C1

TNJ (1 + hA1) − θp
, (51c)

where the Weiss temperature in the presence of the anisotropy
is

θp = θpJ + TA1 = θpJ + θpA = θpJ + hA1TNJ , (51d)

θpA = TA1 = hA1TNJ . (51e)

Equations (51) yield the reduced forms (3) as

χ̄‖PM(T � TN) = 1

(1 + hA1)tA − fJ − hA1
, (52a)

χ̄‖PM(T = TN) = 1

1 − fJ

, (52b)

χ∗
‖PM(T � TN) = S + 1

3[(1 + hA1)tA − fJ − hA1]
, (52c)

χ∗
‖PM(T = TN) = S + 1

3(1 − fJ )
. (52d)

Thus the Weiss temperatures from the exchange interactions
and from the anisotropy are additive. This additivity also oc-
curs for anisotropy arising from the magnetic dipole interaction
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[3] and from the uniaxial DS2
z single-ion anisotropy at small

D [4]. From Eqs. (51a) and (51d), one sees that the z-axis
anisotropy field in the direction of H increases χ‖PM at fixed T ,
as expected since the anisotropy field increases the magnitude
of the local magnetic induction seen by each induced moment.

In addition, one finds that TN in Eq. (36) and θp in Eq. (51d)
for H directed along the z axis are both shifted towards positive
values by the same amount due to the anisotropy field, and
therefore

TN − θp = TNJ − θpJ (H ‖ easy axis). (53)

By comparing Eqs. (48a) and (51a), the Weiss temperatures
are seen to be different for χ⊥PM and χ‖PM and hence Eq. (53)
applies for H ‖ z but not for H ⊥ z. From the definition for fJ

in Eq. (A7) together with Eq. (53), Eq. (51b) can alternatively
be written as

χ‖(TN) = C1

TNJ − θpJ

= C1

TNJ (1 − fJ )
, (54)

as is also apparent from Eq. (52b).
Since TN > TNJ , one sees by comparison of Eqs. (49b)

and (52b) that χ‖(TN) > χ⊥(TN) if the g values for fields in
the two directions are the same.

B. Anisotropic paramagnetic susceptibility
with XY planar anisotropy

If the anisotropy field is in the xy plane as in Fig. 2, one
cannot identify a unique easy-axis direction. Hence we specify
the anisotropic susceptibilities as χz and χxy instead of χ⊥ and
χ‖, respectively. In the presence of an applied field in some
direction in the xy plane, the induced moments in the PM state
are aligned in the same direction.

Following the same steps as in the previous section, we find
that χz(T � TN) is the same as χ⊥(T � TN) in Eqs. (48), i.e.,

χz(T � TN) = C1

T − θpJ

, (55a)

χz(TN) = C1

TN − θpJ

= C1

TNJ + TA1 − θpJ

, (55b)

where TA1 is defined in Eq. (1d).
Similarly, χxy(T � TN) is the same as χ‖(T � TN) in

Eq. (51a):

χxy(T � TN) = C1

T − θp
= C1

T − TA1 − θpJ

, (55c)

Therefore at the Néel temperature, using Eq. (53) one obtains

χxy(TN) = C1

TN − θp
= C1

TNJ − θpJ

. (56)

Thus in the paramagnetic state with T � TN, if one has z-
axis uniaxial anisotropy then χz > χxy , whereas for xy planar
anisotropy one has χxy > χz. These relationships are expected,
since a uniaxial anisotropy field helps to align the moments
along the z axis, whereas an xy planar anisotropy field helps
to align the moments in the xy plane.

γ
μxy

μ⊥

H μ

FIG. 8. Figure showing the influence of an infinitesimal magnetic
field H along the ⊥ axis on each spin in the xy plane. The H induces
a tilting of each ordered magnetic moment 
μ towards the magnetic
field direction by an infinitesimal angle γ , which results in an induced
⊥-axis component μ⊥ of 
μ. The angle γ in the figure is greatly
exaggerated for clarity. To first order in γ and H , the magnitude of
the ordered moment is unaffected by the presence of H.

VI. ANISOTROPIC MAGNETIC SUSCEPTIBILITY
OF THE ANTIFERROMAGNETIC PHASE

A. Perpendicular susceptibility

To calculate χ⊥AFM(T � TN) in the presence of HA, we
assume here the presence of a planar XY anisotropy as in
Fig. 2 with the ordered moments aligned in the xy plane for
H = 0. The expression for χ⊥AFM in Eq. (61) below is valid
for both collinear and planar noncollinear AFM structures. We
calculate the infinitesimal angle γ in Fig. 8 for which the total
torque on a representative moment 
μi is zero, and from that
χ⊥AFM(T � TN) is obtained.

From Fig. 8, one finds that the ordered moment magnitude
μ0 in H⊥ = 0 does not change to first order in H⊥ and the
radian angle γ . Thus using spherical coordinates, the magnetic
moment 
μi to first order in γ is


μi = μ0(cos φi î + sin φi ĵ + γ ⊥̂), (57)

where φi is the angle between 
μi and the positive x axis
in H = 0. The torque contribution due to the exchange field
is obtained writing θ = π

2 − γ and thus sin θ cos θ = γ in
Eq. (A28) and then using Eqs. (A1b) and (1b) yield


μi × Hexch i = −γμ2
0

C1
(sin φi î − cos φi ĵ)(TNJ − θpJ )

= −γμ2
0

χ⊥J

(sin φi î − cos φi ĵ), (58)

where Eq. (A33b) was used to obtain the second equality. The
contribution of the applied magnetic field to the torque to first
order in H⊥ is


μi × H = μ0H⊥(sin φi î − cos φi ĵ). (59)

The torque on 
μi exerted by HAi to first order in γ = 90◦ − θ

is given by Eq. (28) as


μi × HAi = −γμ0HA0(sin φi î − cos φi ĵ). (60)

Then setting the sum of the three torques to zero, solving for
γμ0 = μ⊥ and using Eqs. (A1b), (A23c), (31a), and (36), one
obtains the perpendicular susceptibility χ⊥AFM = μ⊥/H⊥ in
the AFM state as

χ⊥AFM(T � TN) = C1

TN − θpJ

= C1

TNJ + TA1 − θpJ

, (61)

which agrees with Eq. (48b) for the PM state at TN. Thus χ⊥AFM

is independent of T below TN with the value χ⊥PM(TN). From
Eq. (61), one sees that χ⊥AFM(T � TN) is reduced compared
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to the pure Heisenberg case in which TA1 would be zero,
since that anisotropy field resists the tilting of the moments
out of the xy plane by H⊥. The same T independence of χ⊥
for T � TN was found for AFM ordering in the presence of
magnetic dipole interactions with or without the presence of
exchange interactions [3]. In contrast, when quantum uniaxial
DS2

z anisotropy is present in a Heisenberg spin system, χ⊥
decreases with decreasing T below TN [4].

B. Parallel susceptibility of collinear z-axis
antiferromagnets below TN

In this section, we calculate χ‖(T � TN) in the presence of
a uniaxial anisotropy field along the easy z axis as in Fig. 1.
Here we follow the approach of Ref. [4] in which the influence
of quantum DS2

z anisotropy was studied instead of the present
generic classical anisotropy. In the collinear ordered state, we
consider two sublattices. Sublattice 
μi = μi k̂ is taken to point
in the direction of the field Hz and sublattice 
μj = −μj k̂ to
point in the opposite direction in zero field.

The exchange field seen by a spin on sublattice i is [4]

Hexchi = 3kBTNJ

2g2μ2
BS(S + 1)

[ 
μi(1 + fJ ) − 
μj (1 − fJ )]. (62a)

If Hz = 0, one has 
μj = −
μi and μi = μ0 for all spins,
yielding

Hexchi0 = 3kBTNJ μ̄0

gμB(S + 1)
(62b)

and

yexch0 ≡ gμBHexchi

kBT
= 3

(S + 1)t
μ̄0. (62c)

The anisotropy field seen by 
μi in the z direction is

HA0iz = 3HA1

gμBS(S + 1)
μiz = 3HA1

S + 1
μ̄0, (63a)

yielding

yA0 ≡ gμBHA0i

kBT
= 3hA1

(S + 1)t
μ̄0. (63b)

Thus the parameter y0 is

y0 = yexch0 + yA0 = 3

(S + 1)t
(1 + hA1)μ̄0 (64)

However, tA = t/(1 + hA1), so one can also write

y0 = 3

(S + 1)tA
μ̄0. (65)

Then the reduced ordered moment in zero field μ̄0 is obtained
at each t or tA by solving

μ̄0 = BS(y0). (66)

When a field Hz is present, one has

yH ≡ gμBHz

kBT
= hz

t
. (67)

If Hz is infinitesimal as needed to calculate χ‖, one must
go back to Eq. (62a) to obtain the infinitesimal change in the

exchange field. In this case one has d 
μj = d 
μi , and Eq. (62a)
then gives

dHexchiz = 3kBTNJ fJ

gμB(S + 1)
dμ̄iz. (68)

Then one obtains

dyexchi = 3fJ

(S + 1)t
dμ̄iz. (69)

From Eqs. (63b) and (67), one also has

dyAi = 3hA1

(S + 1)t
dμ̄iz, dyH = dhz

t
. (70)

The sum of the three changes in dyi is

dyi = 3

(S + 1)t
(fJ + hA1)dμ̄iz + dhz

t
. (71)

The change dμ̄iz in the reduced moment on sublattice i is
governed by the Brillouin function, i.e.,

dμ̄iz = B ′
S(y0)dyi. (72)

Substituting dyi from Eq. (71) into (72) and solving for dμ̄iz

gives the reduced z-axis susceptibility per spin according to
Eq. (3b) as

χ̄‖AFM(t) = 1

τ ∗ − (fJ + hA1)
, (73)

where

τ ∗(t) = (S + 1)t

3B ′
S(y0)

. (74)

If hA1 = 0, one recovers the χ̄‖ expression for the pure
Heisenberg case given in Refs. [5,6].

Using Eq. (1j), one can also calculate χ̄‖AFM in Eq. (73)
versus tA = T/TN instead of versus t = T/TNJ from

χ̄‖AFM(tA) = 1

τ ∗
A − (fJ + hA1)

, (75)

where

τ ∗
A(tA) = (S + 1)tA(1 + hA1)

3B ′
S(y0)

. (76)

We find

χ̄‖(tA = 1) = 1

1 − fJ

, (77)

so from Eq. (75), one obtains

χ̄‖AFM(tA)

χ̄‖(tA = 1)
= 1 − fJ

τ ∗
A(tA) − (fJ + hA1)

, (78)

where τ ∗
A(tA = 1) = 1 + hA1 and hence the ratio in Eq. (78) at

tA = 1 is equal to unity as required.

C. Summary: Anisotropic susceptibility of collinear z-axis
antiferromagnets in reduced parameters

Using the definition of the reduced susceptibility in
Eq. (3b), together with Eqs. (1), (48a), (51), and (75), the
anisotropic reduced susceptibilities versus tA ≡ T/TN for the
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FIG. 9. Anisotropic reduced magnetic susceptibilities χ̄‖ and χ̄⊥
vs reduced temperature tA for two different S values, two different fJ

values and for a fixed anisotropy parameter hA1 = 1/4, according to
Eqs. (79).

PM and AFM phases are summarized as

χ̄⊥ =
{ 1

1+hA1−fJ
(AFM, tA � 1)

1
(1+hA1)tA−fJ

(PM, tA � 1),
(79a)

χ̄‖ =
{ 1

τ ∗
A−(fJ +hA1) (AFM, tA � 1)

1
(1+hA1)tA−(fJ +hA1) (PM, tA � 1),

(79b)

χ‖(TN)

χ⊥(TN)
= 1 + hA1

1 − fJ

, (79c)

where

τ ∗
A = (S + 1)(1 + hA1)tA

3B ′
S(y0)

, (79d)

y0 = 3μ̄0

(S + 1)tA
, (79e)

μ̄0 = BS(y0). (79f)

In these reduced susceptibility units, χ̄⊥(tA) is independent
of S for all tA, and χ̄‖AFM(tA < 1) is dependent of S since τ ∗

A
depends on S. These features are illustrated in plots of χ̄⊥(tA)
and χ̄‖(tA) in Fig. 9 for S = 1/2 and 7/2 and for fJ = −1
and fJ = 0.5, all with a fixed value of the reduced anisotropy
parameter hA1 = 1/4. An important feature of the temperature
dependencies is that χ‖PM > χ⊥PM at tA � 1, but a crossover
occurs where χ‖AFM < χ⊥AFM at lower tA. From Eq. (79c),
as fJ increases algebraically towards its upper limit of unity
at a fixed value of hA1, the ratio χ‖(TN)/χ⊥(TN) increases, as
observed in Fig. 9.

