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A comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg
antiferromagnets within unified molecular field theory versus temperature 7', magnetic field H, and anisotropy
field parameter /14, is presented for systems comprised of identical crystallographically-equivalent local moments.
The anisotropy field for collinear z-axis antiferromagnetic (AFM) ordering is constructed so that it is aligned
in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to
the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment
onto the xy plane, again with a magnitude proportional to the moment. Properties studied include the zero-field
Néel temperature Ty, ordered moment, heat capacity, and anisotropic magnetic susceptibility of the AFM phase
versus 7" with moments aligned either along the z axis or in the xy plane. Also determined are the high-field
magnetization perpendicular to the axis or plane of collinear or planar noncollinear AFM ordering, the high-field
magnetization along the z axis of a collinear z-axis AFM, spin-flop (SF), and paramagnetic (PM) phases, and the
free energies of these phases versus 7', H, and h4;. Phase diagrams at 7 = 0 in the H,-h; plane and at T > 0
in the H,-T plane are constructed for spins S = 1/2. For ha; = 0, the SF phase is stable at low field and the PM
phase at high field with no AFM phase present. As k4, increases, the phase diagram contains the AFM, SF, and
PM phases. Further increases in z4; lead to the disappearance of the SF phase and the appearance of a tricritical
point on the AFM-PM transition curve. Applications of the theory to extract 4, from experimental low-field
magnetic susceptibility data and high-field magnetization versus field isotherms for single crystals of AFMs are

discussed