VII. HIGH-FIELD PERPENDICULAR MAGNETIZATION
OF THE ANTIFERROMAGNETIC
AND PARAMAGNETIC PHASES

In this section, the “perpendicular” direction ⊥̂ of an applied
field H refers to a direction perpendicular to the easy axis (for
a collinear AFM) or plane (for a planar noncollinear AFM) of
the anisotropy field HA.

Collinear Antiferromagnet

Planar Noncollinear Antiferromagnet

H = 0
H

H
H = 0

FIG. 10. Influence on the generic magnetic structure due to a
high magnetic field applied perpendicular to the easy axis of a
collinear antiferromagnet (AFM) (top panel) and to the easy plane
of a planar noncollinear AFM (bottom panel). Hodographs of the
zero-field magnetic moment vectors are shown on the left. In high
fields as shown on the right, the AFM structures become canted
towards the field. The ordered moments of the collinear AFM are
now coplanar, whereas those of the noncollinear AFM now lie on
the surface of a cone with the axis of the cone along the magnetic
field axis as shown. At a sufficiently high field H = Hc⊥AFM given
by Eq. (83), the moments in either case become parallel to each other
and a second-order transition from the canted AFM to the PM state
occurs.

A. Antiferromagnetic phase

The χ⊥AFM(T � TN) for fields H⊥ → 0 was calculated
in Sec. VI A. Here we determine the magnetization in high
perpendicular magnetic fields for both collinear and planar
noncollinear AFMs at fields below the perpendicular critical
field Hc⊥AFM ≡ μ0(H = 0,T � TN)/χ⊥AFM. We find that
μ⊥AFM is proportional to H⊥ up to Hc⊥AFM with the same
T -independent slope χ⊥AFM as for H⊥ → 0 in Eq. (48b), and
that the ordered moment μ0(T ) is independent of H⊥ in the
AFM phase.

For collinear AFMs at high fields, the canted moments lie in
a plane defined by the initial parallel axis and the applied field
as shown in the top panel of Fig. 10. In contrast, for a planar
noncollinear structure at H = 0, in large fields the moments
in a hodograph lie on the surface of a cone with the tails of the
moment vectors at the apex and the axis of the cone along the
applied field axis as shown in the bottom panel of Fig. 10. We
can therefore treat both the collinear and planar noncollinear
cases simultaneously, where the anisotropy field is in the plane
perpendicular to the applied field as shown in Fig. 2.

From Fig. 2, the torque on 
μi due to a perpendicular field
H in Eq. (59) is the same as that due to HAi in Eq. (60) except
for the scalar prefactor and the opposite direction. Therefore
comparing Eqs. (59) and (60) one can include the influence of
HAi on the value of the induced moment μ⊥ by setting H =
H⊥ − HA0 cos θ in the expression setting the net torque equal
to zero in the absence of HA0 [4]. Then using the definitions
μ⊥ = μ cos θ, μ̄ = μ/(gSμB), and HA0 in terms of HA1 in
Eq. (31a) gives

μ⊥ = 1

TNJ − θpJ

[
C1H⊥ − C1

3HA1μ⊥
gS(S + 1)μB

]
, (80)
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where the single-spin Curie constant C1 is given in Eq. (A1b).
Solving for μ⊥ gives

μ⊥ = C1H⊥
TN − θpJ

, (81)

where to obtain this equation we used the expression for TN in
Eq. (36) and the definition of TA1 in Eq. (1d). Hence

μ⊥(T � TN) = χ⊥AFMH⊥ (μ⊥ � μ0),
(82)

χ⊥AFM = C1

TN − θpJ

,

where χ⊥AFM is seen to be the same as the zero-field
perpendicular susceptibility already obtained in Eq. (61),
which in turn is the same as χ⊥PM(TN) in Eq. (55b).

This independence of μ⊥/H⊥ with respect to H⊥ in the
AFM phase indicates that the magnitude μ of the moments
is independent H⊥ and in particular is equal to the zero-field
value, i.e., μ(T ) = μ0(T ). Thus the T -dependent critical field
Hc⊥AFM is given by the field at which μ⊥ = μ0(T ), i.e.,

Hc⊥AFM(T � TN) = μ0(T )

χ⊥AFM
. (83)

Using Eq. (3b) together with the variable definitions in
Eqs. (1), Eq. (82) gives

χ̄⊥AFM = 1

1 + hA1 − fJ

, (84)

which reproduces the first entry in Eqs. (79a). Using Eq. (3b),
one obtains

χ∗
⊥AFM = S + 1

3
χ̄⊥AFM = S + 1

3(1 + hA1 − fj )
. (85)

Then using the definition μ̄⊥ = χ∗
⊥AFMh⊥ from Eq. (3a) and

setting μ̄⊥ = μ̄0 yields the reduced critical field

hc⊥AFM(tA) =
[

3μ̄0(tA)

S + 1

]
(1 + hA1 − fJ ), (86)

where μ̄0(tA) is found by solving Eqs. (37) and μ̄0(tA � 1) =
0. The dependence of hc⊥AFM on tA is thus the same as that of
μ̄0 on tA shown above in Fig. 4. For given values of tA, hA1,
and fJ , hc⊥AFM(tA = 0) decreases with increasing spin S. At
tA = 0 one has μ̄0 = 1. Then Eq. (86) gives

hc⊥AFM(tA = 0) = 3(1 + hA1 − fJ )

S + 1
. (87)

B. Paramagnetic phase

The paramagnetic (PM) phase can be reached from the
AFM phase by increasing the field to H⊥ > Hc⊥AFM at T <

TN or by increasing the temperature to T > TN at H⊥ = 0.
In either case, the thermal-average moment induced by the
applied magnetic field H is in the direction of H if H is in
a principal axis direction as considered in this paper. In this
section, both H and the field-induced PM moment μ⊥ are in
the same ⊥̂ direction that is perpendicular to the easy axis of
a collinear AFM or to the easy plane of a planar noncollinear
AFM. Then according to Eq. (23a) and Fig. 1 or Eq. (27a) and
Fig. 2, respectively, the anisotropy field HA is zero in either

case. Therefore Eq. (A22) and the definitions of the reduced
variables in Eq. (1) immediately give

μ̄⊥PM = BS

[
3fJ TNJ μ̄⊥PM

(S + 1)T
+ gμBH⊥

kBT

]
(88)

= BS

[
3fJ μ̄⊥PM

(S + 1)t
+ h⊥

t

]
. (89)

Even though HA = 0 for the perpendicular moment orienta-
tion, one still has TN > TNJ if hA1 > 0. Therefore to compare
with experimental data we reexpress the reduced temperature
as t → (1 + hA1)tA using Eq. (1j), yielding

μ̄⊥PM = BS

{
1

1 + hA1

[
3fJ μ̄⊥PM

(S + 1)tA
+ h⊥

tA

]}
. (90)

The μ̄⊥PM for given values of hA1, fJ and tA is determined by
numerically solving Eq. (90).

The results for the two cases h⊥ � hc⊥AFM(tA) and h⊥ �
hc⊥AFM(tA) are summarized respectively as

μ̄⊥(h⊥)

=
{ (S+1)h⊥

3(1+hA1−fJ ) (AFM, h⊥ � hc⊥AFM)

BS

{
1

1+hA1

[ 3fJ μ̄⊥
(S+1)tA

+ h⊥
tA

]}
(PM, h⊥ � hc⊥AFM)

,

(91)

where hc⊥AFM is given in Eq. (86). Using Eqs. (91), the μ̄⊥
versus h⊥ curves for spin S = 1/2 and 7/2 with fJ = −1 at
four reduced temperatures and hA1 = 0 and 1/2 are plotted in
Fig. 11. A discontinuity in the slope of μ̄⊥ versus h⊥ is seen
at h⊥ = hc⊥AFM for each reduced temperature tA, reflecting a
second-order transition from the canted AFM to the PM phase.

VIII. HIGH-FIELD PARALLEL MAGNETIZATION
OF z-AXIS COLLINEAR ANTIFERROMAGNETS:

PARAMAGNETIC AND SPIN-FLOP PHASES

A. Introduction

When a collinear AFM is placed in a magnetic field parallel
to the easy axis (defined to be the z axis here), different
T -dependent behaviors can occur. A first-order spin flop (SF)
transition may occur from the AFM phase to a SF phase as
shown in the top panel of Fig. 12, where the orientations of the
ordered moments aligned along the z-axis flop with increasing
field to an approximately perpendicular canted perpendicular
orientation [12]. It is common to use the term “spin flop”
to denote both the magnetic phase and the magnetic phase
transition. Upon further increasing the field, a second-order
spin flop to paramagnetic (PM) phase transition occurs in
which all moments then point in the direction of the field.

The PM phase is sometimes called a “ferromagnetic phase”
in the literature because the magnetic structure of the field-
induced PM phase has ferromagnetic (FM) alignment of the
field-induced moments. However, we reserve the term “ferro-
magnetic phase” for a ferromagnetic structure that is caused by
the interactions between the moments in zero applied magnetic
field, not by the field. Indeed, a thermodynamic transition from
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FIG. 11. Reduced perpendicular moment μ̄⊥ ≡ μ⊥/μsat vs re-
duced perpendicular field h⊥ for spins S = 1/2 and S = 7/2 at
the reduced temperatures tA = T/TN indicated for parameters fJ =
−1 and reduced anisotropy fields (a) hA1 = 0 and (b) hA1 = 1/2,
according to Eqs. (91). Discontinuities in slope at fields hc⊥(T ) are
seen as the system undergoes second-order transitions from the canted
AFM state to the PM state with increasing field. The reduced critical
fields at tA = 0 for hA1 = 0 are hc⊥AFM = 4/3 and 4 for S = 7/2
and 1/2, respectively, and for hA1 = 1/2 are hc⊥AFM = 5/3 and
5 for S = 7/2 and 1/2, respectively. Both are in agreement with
Eq. (86).

a PM phase to a FM phase cannot occur versus T in finite H

because the FM order parameter (the net magnetization) is
never nonzero in a finite H at a finite T .

A first-order spin-flip transition may occur with increasing
field directly from the AFM phase to the PM phase if the
anisotropy field along the z axis is sufficiently strong, as shown
in the middle panel of Fig. 12. Within MFT, the magnitude
and direction of the initially antiparallel moment can also vary
smoothly with field, resulting eventually in a second-order
AFM to PM transition as shown in the bottom panel of
Fig. 12.

B. z-axis induced moment and free energy
of the paramagnetic (PM) phase

In this section, we change notation for the PM phase from
μ‖ to μzPM. The general high-field expression for the PM phase
was already obtained in Eq. (50). Utilizing Eqs. (1), Eq. (50)

AFM

Spin Flop PM

H

AFM PM
Spin Flip

AFM

PM

Collinear Antiferromagnets

Gradual Spin Flip

FIG. 12. Phase transitions that can potentially occur in collinear
antiferromagnets (AFM) when a magnetic field H is applied along
the easy axis. The magnitude H of the field increases from left to
right. The top panel shows a first-order spin-flop (SF) transition that
occurs from a collinear AFM structure to a SF phase at a SF field
HSF, which is a canted AFM structure. At higher fields, the angle
between the two sublattice magnetic moments goes continuously to
zero, corresponding to a second-order transition from the SF phase
to a paramagnetic (PM) phase at a critical field HcSF. Alternative
scenarios with increasing H include either a first-order spin-flip
transition directly from the AFM to the PM phase as shown in the
middle panel, or a continuous evolution (“gradual spin flip”) of the
AFM phase into the PM phase via a second-order phase transition as
illustrated in the bottom panel.

can be written in reduced variables as

μ̄zPM = BS(yPM),

yPM = 3(fJ + hA1)

(S + 1)t
μ̄zPM + hz

t

= 1

(1 + hA1)tA

[
3(fJ + hA1)

S + 1
μ̄zPM + hz

]
. (92)

When the reduced temperature is taken to be t , one can write

yPM = bz

t
, (93)

where the reduced magnetic induction bz seen by a represen-
tative spin is

bz = 3(fJ + hA1)

S + 1
μ̄zPM + hz. (94)

Shown in Fig. 13(a) are plots of μ̄zPM versus reduced field
hz obtained from Eqs. (92) for parameters fJ = −1 and hA1 =
1/2, each for spins S = 1/2 and 7/2, at reduced temperatures
t = T/TNJ as indicated. Perhaps unexpectedly, μ̄zPM for t →
0 is seen to be proportional to hz from hz = 0 to a critical
field hcPM at which μ̄zPM saturates to the value of unity and
continues to have that value at higher fields. The scale of the
abscissa is reduced by about a factor of 3 for S = 7/2 compared
to that for S = 1/2. However, the shapes of the plots for the two
spin values are very similar for the same reduced temperature.
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FIG. 13. Reduced z-axis moment μzPM/μsat of the paramagnetic
(PM) phase vs reduced field hz = gμBHz/kBTNJ for spins (a) S =
1/2 and (b) S = 7/2 at the indicated reduced temperatures t = T/TNJ

and for fJ = −1 and hA1 = 1/2, according to Eqs. (92).

In hz = 0, one sees from Fig. 13 that μ̄zPM = 0, so Eq. (20a)
gives the internal energy per spin as

Umag(hz = 0,t)

kBTNJ

= 0. (95)

Also, the PM phase in hz = 0 is completely disordered at all
temperatures, so the entropy per spin is

Smag(hz = 0,t)

kB
= ln(2S + 1). (96)

Thus the free energy in hz = 0 is given by Eq. (20d) as

Fmag(hz = 0,t)

kBTNJ

= −t ln(2S + 1). (97)

Now including the field dependence using Eq. (20e) gives

Fmag(hz,t)

kBTNJ

= −t ln(2S + 1) − S

∫ hz

0
μ̄z(hz,t)dhz. (98)

The reduced free energy is plotted versus hz for spins S = 1/2
and S = 7/2 in Fig. 14 with the same parameters as in Fig. 13,
obtained using Eq. (98).

FIG. 14. Reduced free energy Fmag/kBTNJ of the paramagnetic
(PM) phase vs reduced field hz for spins (a) S = 1/2 and (b) S = 7/2
at the indicated reduced temperatures t and for fJ = −1 and hA1 =
1/2, obtained using Eq. (98) and the data in Fig. 13.

C. Spin-flop phase of collinear antiferromagnets

1. Ordered moment in zero field

The magnetic structure and magnetic field orientation in
the spin-flop (SF) phase in the top panel of Fig. 12 with
nonzero anisotropy field HA along the easy axis are the same
as those used for calculation of the high-field perpendicular
magnetization in the Appendix for the case of zero anisotropy
field HA = 0. In that case we obtained Eq. (A38) in which
the reduced ordered moment μ̄ ≡ μ/μsat depends only on
t ≡ T/TNJ and not on the applied field H⊥ if H⊥ � Hc⊥.
Equation (A38) is identical to Eq. (A14) for determining μ̄0(t)
for H = HA = 0. Similarly, in the spin-flop phase, H and HA

are in the same direction perpendicular to the H = 0 AFM
ordering plane and hence the ordered moment again cannot
depend on Hz or HA and is therefore given by the same
Eqs. (A38) and (A14). We have confirmed this conclusion
from detailed numerical exact-diagonalization calculations in
Sec. VIII C 2b below. Thus Eq. (A38) in the case of the SF
phase reads

μ̄SF = BS

[
3μ̄SF

(S + 1)t

]
(99a)

= BS

[
3μ̄SF

(S + 1)(1 + hA1)tA

]
, (99b)
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FIG. 15. Reduced ordered moment μ̄SF = μSF/μsat of the spin-
flop phase vs reduced temperature tA for spins S = 1/2, 3/2, and 7/2
with hA1 = 1/3, calculated from Eq. (99b). The ordered moment of
the SF phase does not depend on fJ or on applied field for hz � hcSF.

where to obtain the second equality we used Eq. (1j). The
ordered moment in the SF phase goes to zero at a temperature
TNJ below the Néel temperature TN, as shown in Fig. 15
for spins S = 1/2, 3/2, and 7/2 with hA1 = 1/3 for which
TNJ /TN = 3/4 according to Eq. (1i). This feature is critically
important to the construction of the phase diagrams in the hz-tA
plane that are presented in Fig. 32 below.

The total derivative of μ̄SF with respect to reduced tem-
perature tA is obtained by substituting t → (1 + hA1)tA from
Eq. (1j) into Eq. (A15), yielding

dμ̄SF

dtA
= − μ̄SF

tA
[ (S+1)(1+hA1)tA

3B ′
S (yA) − 1

] , (100a)

where

yA = 3μ̄SF

(S + 1)(1 + hA1)tA
, (100b)

μ̄SF(tA) is obtained by numerically solving Eq. (99b) and the
BS(yA) and B ′

S(yA) functions are given in Eqs. (A11). For
hA1 = 0, Eq. (100a) reduces to Eq. (A15) (with tA = t), as
required.

2. Magnetization versus z-axis field

The magnetic susceptibility χzSF along the easy z axis of
the SF phase shown in the top panel of Fig. 12 is not the same
as χ⊥ of the AFM phase in Eq. (61) obtained when the applied
field is perpendicular to the easy axis or plane as in Fig. 10. The
reason for this difference is that when the applied field is along
the z axis in the SF phase, this field and the anisotropy field
are in the same direction for all magnetic moments, whereas
in the AFM case the anisotropy field lies within the xy plane
and hence these two fields are perpendicular to each other.
Thus the reduced critical field for the spin flop phase hcSF, at
which the ordered moments become parallel to the field with
increasing field, is smaller than hc⊥AFM of the AFM phase in
a perpendicular field in the presence of an anisotropy field.

a. Torque calculation. To calculate the z-axis suscepti-
bility of the SF phase, we use a similar calculation as in
Sec. VII A, but with the replacement

H⊥ → Hz + HA = Hz + 3HA1μ̄SF cos θ

S + 1
, (101)

where we have used Eqs. (23a) and (31a) to express HA in
terms of HA1 and have set θi → θ and μ̄i , μ̄ → μ̄SF. Inserting
this expression into Eq. (A30) gives

3kB

S + 1
(TNJ − θpJ )μ̄SF cos θ = gμBHz + 3gμBHA1μ̄SF cos θ

S + 1
.

(102)

Then solving for μ̄zSF = μ̄SF cos θ gives

μ̄zSF = (S + 1)hz

3(1 − fJ − hA1)
, (103a)

or hz = 3(1 − fJ − hA1)

S + 1
μ̄zSF, (103b)

where we used TNJ − θpJ = TNJ (1 − fJ ), the reduced
anisotropy field hA1 was defined in Eq. (1i), and similarly
for the reduced applied field hz. Thus μ̄z ∝ hz in the SF phase.
Since μ̄z � 0, the maximum physical range of hA1 is

0 � hA1 < 1 − fJ . (104)

The reduced susceptibilities defined in Eqs. (3a) and (3b) are
then

χzSF∗ = S + 1

3(1 − fJ − hA1)
, (105)

χ̄zSF = 1

1 − fJ − hA1
. (106)

One sees by comparison with Eq. (84) that χ̄zSF > χ̄⊥AFM. This
inequality was qualitatively explained previously by Buschow
and de Boer [13].

b. Alternate Hamiltonian diagonalization calculation. In
this section, we give an alternative derivation of the field-
induced moment of the SF phase. The energy Ei of a
representative spin i in a magnetic induction Bi is

Ei = −
μi · Bi = gμBS · Bi , (107)

where in the second equality we used the expression for the
magnetic moment operator


μ = −gμBS, (108)

the negative sign comes from the negative charge on the
electron, and S is the spin operator. As usual, we normalize all
energies by kBTNJ , so Eq. (107) becomes

ε ≡ Ei

kBTNJ

= S · bi , (109)

where the reduced induction bi is defined as in Eq. (1c), and
bi is the sum of the reduced applied, anisotropy, and exchange
fields.

Using Eqs. (A3), (A6), (A27), and (107), the exchange part
of the reduced Hamiltonian for Si , assumed without loss of
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generality to lie in the xz plane, is

Hexchi

kBTNJ

= 3μ̄SF

S + 1
(Sx sin θ + fJ Sz cos θ )

= 3

S + 1
(Sxμ̄xSF + fJ Szμ̄zSF), (110a)

where we used the relations μ̄SF = μSF/gμBS, μ̄xSF =
μ̄SF sin θ , and μ̄zSF = μ̄SF cos θ , and μSF is the magnitude
of the ordered moment of each spin. Here, Sx is the usual
combination of raising and lowering operators Sx = (S+ +
S−)/2 and Sz is diagonal in the |S,Sz〉 Hilbert space. Similarly,
the parts of the Hamiltonian for the anisotropy and applied
fields are

HAi

kBTNJ

= 3hA1

S + 1
μ̄zSz, (110b)

HHi

kBTNJ

= Szhz. (110c)

We thereby obtain the total reduced Hamiltonian

H
kBTNJ

=
(

3μ̄xSF

S + 1

)
Sx +

[(
3μ̄zSF

S + 1

)
(fJ + hA1) + hz

]
Sz

≡ bxSx + bzSz, (111a)

where

bx = 3μ̄xSF

S + 1
, bz =

(
3μ̄zSF

S + 1

)
(fJ + hA1) + hz. (111b)

The reduced magnetic moment operators for reduced eigenen-
ergies εn = En/kBTNJ with n = 1 to 2S + 1 are [4]

μ̄op
x = − 1

S

∂εn

∂bx

∣∣∣∣
bx=3μ̄x/(S+1)

, (112a)

μ̄op
z = − 1

S

∂εn

∂bz

∣∣∣∣
bz=[3μ̄z/(S+1)](fJ +hA1)+hz

. (112b)

Then the thermal-average reduced moments μ̄xSF and μ̄zSF

for the SF phase are calculated by solving the simultaneous
equations

μ̄xSF = 1

ZS

2S+1∑
n=1

μ̄op
x e−εn/t ,

(113a)

μ̄zSF = 1

ZS

2S+1∑
n=1

μ̄op
z e−εn/t ,

where the partition function is

ZS =
2S+1∑
n=1

e−εn/t , (113b)

the reduced magnitude of the ordered moment is

μ̄SF =
√

μ̄2
xSF + μ̄2

zSF, (113c)

and in this section we use the reduced temperature t ≡ T/TNJ .
The two Eqs. (113a) are solved iteratively for μ̄xSF and μ̄zSF

for each desired combination of fJ , hA1, hz, and t for a fixed
spin S [4].

FIG. 16. Reduced induced moment per spin μ̄z ≡ μz/μsat for the
low-field spin-flop (SF) and high-field paramagnetic (PM) phases of
a collinear or planar noncollinear antiferromagnet vs reduced field
hz for reduced anisotropy field hA1 = 1/2 and fJ = −1 at reduced
temperatures t = T/TNJ from 0.05 to 0.95 for spins (a) S = 1/2,
(b) 2, and (c) 7/2 calculated using Eqs. (113). The SF and PM field
ranges are separated by a break in slope in μ̄z versus hz at the reduced
critical field hz = hcSF(t) in Eq. (114). Note the different abscissa
scales in (a)–(c).

Calculations of μ̄zSF versus hz isotherms at many t values
obtained using Eqs. (113) are shown in Fig. 16 for spins
S = 1/2, 2, and 7/2 with fJ = −1 and hA1 = 1/2, where
the data for the PM phase at hz � hcSF (below) are obtained
automatically. These results agree with what would have been
obtained from the results in the previous section based on
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torque calculations. We also find that the magnitude of the
reduced ordered moment μ̄SF is independent of hz for the SF
phase (over the proportional part of the μ̄z versus hz isotherm)
at each temperature.

3. Critical field

The critical field HcSF of the spin flop phase is defined as
the value of the applied field Hz at which all the magnetic
moments become aligned with the field, as in the right-hand
side of the top panel of Fig. 12. Since μzSF/Hz is independent
of Hz within the SF phase, this criterion and Eq. (103a) gives
the reduced critical field

hcSF = 3(1 − fJ − hA1)

S + 1
μ̄SF, (114)

where μ̄SF versus t or tA is obtained by solving the first or
second of Eqs. (99), respectively. The hcSF is dependent on
temperature because μ̄SF is. Since 0 � μ̄SF � 1, the physically
relevant range for positive hcSF is

0 � hcSF � 3(1 − fJ − hA1)

S + 1
. (115)

For hz � hcSF, the system is in the PM phase with all induced
moments having the same magnitude μ̄zPM and pointing in the
direction of H.

Shown in Fig. 17 are plots of hcSF versus tA for fJ = −1
and spins S = 1/2 and 7/2, each with anisotropy parameters
hA1 = 0 to 1. The shapes of the curves are noticeably different
for the two spin values. One also sees that the critical fields are
much smaller for S = 7/2 than for S = 1/2, consistent with
Eq. (114).

4. Spin-flop and paramagnetic phase magnetization summary

To summarize, the field dependencies of the magnetization
for the low-field SF and high-field PM phases are given by
Eqs. (103a) and (92), respectively, as

μ̄zSF = μ̄z = (S + 1)hz

3(1 − fJ − hA1)
(hz � hcSF), (116a)

μ̄zPM = BS(yPM), (116b)

yPM = 1

(1 + hA1)tA

[
3(fJ + hA1)

S + 1
μ̄zPM + hz

]
(h � hcSF),

where hcSF is given in Eq. (114) and μ̄SF is obtained by solving
Eq. (99b). Note that the slope of μ̄zSF versus hz for the SF
phase in Eq. (116a) depends on S, fJ , and hA1, and not on the
temperature. The temperature only determines the maximum
field at which the proportionality occurs.

The reduced z-axis moment of the SF phase μ̄zSF is plotted
versus the reduced field hz in Fig. 18 for tA = 1/2 and for
S = 1/2 and 7/2 with hA1 = 0 to 1. The low-field SF portion
is proportional to hz but then undergoes a second-order phase
transition via a slope reduction to the PM state for which μ̄zSF

exhibits negative curvature. For hA1 = 1, only the PM phase
occurs for both spin values, as seen in Fig. 18, because one
can show that hcSF = 0 for any S if fJ = −1, tA = 0.5, and
hA1 = 0.5, as illustrated in Fig. 17 for S = 1/2 and 7/2. It is
important to note here that tA is not proportional to the absolute

FIG. 17. Reduced critical field hcSF for the spin-flop phase of a
collinear antiferromagnet vs reduced temperature tA with fJ = −1
and hA1 = 0 to 1 for spins (a) S = 1/2 and (b) 7/2, calculated using
Eq. (114).

temperature, since it depends on hA1 according to the formula
in the figures. Therefore, in Fig. 19, the same quantities are
plotted as in Fig. 18, but where the reduced temperature
t = T/TNJ , proportional to the absolute temperature T , is
fixed to the same value of 1/2. Qualitative differences are
seen between the two figures.

5. Internal energy versus temperature

We established in Sec. VIII C 2 that the ordered moment
μ̄SF is independent of field within the SF phase, i.e., for 0 �
hz � hcSF(t). For hz = 0, the ordered moments are oriented in
the xy plane for which the anisotropy field is zero as inferred
from Eq. (23) and Fig. 3(b). Hence the magnetic induction
seen by a spin is identical to that of a spin in an AFM in zero
applied and anisotropy fields, and therefore the internal energy
per spin is given by Eq. (A17) or by Eq. (40c) with hA1 = 0,
i.e.,

Umag

kBTNJ

= − 3S

2(S + 1)
μ̄2

0, (117)
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FIG. 18. Reduced ordered moment μ̄z ≡ μz/μsat vs reduced
field hz for the spin-flop (SF) and subsequent paramagnetic (PM)
phases of a collinear or planar noncollinear antiferromagnet at
reduced temperature tA = T/TN = t(1 + hA1) = 1/2 with fJ = −1
and hA1 = 0 to 1 for spins (a) S = 1/2 and (b) 7/2, calculated using
Eqs. (114) and (116). The SF and PM ranges are separated by a break
in slope in μz/μsat vs hz at hz = hcSF. However, the curve in each of
(a) and (b) with hA1 = 1 is paramagnetic over the full field ranges
shown.

where μ̄0(t) is obtained by solving Eq. (A14). At t = 0, one
has μ̄0 = 1, yielding

Umag(hz � hcSF,t = 0)

kBTNJ

= − 3S

2(S + 1)
. (118)

Shown in Fig. 20 are plots of Umag/kBTNJ versus t for
spins S = 1/2 to 7/2 in half-integer increments. The internal
energy for all spin values goes to zero at the same temperature
T = TNJ because μ̄0 does. One also sees that Eq. (118) is
satisfied for all spin values.

6. Free energy

The free energy Fmag is calculated from Eqs. (20) using
Eq. (117) and Umag data such as in Fig. 20 and μ̄z(hz,t) data
such as illustrated in Figs. 16 and 19. Plots of Fmag/kBTNJ

versus hz at fixed values of t = T/TNJ from 0.05 to 1 for
spins S = 1/2 and 7/2 are shown in Fig. 21. Because the free
energy in Eq. (20e) is derived from an integral of μ̄z(hz,t)
over hz, the second-order transitions between the SF and PM

FIG. 19. Same as Fig. 18, except that the reduced temperature
t = T/TNJ is fixed at the value of 1/2 instead of tA = T/TN = 1/2.
The plots are different than in Fig. 18 because TN depends on hA1.

states at hz = hcSF are not obvious from the figure. The value
of hcSF(t = 0) for each spin value is given in the respective
panel.

FIG. 20. Internal energy per spin Umag normalized by kBTNJ vs
reduced temperature t for the spin-flop phase with spins S = 1/2 to
7/2, obtained from Eq. (117). Umag is independent of field in the field
range of stability of the SF phase with respect to the PM phase, given
by 0 � hz � hcSF, where hcSF is given in Eq. (114).
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FIG. 21. Reduced magnetic free energy per spin Fmag/kBTNJ for
the low-field spin-flop (SF) and high-field paramagnetic (PM) phases
of a collinear or planar noncollinear antiferromagnet vs reduced
field hz for reduced anisotropy parameter hA1 = 1/2 and fJ = −1
at reduced temperatures t = T/TNJ from 0.05 to 0.95 for spins (a)
S = 1/2 and (b) 7/2, calculated using Eqs. (20e), (116), and (117)
together with μ̄z(hz,t) data such as in Figs. 16 and 19. Note the
different axis scales for the two panels. The second-order phase
transitions from the SF to the PM phase occur at hz = hcSF(t) in
Eq. (114) and Fig. 17 and are not obvious in either panel. The
respective value of hcSF(t = 0) [the upper limit of hcSF(t)] is shown
in each panel.

IX. HIGH-FIELD PARALLEL MAGNETIZATION
OF z-AXIS COLLINEAR ANTIFERROMAGNETS:

ANTIFERROMAGNETIC PHASE

Here we consider the general behavior of a collinear AFM
where the field is applied along the easy z axis of the AFM
structure at finite temperatures. By definition, in the collinear
AFM phase the ordered moments are always aligned along the
z axis.

A. Preliminaries

When the magnetization along the easy axis of a collinear
AFM becomes nonlinear in finite fields, one must define two
different sublattices 1 and 2 because in general the magnitudes
of the ordered moments parallel and antiparallel to the applied
field H are different by amounts greater than infinitesimal.
Sublattice 1 is defined to consist of all moments that are

parallel to H and sublattice 2 consists of the moments that
are antiparallel to H when Hz = 0. When Hz increases, the
magnitudes of the z-components μ1z and μ2z are in general
not the same, which gives a net uniform magnetization in
the direction of the field. However, within the unified MFT
we do not require the two sublattices to be bipartite, where
the exchange interactions only connect spins of one sublattice
with those on the other. The exchange interactions can connect
further neighbors and can be nonfrustrating and/or frustrating
for AFM order. An anisotropy field along the uniaxial z axis
is present, as shown in Fig. 1.

For moments 
μi and 
μj on the same (“s”) sublattice of a
collinear AFM structure, as defined above, the angle between
the moments is φji = 0 in Eq. (A3) and for a pair of moments
on different (“d”) sublattices, the angle between them in Hz =
0 is φji = 180◦. We then write the expressions (A6a) and (A6b)
for TNJ and θpJ at Hz = 0 for the two-sublattice collinear
AFM, respectively, as

TNJ = −S(S + 1)

3kB

⎛
⎝∑

j

s
Jij −

∑
j

d
Jij

⎞
⎠, (119a)

θpJ = −S(S + 1)

3kB

⎛
⎝∑

j

s
Jij +

∑
j

d
Jij

⎞
⎠. (119b)

Solving these simultaneous equations for the two sums gives

∑
j

s
Jij = −3kB(TNJ + θpJ )

2S(S + 1)
= −3kBTNJ (1 + fJ )

2S(S + 1)
,

∑
j

d
Jij = 3kB(TNJ − θpJ )

2S(S + 1)
= 3kBTNJ (1 − fJ )

2S(S + 1)
,

(120)

where fJ ≡ θpJ /TNJ is defined in Eq. (A7). We emphasize
that TNJ , θpJ , and fJ are defined, even in the presence of the
anisotropy field, only in terms of the exchange constants and
magnetic structure by the above equations, whereas TN and θp

are the actual Néel and Weiss temperatures in the presence of
a uniaxial anisotropy field and zero or infinitesimal magnetic
field that are both aligned along the easy z axis.

In the following, we parametrize the high-field magneti-
zation using the variables fJ , which only depends on the
exchange constants and AFM structure, and the reduced
anisotropy field hA1 defined in Eq. (1e). This choice of vari-
ables allows one to separate the effects on the magnetization
due to the anisotropy field from those due to the exchange
interactions and AFM structure.

B. Exchange, anisotropy, and applied fields

For a collinear AFM in a parallel applied field Hz along
the easy z axis, only the z components of the moments and
the exchange fields are relevant. Using the definition μ̄iz ≡
μiz/μsat = μiz/(gSμB) for the two sublattices i = 1, 2, and
Eqs. (A3) and (120), the z component of the exchange field
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seen by each moment on sublattice 1 is

Hexch 1z = − 1

g2μ2
B

⎛
⎝μ1z

∑
j

s
Jij + μ2z

∑
j

d
Jij

⎞
⎠

= 3kBTNJ

2gμB(S + 1)
[μ̄1z(1 + fJ ) − μ̄2z(1 − fJ )].

(121a)

We express the magnetic fields in reduced form using Eq. (1c).
For the local exchange field seen by a spin in sublattice 1 in
Eq. (121a), the reduced field is

hexch 1z ≡ gμBHexch 1z

kBTNJ

= 3[μ̄1z(1 + fJ ) − μ̄2z(1 − fJ )]

2(S + 1)
.

(121b)

Similarly, the exchange field for a spin in sublattice 2 is

Hexch 2z = − 1

g2μ2
B

⎛
⎝μ1z

∑
j

d
Jij + μ2z

∑
j

s
Jij

⎞
⎠

= 3kBTNJ

2gμB(S + 1)
[−μ̄1z(1 − fJ ) + μ̄2z(1 + fJ )],

(122a)

yielding the reduced exchange field

hexch 2z ≡ gμBHexch 2z

kBTNJ

= 3[−μ̄1z(1 − fJ ) + μ̄2z(1 + fJ )]

2(S + 1)
.

(122b)

Using Eqs. (23b), (31a), (A20), and the expression μ̄i cos θ =
μ̄iz, one obtains the anisotropy field

HAiz = 3HA1

S + 1
μ̄iz, (123a)

yielding the reduced anisotropy field

hAiz ≡ gμBHAiz

kBTNJ

= 3hA1

S + 1
μ̄iz. (123b)

One also has the reduced applied field

hz ≡ gμBHz

kBTNJ

. (123c)

The total reduced local magnetic inductions seen by spins
in sublattices i = 1, 2 are then

biz ≡ gμBBiz

kBTNJ

= hexchiz + hAiz + hz. (124)

Inserting the above expressions for the components on the
right-hand side gives

b1z = 3[μ̄1z(1 + fJ + 2hA1) − μ̄2z(1 − fJ )]

2(S + 1)
+ hz, (125a)

b2z = 3[−μ̄1z(1 − fJ ) + μ̄2z(1 + fJ + 2hA1)]

2(S + 1)
+ hz.

(125b)

C. Coupled equations for the two sublattice magnetizations

The values of μ̄iz (i = 1, 2) versus H and T are governed
by separate Brillouin functions for the two sublattices as
in Eqs. (A10). One thus has two simultaneous consistency
relations

μ̄iz = BS

(
biz

t

)
(i = 1, 2). (126)

Substituting Eqs. (125) into (126) gives

μ̄1z = BS

{
3[μ̄1z(1 + fJ + 2hA1) − μ̄2z(1 − fJ )]

2(S + 1)t
+ hz

t

}
,

(127a)

μ̄2z = BS

{
3[−μ̄1z(1 − fJ ) + μ̄2z(1 + fJ + 2hA1)]

2(S + 1)t
+ hz

t

}
.

(127b)

When Hz = 0 and T � TN, one has μ̄2z = −μ̄1z and
Eqs. (127a) and (127b) each reduce to the same general
expression (37) for the ordered moment versus temperature,
as required. For the PM regime T � TN, μ̄1z = μ̄2z and
Eqs. (127a) and (127b) each reduce to the z-axis magnetic
moment of the PM state of the AFM given by Eqs. (92), as
also required.

D. Sublattice, average and staggered moments, and free energy
versus magnetic field, temperature, and anisotropy parameter

Two important quantities can be obtained from Eqs. (127)
from which the thermal-average sublattice magnetic moments
μ̄1z and μ̄2z versus temperature, magnetic field and anisotropy
parameter are calculated. The first is the net average magnetic
moment, normalized by the saturation moment, which is

μ̄z ave = μ̄1z + μ̄2z

2
. (128a)

This is the uniform magnetization along the easy axis mea-
sured in a conventional magnetometer. The second important
quantity is the AFM order parameter μ̄

†
z, which is the average

z-axis staggered moment in the z direction normalized by the
saturation moment, given by

μ̄†
z = μ̄1z − μ̄2z

2
. (128b)

By assumption μ̄1z � μ̄2z, so μ̄
†
z � 0. The spin system is in

the AFM phase when μ̄
†
z > 0 and is in the associated high-field

PM phase when μ̄
†
z = 0.

The potential phase transitions between collinear AFM and
PM states discussed below will be preempted if the free energy
of the AFM phase for some combination of t, hz, and hA1 is
higher than that of the SF phase, and conversely. Therefore
in this section we eventually determine the free energy of
the AFM phase versus temperature from the values of the
thermal-average moments μ̄1z and μ̄2z in the presence of the
anisotropy and applied fields for comparison with the free
energy of the SF phase found previously in Sec. VIII C 6.

Equations (127) were solved for μ̄1z and μ̄2z versus hz

for given values of S, t, fJ , and hA1 using an iterative
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FIG. 22. Ordered moments μ̄iz ≡ μiz/μsat (i = 1, 2) of the two magnetic sublattices along with the AFM order parameter μ̄†
z ≡ (μ̄1z −

μ̄2z)/2 and the average ordered moment μ̄z ave ≡ (μ̄1z + μ̄2z)/2 for spin S = 1/2, fJ = −1, and hA1 = 0, all vs the reduced applied magnetic
field hz along the easy z axis for reduced temperatures t ≡ T/TNJ of (a) 0.1, (b) 0.5, (c) 0.8, and (d) 0.95. The AFM regime is defined by the
region where μ̄†

z > 0, and the PM regime is defined by μ̄†
z = 0. The transition field between these two regimes is defined as the criticial field

hcAFM. Only second-order transitions are observed for 0 < tA < 1 with fJ = −1 and hA1 = 0.

procedure [4]. Starting with hz = 0, the initial value of μ̄1z

was set to 1 and μ̄2z solved for. Then for that value of μ̄2z, μ̄1z

was solved for. These steps were iterated until the differences
in μ̄1z,2z between subsequent iterations were each less than
10−10. Typically, the number of iterations needed was less
than 10, but occasionally up to ∼104 iterations were needed
when approaching a phase transition. Once μ̄1z and μ̄2z were
determined, μ̄zave = (μ̄1z + μ̄2z)/2 and μ̄

†
z = (μ̄1z − μ̄2z)/2

were determined. This sequence was repeated for the next
value of hz, where the starting value of μ̄1z was the final value
from the previous value of hz.

Shown in Figs. 22 and 23 are plots of μ̄1z, μ̄2z, μ̄zave, and
μ̄
†
z versus hz for fJ = −1, hA1 = 0, t = 0.1, 0.5, 0.8, and 0.95

for spins S = 1/2 and 7/2, respectively. The data versus hz for
S = 1/2 and S = 7/2 have similar evolutions of the shapes on
decreasing temperature, but the abscissa ranges for S = 7/2
are a factor of three smaller than for S = 1/2. Qualitative plots
of μ̄iz(i = 1, 2) similar to those in Figs. 22 and 23 were shown
in Fig. 11 of Ref. [14]. The boundary between the AFM and PM
states occurs with increasing field when μ̄

†
z → 0+. We denote

this reduced critical field by hc AFM. Thus for hz � hc AFM, one
has μ̄1z = μ̄2z and μ̄

†
z = 0. Second-order transitions at hc AFM

are observed for the full temperature range 0 < tA � 1 for
fJ = −1 and hA1 = 0.

First-order transitions between the AFM and PM phases
can occur over a range of low temperatures ending at a
tricritical point temperature above which the transitions are
second-order. For example, we changed fJ from −1 to the
value of −1/4 while leaving hA1 = 0 as in Fig. 22. Numerical
solutions for μ̄iz (i = 1, 2), μ̄

†
z and μ̄z ave are plotted versus hz

in Fig. 24 for reduced temperatures tA = 0.1, 0.5, 0.8, and 0.95.
At high T , the AFM to PM transitions are seen to be second
order. However, at t = 0.5 and 0.1, the transitions are strongly
and weakly first order, respectively, where a discontinuous
change in the AFM order parameter μ̄

†
z occurs at the transition.

We carried out additional calculations of μ̄
†
z and μ̄zave

versus hz and reduced temperature t = T/TNJ . Plots of μ̄zave

versus hz for spin S = 1/2 and fJ = −1 for t = 0.05 to
0.95 for reduced anisotropy fields hA1 = 1/4, 1/2, 3/4, and
1 calculated using Eqs. (127) are shown in Fig. 25. One sees
a clear evolution from first-order to second-order transitions
with increasing temperature. The values of the AFM critical
field hcAFM were determined from Fig. 25 as the value of hz

at which μ̄† → 0 with increasing hz. Second-order transitions
are characterized by a continuous change for μ̄† → 0, whereas
a first-order transition shows a discontinuous change as noted
above. After converting t to tA using Eq. (1j), plots of the
resulting hcAFM versus tA are shown in Fig. 26 for S =
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FIG. 23. Same as Fig. 22 except for spin S = 7/2. Note the factor of three difference in the abscissa scale between this figure and that one.

1/2, fJ = −1, and hA1 values from 0 to 1. The first-order
transition data are represented by solid red curves, and the
second-order data by solid curves connecting data points of
different colors. These plots are not phase diagrams, which
are given in Fig. 32 below for the same values of hA1 as in
Fig. 25 and also for hA1 = 0 and 1/8.

E. Magnetic free energy

Once μ̄zave is determined as described above, the reduced
magnetic free energy of the AFM phase FmagAFM/kBTNJ is
calculated versus t, hz, and hA1 using Eqs. (20). Plots of
FmagAFM/kBTNJ versus hz for fJ = −1, S = 1/2 and reduced
temperatures t from 0.05 to 0.95 are shown for reduced
anisotropy fields hA1 = 1/4 to 1 in Fig. 27. One sees that at low
temperatures for each value of hA1, FmagAFM/kBTNJ shows a
discontinuity in slope at the respective hcAFM corresponding
to the first-order discontinuity in μ̄z in Fig. 25, whereas at the
higher temperatures FmagAFM/kBTNJ varies smoothly through
hcAFM, corresponding to a second-order transition in μ̄z, as
quantified in Fig. 26.

X. PHASE DIAGRAMS

The phase diagrams discussed here are those with the
anisotropy field oriented along the z axis as in Fig. 1, for which
the ground state in hz = 0 is a collinear AFM aligned along that
axis, and with a reduced external field hz in the +z direction.
We first discuss the zero-temperature properties and phase
diagrams of Heisenberg systems with classical anisotropy

fields and then extend the discussion to finite-temperature
phase diagrams. Because phase diagrams for S = 1/2 are not
relevant when uniaxial quantum DS2

z anisotropy is present
in Heisenberg spin systems [4], here we emphasize phase
diagrams for this spin value.

A. Zero-temperature phase diagrams
and magnetizations versus field

The zero-temperature properties and phase diagrams are
determined from the relative free energies of SF and AFM
phases and their dependencies on the parameters S, fJ , hA1,
and hz. The PM phase appears at and above the critical field
of the phase with the lower free energy.

1. Spin-flop phase

For t → 0, the entropy of the SF phase in Hz = 0 is zero
due to the nondegenerate ground state arising from the nonzero
exchange field, so Eqs. (20) yield

FmagSF(hz = 0,t → 0)

kBTNJ

= UmagSF(hz = 0,t → 0)

kBTNJ

− S

∫ hz

0
μ̄zSF(hz,t → 0)dhz.

(129a)
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FIG. 24. Same as Fig. 22 except that here fJ = −1/4. The data for t = 0.1 show strongly first-order transitions, for t = 0.5 weakly
first-order transitions, and second-order transitions for t = 0.8 and 0.95.

Equation (118) gives the first term as

UmagSF(hz = 0,t → 0)

kBTNJ

= − 3S

2(S + 1)
, (129b)

and Eqs. (116) give

μ̄zSF(hz,t → 0) =
{
hz/hcSF (hz � hcSF)

1 (hz � hcSF)
, (129c)

where Eq. (114) gives the SF critical field as

hcSF(t → 0) = 3(1 − fJ − hA1)

S + 1
(129d)

using μ̄SF = 1 for t → 0. Thus Eq. (20e) gives the normalized
free energy of the SF phase versus hz for t → 0 as

FmagSF(hz,t → 0)

kBTNJ

=
⎧⎨
⎩− 3S

2(S+1) − S
h2

z

2hcSF
(hz � hcSF)

− 3S
2(S+1) − S

[
hcSF

2 + (hz − hcSF)
]

(hz � hcSF).

(130)

2. Antiferromagnetic phase

For the AFM phase at t → 0, the moments cannot respond
to the field without a spin-flip transition to the PM phase.
Also, the entropy is zero at t → 0 because the ground state
is nondegenerate on account of the presence of the exchange

and anisotropy fields. Thus using Eq. (40c) with μ̄0 = 1, the
reduced free energy per spin is

FmagAFM(hz,t → 0)

kBTNJ

= UmagAFM(hz,t → 0)

kBTNJ

= −3S(1 + hA1)

2(S + 1)
(hz � hcAFM). (131)

Thus if hA1 = hz = 0, the free energies of the SF and AFM
phases in Eqs. (130) and (131), respectively, are the same, as
required. The AFM critical field hcAFM, at which μ̄2z = −1
flips to the PM state with μ̄2z = μ̄1z = +1 with increasing hz,
is determined next.

The spin-flip field to the PM state (the t = 0 AFM critical
field hcAFM) is determined by the conditions under which μ̄†

in Eq. (128b) goes to zero with increasing hz. This was carried
out by solving Eqs. (127b) at t = 0.01 for various values of
S, hA1 > 0 and −1 � fJ < 1. In this way, we obtain

hcAFM = 3(1 + hA1)

S + 1
(t → 0, − 1 � fJ < 1), (132)

which is independent of fJ in the given fJ range. This
expression is in agreement with our numerical data for the
AFM to PM spin-flip transition field at t → 0 obtained from
numerical calculations such as the extrapolations to t = 0
in Fig. 26 above for S = 1/2, fJ = −1, and various values
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FIG. 25. Reduced average z-axis moment per spin μ̄zave ≡ μzave/μsat for the low-field AFM and high-field PM phases of a collinear
antiferromagnet versus reduced field hz for spin S = 1/2 and fJ = −1 at reduced temperatures t = T/TNJ as shown for reduced anisotropy
fields (a) hA1 = 1/4, (b) 1/2, (c) 3/4, and (d) 1 calculated using Eqs. (127) and (128a).

of hA1, and in the phase diagram in Fig. 32(f) below for
S = 1/2, fJ = −1, and hA1 = 1.

Using Eqs. (20) and (131), we obtain the field dependence
of the free energy per spin of the AFM phase (and high-field

FIG. 26. AFM critical field hcAFM vs reduced temperature tA for
S = 1/2 with fJ = −1 and hA1 from 0 to 1 as indicated. First-order
transition lines are in red without data points and second-order
transitions are in other colors with data points. A tricritical point
separates the first- and second-order transitions on the transition line
for each hA1 � 1/8.

PM phase) as

FmagAFM(t → 0)

kBTNJ

= −3S(1 + hA1)

2(S + 1)
(hz � hcAFM), (133)

FmagAFM(t → 0)

kBTNJ

= −3S(1 + hA1)

2(S + 1)
− S(hz − hcAFM)

(hz � hcAFM).

3. Comparison of the free energies of the spin-flop
and antiferromagnetic phases

Figure 28 illustrates the free energies Fmag per spin versus
reduced field hz of the SF and AFM phases (and their high-
field PM phases) for t → 0, given in Eqs. (130) and (133),
respectively, for fJ = −1 and anisotropy parameters hA1 = 0
to 1.5. For hA1 = 0, the lowest-energy phase for hz > 0 is the
SF phase. Upon increasing hA1, one sees an evolution where
the AFM phase is more stable at low fields, but transforms to
the SF phase at increasing values of hz, where the AFM to SF
phase transition is first order due to the discontinuity in slope
of Fmag versus hz at the transition point, which corresponds to
a discontinuity in the magnetization there.

Shown in Fig. 29 are zero-temperature phase diagrams in
the hz-hA1 plane for collinear z-axis AFMs with fJ = −1
and for spins S = 1/2 and S = 7/2, obtained by determining
which of the AFM and SF phases (and associated high-field
PM phases) has the lower free energy using Eqs. (130)
and (133). One sees that the phase diagrams are the same
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FIG. 27. Reduced magnetic free energy per spin Fmag/kBTNJ for the low-field AFM and high-field PM phases of a collinear antiferromagnet
vs reduced field hz for spin S = 1/2 and fJ = −1 at reduced temperatures t = T/TNJ as shown for reduced anisotropy fields (a) hA1 = 1/4,
(b) 1/2, (c) 3/4, and (d) 1 calculated using Eqs. (20) and data such as in Fig. 25.

for S = 1/2 and 7/2, apart from a reduction in ordinate scale
by a factor of three for S = 7/2 compared to that for S = 1/2.
For hA1 > 1, the AFM phase undergoes a spin-flip transition
directly to the PM phase with increasing hz, sidestepping the
intermediate SF phase.

The anisotropy parameter hA1 = 1 at which the hSF and hcSF

lines meet in Fig. 29 is a point where the SF and PM phases
are degenerate and hence PM, which occurs at the lower end
of a vertical line in the figure. The upper end of a vertical line
also corresponds to the PM phase. We thus infer that all points
along a vertical line correspond to a transition line between
the PM and AFM phases. Consistent with this, the region to
the immediate left of a vertical line is PM and to the right is
AFM. A first-order transition from the PM to the AFM phase
thus occurs on crossing a vertical line with increasing hA1.

The analytic behavior of the AFM-SF transition field hSF

for fJ = −1 such as in Fig. 29 in the region 0 � hA1 � 1 is
found to be

hSF = 3

S + 1

√
2hA1 − h2

A1. (134)

However, this expression is only valid for fJ = −1, which
corresponds to a bipartite AFM with only nearest-neighbor
exchange interactions of equal value. If fJ �= −1, we find

hSF = 3

S + 1

√
hA1(1 − fJ ) − h2

A1, (135)

0 < hA1 < (1 − fJ )/2, − 3 � fJ < 1,

where the upper hA1 limit is the maximum value for which
hSF < hcSF, the lower limit on fJ is obtained by requiring
hSF < hcAFM for the given hA1 range, and the upper limit on fJ

is required for any AFM, where the value fJ = 1 corresponds
to a FM rather than an AFM.

Thus the deviation of fJ ≡ θpJ /TNJ from the value of −1
usually assumed can have a very significant influence on the
variation of hSF with hA1 according to Eq. (135), a situation not
investigated previously to our knowledge. This is important in
view of the fact that within MFT one can have −∞ < fJ < 1
for AFMs. Indeed, most real AFMs are not bipartite with more
than nearest-neighbor interactions.

The reduced fundamental exchange parameter hA1 is
expressed in terms of the reduced exchange field hA0 at T = 0
using Eq. (31a), the t = 0 value μ̄i = 1, and the definition in
Eq. (1c) as

hA1 = S + 1

3
hA0. (136)

Inserting this into Eq. (134) gives

hSF =
√

2

(
S + 1

3

)
hA0 − h2

A0 . (137)

Now using Eq. (A13) for the exchange field together with
Eq. (1c) gives the reduced exchange field at T = 0 as

hexch0 = S + 1

3
. (138)
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FIG. 28. Reduced free energy Fmag/kBTNJ at reduced temperature t → 0 vs reduced magnetic field hz for collinear z-axis AFMs with spin
S = 1/2 and reduced anisotropy fields hA1 of (a) 0, (b) 1/4, (c) 1/2, (d) 3/4, (e) 1, and (f) 3/2. The phases in competition are the collinear
antiferromagnetic (AFM) and spin-flop (SF) phases. The PM phases occur above the respective critical fields of the AFM and SF phases as
listed. The data were calculated from Eqs. (130) and (133).

Substituting this into Eq. (137) gives

hSF =
√

2hexch0hA0 − h2
A0 . (139)

In terms of the unreduced fields, one has

HSF =
√

2Hexch0HA0 − H 2
A0 . (140)

This expression is identical to the standard equation for HSF

obtained using spin-wave theory assuming fJ = −1 [9]. A
more accurate expression obtained from Eq. (135) is

HSF =
√

Hexch0HA0(1 − fJ ) − H 2
A0 . (141)

As noted previously, fJ < 1 for an AFM.

4. Magnetization versus field

The magnetization of the SF phase is proportional to field
according to Eq. (103a), which at T = 0 reads

μ̄z = hz

hcSF
(hz � hcSF), (142)

where the spin-flop critical field is given by Eq. (114) with
μ̄SF = 1 at T = 0 as

hcSF = 3(1 − fJ − hA1)

S + 1
. (143)

According to Eqs. (135), if hA1 > (1 − fJ )/2 the AFM phase
undergoes a first-order transition with μ̄zave = 0 to the fully
saturated PM state with μ̄zave = 1 at the T = 0 transition field
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FIG. 29. Zero-temperature phase diagrams in the hz-hA1 plane
for collinear z-axis AFMs with fJ = −1 and for spins (a) S = 1/2
and (b) 7/2. The phases in competition are the collinear z-axis
antiferromagnetic (AFM) and canted spin-flop (SF) phases, with the
paramagnetic (PM) phase in each case above the respective critical
field hcAFM and hcSF. Note that the ordinate axes are different for the
two spin values. The transitions from AFM to PM and AFM to SF
are first order, and from SF to PM are second order. The vertical
transition lines separate the PM phase from the AFM phase, with a
first-order transition occurring upon traversing the lines horizontally.

hz = hcAFM in Eq. (132), whereas if hA1 < (1 − fJ )/2, the
AFM state instead has a first-order transition to the SF phase
at hSF until the SF phase saturates at hz = hcSF to μ̄z = 1 after
which it remains constant at μ̄z(hz) = 1. With these criteria,
the μ̄z(hz) behaviors were determined as shown in Fig. 30 for
S = 1/2, fJ = −1 and a range of hA1 values from 0.02 to 0.9
as shown. Changing the value of fJ results in no qualitative
change in the μ̄z versus hz plots, but where the corresponding
ranges of hA1 values and ordinate scales giving similar-looking
plots as in Fig. 30 are changed appropriately.

5. Perpendicular magnetic fields

When the applied field is perpendicular to the easy axis
or easy plane of a collinear or noncollinear AFM as shown
in Fig. 10, only one transition versus field occurs which is
a second-order transition from the canted AFM phase to the
PM phase at the perpendicular critical field hc⊥AFM given by

FIG. 30. Reduced z-axis moment μ̄z ≡ μz/μsat per spin vs
reduced field hz = gμBHz/kBTNJ for spins S = 1/2 at zero tem-
perature for anisotropy parameters hA1 as listed and fJ ≡ θpJ /TNJ =
−1.

FIG. 31. Zero-temperature phase diagrams in the h⊥-hA1 plane
for collinear z-axis AFMs with fJ = −1 to 0.5 and for spins (a)
S = 1/2 and (b) 7/2. The phases in competition are the canted
antiferromagnetic (AFM) and the paramagnetic (PM) phase that
occurs above the respective critical field hc⊥. The plots are drawn
according to Eq. (144). The ordinate axes are different for the two
spin values. The transitions from canted AFM to PM are second order.
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FIG. 32. Reduced parallel magnetic field hz vs reduced temperature tA phase diagrams for spin S = 1/2 and reduced anisotropy fields hA1

equal to (a) 0, (b) 1/8, (c) 1/4, (d) 1/2, (e) 3/4, and (f) 1 obtained from numerical calculations. The SF to PM transitions are second order and
the AFM to SF transitions are first order. The AFM to PM transitions can be second order [(a)–(d)], or both first and second orders in different
field ranges separated by a tricritical point [(e) and (f)]. The lines are guides to the eye.

Eq. (86) at T = 0 as

hc⊥AFM0 =
(

3

S + 1

)
(1 + hA1 − fJ ). (144)

The phase diagrams in the h⊥-hA1 plane for spins S = 1/2 and
7/2 are shown in Fig. 31, where the AFM-PM transition lines
vary linearly with hA1 for each value of S and fJ .

B. Field versus temperature phase diagrams for fields
along the easy axis of collinear antiferromagnets

In order to determine the phase diagrams in the field versus
temperature plane for given values of S, fJ , and hA1, one must
determine which of the AFM or SF phases and associated PM
phases have the lowest free energy at each temperature and
field for given values of S, hA1, and fJ using information such
as illustrated above in Figs. 21 and 27. The transitions from
the AFM to the SF phase are always first order. For transitions
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of the SF or AFM phase to the associated PM phase, the
transition field is determined as the field at which the angle
θ → 0 or μ

†
z → 0, respectively. First-order transitions have

discontinuities in these quantities on crossing a transition line.
Shown in Fig. 32 are the hz versus tA phase diagrams for

S = 1/2, fJ = −1, and six values of the reduced anisotropy
parameter hA1 from 0 to 1. The phase diagrams were initially
constructed versus t = T/TNJ but the abscissa was then
converted to tA = T/TN using Eq. (1j). The t = 0 transition
fields obtained from Fig. 29 are included in Fig. 32. For
hA1 = 0, the phase diagram contains no z-axis-aligned AFM
phase because for any finite field the ordered moments flop
to form a canted AFM phase, the spin-flop phase. Even a
rather small value hA1 = 1/8 gives rise to a SF phase in a
large area of the phase diagram in Fig. 32(b) and a bicritical
point appears where the AFM, SF, and PM phase lines meet.
With further increase of hA1, the SF phase region shrinks, as
shown for hA1 = 1/4, 1/2, and 3/4 in Figs. 32(c)–32(e). In
addition, for hA1 = 3/4, a tricritical point occurs at tA ≈ 0.56
separating second- and first-order AFM to PM transitions, as
shown. Finally, for hA1 = 1 in Fig. 32(f), the spin-flop region
disappears and the tricritical point moves to higher temperature
with respect to TN compared to that for hA1 = 3/4. We note
that in Fig. 32(e) for hA1 = 1, the T = 0 value of the AFM to
PM transition field is larger than for lower hA1 values at higher
temperatures, and is the same as the T = 0 value of the SF to
PM transition field for hA1 = 0 in Fig. 32(a).

In a spin-flop transition of an otherwise collinear antifer-
romagnet, the spins flop from alignment along the z axis to
what is generally thought to be an approximately perpendicular
orientation. An interesting question is how close to a θ = 90◦
angle the moments in the SF phase make with the z axis (θSF)
on the (first-order) transition line between the AFM and SF
phases. Shown in Fig. 33 are plots of θSF versus reduced
temperature tA for the parameters in the phase diagrams
in Figs. 32(b)–32(e). These data were obtained as part of
the calculations required to construct the phase diagrams in
Fig. 32. One sees rather strong dependencies of θSF on both tA
and the anisotropy parameter hA1. Futhermore, the maximum
angle of the moments from the z axis on the transition line
versus temperature depends strongly on hA1, varying from
only about 40◦ for hA1 = 3/4 to about 77◦ for hA1 = 1/8. Thus
when a spin-flop transition occurs, the angle that the moments
make with the z axis is generally not close to 90◦. According
to Fig. 33, this discrepancy increases with increasing hA1.

C. Magnetization versus field isotherms for fields along the easy
axis of collinear antiferromagnets

High-field magnetization versus field M(H ) isotherm mea-
surements are basic to characterizing the magnetic properties
of AFMs. Here we utilize the above information specifying
the conditions for phase transitions between the AFM, SF,
and PM phases with fields along the easy z axis to calculate
magnetization versus field data at particular temperatures
below the respective TN. These calculations allow direct
comparisons to experimental Mz(H ) data on single crystals.

For anisotropy parameter hA1 = 0, for the spin-flop phase
plots of μ̄zSF versus hz for a fixed temperature tA ≡ T/TN =
1/2 and a selection of anisotropy parameters hA1 = 0 to 1

FIG. 33. The angle θSF that the ordered moments in the spin-flop
phase make with the applied field along the z axis on the first-order
transition line between the AFM and SF phases in Fig. 32 vs reduced
temperature tA for the same reduced anisotropy parameters hA1 for
which the phase diagrams in Figs. 32(b)–32(e) were constructed.

were presented in Fig. 18 for spins S = 1/2 and 7/2, which
included both the SF and PM regimes. Plots of μ̄zSF versus hz

for fixed hA1 = 1/2 with different values of t = T/TNJ were
presented in Fig. 16 for S = 1/2, 2, and 7/2.

The behaviors of μ̄z versus hz for S = 1/2 and fJ = −1
were calculated for values of tA from ∼0.1 to 0.9 and hA1

values in the range 1/4 � hA1 � 1, including the influence of
phase transitions as applicable. The calculations are shown
in Fig. 34, where the first or second-order nature of the
phase transitions are reflected in the field dependence of the
magnetization.

D. Phase diagrams for fields perpendicular to the easy axis or
plane of collinear or planar noncollinear antiferromagnets

The critical field hc⊥AFM dividing the canted AFM from
the PM state of collinear or planar noncollinear AFMs
versus reduced anisotropy hA1 and fJ parameters for fields
perpendicular to the easy axis or plane of collinear or planar
noncollinear AFMs is given in Eq. (86). Plots of hc⊥AFM

versus tA are shown in Fig. 35 for the same values of hA1

for which the phase diagrams in Fig. 32 were constructed.
From a comparison of the two figures, one sees that for each
value of hA1 > 0, the hc⊥AFM(tA) value in Fig. 35 lies at a
higher field than the maximum transition field in Fig. 32 at the
same temperature.

XI. SUMMARY

The main purpose of this work is to enable an estimate
of the amount of uniaxial or planar anisotropy that exists in
an otherwise isotropic Heisenberg spin system to be made
from experimental magnetic susceptibility and/or high-field
magnetization data. The systems described contain identical
crystallographically equivalent spins. Another important goal
was to provide a classical description of magnetic anisotropy
of quantum S = 1/2 systems for which quantum uniaxial
DS2

z single-ion anisotropy is not applicable. In this paper, the
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FIG. 34. Reduced z-axis magnetic moment μ̄z ≡ μz/μsat vs reduced magnetic field hz = gμBHz/kBTNJ at the listed reduced temperatures
tA = T/TN for spins S = 1/2, fJ = −1 and with reduced anisotropy parameters hA1 equal to (a) 1/4, (b) 1/2, (c) 3/4, and (d) 1. The SF to
PM transitions are second order and the AFM to SF transitions are first order. The AFM to PM transitions can be second order [(a) and (b)], or
either first or second order in different field ranges separated by a tricritical point [(c) and (d)] (see the phase diagram in Fig. 32).

anisotropy is quantified by the fundamental reduced anisotropy
parameter hA1 in Eq. (1e), which depends on S and the
unreduced anisotropy field HA1, normalized by the Néel
temperature in the absence of anisotropy TNJ , but not on the

FIG. 35. Phase diagram in the reduced perpendicular field h⊥ vs
reduced temperature tA plane for easy-axis or easy-plane collinear or
planar noncollinear AFMs. Plots of data obtained using Eq. (86) are
shown for the same values of reduced anisotropy parameter hA1 for
which the phase diagrams in Fig. 32 were constructed.

temperature T . The T dependence of the anisotropy field is
included via the T dependence of the reduced ordered and/or
field-induced moment μ̄ in Eq. (31a). The present treatment
is strictly valid for local-moment antiferromagnets but not for
itinerant ones.

There are several ways to extract hA1 from experimental
data for single crystals of local-moment collinear antiferro-
magnets with uniaxial or planar anisotropy. Indeed, if one
has single-crystal low-field magnetic susceptibility versus
temperature data as well as high-field magnetization isotherm
data, this parameter is overdetermined and one can compare
the values obtained from analyses of the respective data sets.
Since g anisotropy is not included in the present treatment, the
single-spin Curie constant C1 in the Curie-Weiss law (A1) is
the same for fields parallel and perpendicular to the easy axis or
easy plane for the known value of S. However, g anisotropy for
the AFM and PM phases is easily accomplished by substituting
the appropriate values of gα for g in the expression for the
Curie constant if the values of gα are known from independent
measurements such as electron spin resonance.

A. Analysis of single-crystal magnetic susceptibility data

An easy way to determine hA1 is to measure the anisotropy
of the Weiss temperature θp in the Curie-Weiss law (A1) for
the paramagnetic susceptibility at T � TN of single crystals.
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Here we only consider uniaxial z-axis anisotropy, since xy-
plane anisotropy gives the same expression for hA1. From
Eqs. (48) and (51), respectively, the Weiss temperatures in the
Curie-Weiss law for the xy plane and z-axis field directions at
temperatures T � TN are

θpxy = θpJ , (145a)

θpz = θpJ + hA1TNJ , (145b)

so

θpz − θpxy = hA1TNJ . (146)

Then using Eq. (1i), one obtains

θpz − θpxy = hA1TN

1 + hA1
, (147)

which allows one to easily solve for hA1 from the two measured
Weiss temperatures and the measured Néel temperature TN.

Another parameter of the theory is fJ ≡ θpJ /TNJ , the
ratio of the Weiss and Néel temperatures due to exchange
interactions alone. This is not measurable directly but can be
derived as follows. Using Eqs. (1i) and (145a), one obtains

θpxy

TN
= θpJ

TNJ (1 + hA1)
= fJ

1 + hA1
, (148)

from which fJ can be obtained using hA1 from above.
Another expression useful for determining the values of hA1

and fJ for collinear z-axis AFMs is Eq. (79c), which gives

χz(TN)

χxy(TN)
= 1 + hA1

1 − fJ

. (149)

Thus any of the combinations of two of Eqs. (146), (148),
and (149) can be used to solve for hA1 and fJ . Self-consistency
can be checked by comparing the derived sets with each other,
and/or with values derived from high-field magnetization data
for collinear AFMs as described in the following section.

B. Analysis of high-field z-axis magnetization data

According to Figs. 4 and 15 for AFM and SF phases,
respectively, for T � 0.2 TN the zero-field reduced ordered
moment is nearly saturated at the value of unity, irrespective
of the spin value. It is this low-temperature range of collinear
antiferromagnets aligned along the z axis for which the
high-field behavior is examined in this section.

For hA1 > 0, according to Eq. (135) and Figs. 30 and 34(a)–
34(c), a spin-flop (SF) transition from the AFM phase to the
SF phase occurs at the reduced SF field

hSF = 3

S + 1

√
hA1(1 − fJ − hA1). (150)

This transition is easy to see in Mz(H ) isotherm measurements
because it is first order. In the SF phase, the magnetization
is proportional to field according to Eq. (129c), which we
reproduce here:

μ̄z(hz,t → 0) =
{
hz/hcSF (hz � hcSF)

1 (hz � hcSF),
(151a)

where the SF critical field at which the SF phase undergoes a
second-order transition to its PM phase is

hcSF = 3(1 − fJ − hA1)

S + 1
. (151b)

From Eqs. (150) and (151b), one has the ratio

hcSF

hSF
=

√
1 − fJ − hA1

hA1
. (152)

Thus if both hcSF and hSF can be measured at low temperatures,
an additional equation that does not involve the spin S is
available to solve for fJ and hA1.

For hz < hcSF, the reduced single-spin susceptibility χ̄zSF

for the spin-flop phase is given by Eq. (106) as

χ̄zSF ≡ χzSFTNJ

C1
= 1

1 − fJ − hA1
, (153)

where the single-spin Curie constant given in Eq. (A1b) is
assumed to be known from the fit of the high-temperature
susceptibility by the Curie-Weiss law, TNJ = TN/(1 + hA1)
from Eq. (1i) and χzSF is often measurable at fields above hSF

if the SF transition is observed.

C. Analysis of high-field perpendicular magnetization data

The present section discusses the magnetic response to
high fields applied perpendicular to the easy axis or plane
of a collinear or planar noncollinear antiferromagnet. The
reduced perpendicular susceptibility per spin χ̄⊥AFM is given
by Eq. (84) as

χ⊥AFMTNJ

C1
= 1

1 − fJ + hA1
. (154)

Comparing this equation with Eq. (153) shows that χ⊥AFM <

χzSF, with

χ⊥AFM

χzSF
= 1 − fJ − hA1

1 − fJ + hA1
. (155)

Finally, the critical field for the AFM to PM transition, if it
occurs instead of a transition to a SF phase, is given by Eq. (87)
as

hc⊥AFM = 3(1 − fJ + hA1)

S + 1
. (156)

This field is somewhat larger than hcSF in Eq. (151b), the
difference being

hc⊥AFM − hcSF = 3hA1

S + 1
. (157)

This expression is very useful because it does not contain fJ .
The drawback is that these two critical fields are often too large
to measure except for materials with low TN. Alternatively, the
ratio of the two critical fields is

hcSF

hc⊥AFM
= HcSF

Hc⊥AFM
= 1 − fJ − hA1

1 − fJ + hA1
. (158)

The right side is the inverse of the respective ratio of the
susceptibilities obtained from Eq. (155).
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D. Comparison of classical anisotropy with quantum DS2
z

anisotropy predictions

Finally, we compare the predictions of the present work
for TN and θp with those for quantum DS2

z anisotropy [4]. In
the present case, the Néel temperature is simply described by
Eq. (1i) as

TN = TNJ (1 + hA1), (159)

which is a linear function of hA1 irrespective of its value.
However, for −DS2

z anisotropy, where a positive sign of D

is defined such that z-axis collinear AFM ordering is favored
over xy-plane ordering, and with d ≡ D/kBTNJ , one obtains
a nonlinear dependence of TN on d. On the other hand, for
small d one obtains [4]

TN = TNJ

[
1 + d(2S − 1)(2S + 3)

15

]
. (160)

In contrast to Eq. (159), this linear dependence on d also
depends explicitly on S for S � 1. Comparison of Eqs. (159)
and (160) indicates that for weak anisotropy one can relate
the anisotropy parameters in the present classical anisotropy
model to that in the quantum −DS2

z model for S � 1 by

hA1 = d(2S − 1)(2S + 3)

15
. (161)

Similarly, the Weiss temperature in the Curie-Weiss law
with the field applied along the easy axis of a uniaxial
antiferromagnet is given by Eq. (51d) as

θp = θpJ + TNJ hA1. (162)

In the case of uniaxial DS2
z anisotropy, one also obtains a linear

dependence on d given by [4]

θp = θpJ + TNJ

d(2S − 1)(2S + 3)

15
, (163)

where here again the second term depends on S, is zero for
S = 1/2, and gives the same correspondence as in Eq. (161).
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APPENDIX: UNIFIED MOLECULAR-FIELD THEORY
IN THE ABSENCE OF ANISOTROPY

Here we review the properties of Heisenberg AFMs within
the context of the unified MFT [4–6] in the absence of any type
of anisotropy that are needed for the theoretical development
in the presence of classical anisotropy fields. All spins are
assumed to be identical and crystallographically equivalent.

1. Curie-Weiss law

The Curie-Weiss law for the magnetic susceptibility χα in
the paramagnetic (PM) state in the α principal-axis direction

at temperatures T � TN, where TN is Néel temperature
resulting from the combined influences of the anisotropy and
Heisenberg exhange interactions, is written for a representative
spin by

χα = C1

T − θpα

, (A1a)

where the Weiss temperature θpα depends in general on α,

C1 = g2S(S + 1)μ2
B

3kB
(A1b)

is the single-spin Curie constant, g is the spectroscopic
splitting factor (g factor), μB is the Bohr magneton and kB

is Boltzmann’s constant. For simplicity it is assumed in this
paper that the g factor is isotropic. For moments that are aligned
along a principal axis α, g can be replaced by a variable gα

in the respective equations. Here we consider isotropic Weiss
temperatures arising from exchange interactions only, denoted
as θpJ .

2. Exchange field

In MFT, one replaces the sum of the Heisenberg exchange
interactions acting on a representative central spin i by an
effective magnetic field called the Weiss molecular field or
“exchange field” Hexchi and treats it as an applied field where
the exchange energy Eexch i for spin i is

Eexch i = −
μi · Hexchi . (A2)

Taking into account the exchange interactions of 
μi with all
neighbors 
μj with which it interacts, the exchange field is
given in general by

Hexch i = − 1

g2μ2
B

∑
j

Jij 
μj , (A3)

where Jij is the Heisenberg exchange interaction between
spins i and j and a positive (negative) value corresponds to an
AFM (ferromagnetic FM) interaction. Since all magnetic mo-
ments are assumed to be identical and in crystallographically
equivalent positions in the lattice, each spin has the same local
exchange field in H = 0, irrespective of the orientation of the
spin with respect to those of the other spins in the system. The
component of Hexch i in the direction of 
μi is

Hexch i = μ̂i · Hexch i = − 1

g2μ2
B

∑
j

Jijμj cos αji, (A4)

where αji is the angle between 
μj and 
μi when H �= 0. If
H = 0 we denote these angles instead by φji .

In the ordered magnetic state in H = 0, the component of
the local Hexch i0 in the direction of 
μi , and also its magnitude,
is

Hexch0 = − μ0

g2μ2
B

∑
j

Jij cos φji, (A5)

where we dropped the subscript i because of the equivalence
of each moment in H = 0 and μ0 is the magnitude of the
T -dependent ordered moment in H = 0, which is the same for
all spins because of their crystallographic equivalence.
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3. Antiferromagnetic ordering

For H → 0, the AFM ordering temperature TNJ and the
Weiss temperature θpJ in the Curie-Weiss law (A1) due to
exchange interactions alone are respectively given by

TNJ = −S(S + 1)

3kB

∑
j

Jij cos φji, (A6a)

θpJ = −S(S + 1)

3kB

∑
j

Jij , (A6b)

where the sums are over all neighbors j of a given central
spin i, the subscript J on the left sides signifies that these
quantities arise from exchange interactions only, and φji is
the angle between moments j and i in the AFM structure at
T < TNJ with H = 0. The ratio fJ is defined as

fJ ≡ θpJ

TNJ

=
∑

j Jij∑
j Jij cos φji

, (A7)

where to obtain the second equality Eqs. (A6) were used. For
a FM, φji = 0 for all j , and hence fJ = 1. For AFMs, at least
one of the Jij must be positive (AFM interaction) and at least
one of the φji �= 0, leading to fJ < 1. Thus within MFT, for
AFM ordering one has

−∞ < fJ < 1. (A8)

By comparing Eqs. (A5) and (A6a), one can write the zero-
field exchange field Hexch0 seen by each magnetic moment 
μi0

as

Hexch i0 = 3kBTNJ 
μi0

g2μ2
BS(S + 1)

= TNJ

C1

μi0,

(A9)

Hexch0 = 3kBTNJ μ0

g2μ2
BS(S + 1)

= TNJ

C1
μ0,

where the single-spin Curie constant C1 is defined in Eq. (A1b).
Within MFT the thermal-average ordered and/or field-

induced magnetic moment 
μi is in the direction of its
local magnetic induction Bi = Hexchi + H. When a classical
anisotropy field is present, one adds HAi to this. The magnitude
μi of 
μi in that direction is determined using the Brillouin
function BS(y) according to the self-consistency requirement

μi = μsatBS(yi), (A10a)

where

yi = gμBBi

kBT
(A10b)

and Bi is the component of Bi in the direction of 
μi . Our
unconventional definition of the Brillouin function is [15]

BS(y) = 1

2S

{
(2S + 1) coth

[
(2S + 1)

y

2

]
− coth

(
y

2

)}
,

(A11a)

for which the lowest-order Taylor-series expansion about
y = 0 is

BS(y) = (S + 1)y

3
+ O(y3). (A11b)

The derivative of BS(y) is

B ′
S(y) ≡ dBS(y)

dy

= 1

4S

{
csch2

(
y

2

)
− (2S + 1)2csch2

[
(2S + 1)

y

2

]}
.

(A11c)

From Eq. (A11b), the lowest-order term of a Taylor-series
expansion of B ′

S(y) about y = 0 is

B ′
S(y) = S + 1

3
+ O(y2). (A11d)

We define the reduced temperature t and reduced zero-field
ordered moment μ̄0(t) in H = 0 as

t = T

TNJ

, (A12a)

μ̄0 = μ0

gSμB
, (A12b)

where the saturation moment μsat of each spin is

μsat = gSμB. (A12c)

Using Eq. (A12b), one can write the magnitude of the zero-
field exchange field in Eq. (A9) as

Hexch0 = 3kBTNJ μ̄0

gμB(S + 1)
. (A13)

For H = 0, with Bi = Hexch0 in Eq. (A13), Eq. (A10a) for
calculating the ordered moment versus T in H = 0 becomes

μ̄0 = BS(y0), with y0 = 3μ̄0

(S + 1)t
. (A14)

This zero-field expression is valid within MFT for a FM and
any type of AFM containing identical crystallographically
equivalent spins. The total derivative dμ̄0/dt is obtained from
Eq. (A14) as

dμ̄0

dt
= − μ̄0

t
[ (S+1)t

3B ′
S (y0) − 1

] , (A15)

where μ̄0(t) is obtained by numerically solving Eq. (A14) and
the BS(y) and B ′

S(y) functions are given in Eqs. (A11).

4. Internal energy and heat capacity for AFM
ordering in zero field

The internal energy per spin Umag in zero field is given for
any AFM containing identical crystallographically equivalent
spins by

Uexch0 = − 1
2μ0Hexch0, (A16)

where the factor of 1/2 compensates for the fact that Hexch0

arises from exchange interactions between a central spin and
each of its interacting neighbors, and hence arises from pairs
of spins, whereas Uexch0 is per spin. Writing Uexch0 in reduced
parameters using Eqs. (A12) and using Eq. (A13) gives

Uexch0

kBTNJ

= − 3Sμ̄2
0

2(S + 1)
. (A17)
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The magnetic heat capacity per spin is given in reduced units
by

Cmag

kB
= d(Uexch0/kBTNJ )

dt
= −

[
3Sμ̄0

(S + 1)

]
dμ̄0

dt
, (A18)

where μ̄0(t) is obtained by solving Eq. (A14) and dμ̄0/dt is
given by Eq. (A15).

5. Magnetization in the paramagnetic state

Let the applied field be in the α principle-axis direction.
In the paramagnetic state above TNJ , the thermal average of
each magnetic moment is in the direction of the applied field.
Hence αji = 0 in Eq. (A4) and one obtains

Hexch α = − μα

g2μ2
B

∑
j

Jij = − μ̄αS

gμB

∑
j

Jij , (A19)

where we dropped the subscript i because all induced moments
are equivalent in the PM state. As in Eq. (A12b), we define the
reduced moment in the α direction as

μ̄α ≡ μα

gSμB
. (A20)

Then using Eq. (A6b), Eq. (A19) becomes

Hexch α = 3μ̄αkBθpJ

gμB(S + 1)
, (A21a)

so
gμBHexch α

kBT
= 3μ̄αθpJ

(S + 1)T
. (A21b)

Including the applied field Hα in Bi , Eqs. (A10) give

μ̄α = BS

[
3μ̄αθpJ

(S + 1)T
+ gμBHα

kBT

]
. (A22)

For Hα → 0, using Eq. (A6b) and the first-order Taylor
series expansion in Eq. (A11b), Eq. (A22) becomes

μα = C1Hα

T − θpJ

, (A23a)

where C1 is the single-spin Curie constant in Eq. (A1b), which
yields an isotropic Curie-Weiss law (A1) given by

χPMα(T ) = μα

Hα

= C1

T − θpJ

, (A23b)

yielding

χPMα(TNJ ) = C1

TNJ − θpJ

. (A23c)

We define the reduced magnetic field hα in the α principal-axis
direction as

hα ≡ gμBHα

kBTNJ

. (A24)

Then in reduced variables Eq. (A22) becomes

μ̄α = BS

[
3μ̄αfJ

(S + 1)t
+ hα

t

]
, (t � 1) (A25)

where the ratio fJ = θpJ /TNJ is given in terms of the
exchange constants and the magnetic structure in Eq. (A7).

Equation (A25) must be solved numerically for μ̄α for given
values of S, fJ , hα and t .

6. Magnetization of a planar AFM in a perpendicular field

To determine the perpendicular component μ⊥ of a mag-
netic moment in a collinear or planar noncollinear AFM
oriented in the xy plane, the net torque 
τ on a representative
mmoment 
μi is set to zero according to


τ = 
μi × Hexch i + 
μi × H = 0. (A26)

The magnetic moment vectors are written in spherical coordi-
nates as


μi = μ[sin θ (cos φi î + sin φi ĵ) + cos θ k̂],


μj = μ[sin θ (cos φj î + sin φj ĵ) + cos θ k̂]

= μ{sin θ [(cos φi cos φji − sin φi sin φji) î

+ (sin φi cos φji + cos φi sin φji) ĵ] + cos θ k̂},
(A27a)

where in the last equality we used trig identities with

φji = φj − φi. (A27b)

Using the definition of the exchange field in Eq. (A3) and the
requirement that

∑
j Jij sin φji = 0 for stability of an AFM

structure [6], the first term in Eq. (A26) is found to be


μi × Hexch i = −3μ̄2SkB

S + 1
sin θ cos θ (TNJ − θpJ )

× (sin φi î − cos φi ĵ). (A28)

Taking H = H⊥k̂, the second term in Eq. (A26) is


μi × H = μ̄gμBSH⊥ sin θ (sin φi î − cos φi ĵ). (A29)

Substituting Eqs. (A28) and (A29) into (A26) gives

3μ̄kB

S + 1
cos θ (TNJ − θpJ ) = gμBH⊥. (A30)

Using μ̄ ≡ μ/(gSμB), one obtains

3kB

gμBS(S + 1)
μ cos θ (TNJ − θpJ ) = gμBH⊥. (A31)

Referring to Fig. 2, the perpendicular component μ⊥ of the
induced magnetic moment of each spin is

μ⊥ = μ cos θ, (A32)

where μ(T ) is the magnitude of the ordered moment. Then
Eq. (A31) gives

μ⊥ = C1H⊥
TNJ − θpJ

≡ χ⊥J H⊥, (A33a)

χ⊥J ≡ μ⊥
H⊥

= C1

TNJ − θpJ

. (A33b)
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This applies for fields H⊥ less than the critical field Hc⊥J (T )
at which the moments become parallel and the system exhibits
a second-order transition into the PM state. From Eq. (A33a),
the critical field is given by

Hc⊥J (T ) = μ(T )

χ⊥J

, (A34)

where μ(T ) is the ordered moment in the AFM state versus T .
Comparing Eqs. (A33b) and (A23c) one sees that

χ⊥J (T � TNJ ) = χPMJ (TNJ ). (A35)

Thus χ⊥J in the AFM state at T � TNJ is independent of T

with the value χPMJ of the PM state at T = TNJ .
Dividing each side of Eq. (A30) by kBTNJ gives

3μ̄ cos θ

S + 1
(1 − fJ ) = h⊥,

3μ̄ cos2 θ

(S + 1)t
(1 − fJ ) = h⊥ cos θ

t
. (A36)

The magnitude of the induced moment is obtained by solving

μ̄ = BS

[(
gμB

kBT

)
(Hexch i + H⊥ cos θ )

]

= BS

{
3μ̄

(S + 1)t

[
1 − (1 − fJ ) cos2 θ

] + h⊥ cos θ

t

}
,

(A37)

where H⊥ cos θ is the component of H in the direction of
each of the magnetic moments, the reduced field is h⊥ ≡
gμBH⊥/kBTNJ from Eq. (A24) and the reduced temperature
is t ≡ T/TNJ according to Eq. (A7).

Substituting the left-hand side of Eq. (A36) for h⊥ cos(θ )/t

into Eq. (A37) and simplifying yields

μ̄ = BS

[
3μ̄

(S + 1)t

]
. (A38)

This is identical to Eq. (A14) for determining μ̄0(t) with
H = 0. Hence the ordered moment magnitude is independent
of field for h⊥ less than the reduced perpendicular critical field
hc⊥, which is given by the first of Eqs. (A36) with θ = 0 as

hc⊥ = 3μ̄(1 − fJ )

S + 1
, (A39)

where the ordered reduced moment μ̄ is temperature depen-
dent and hence so is hc⊥.
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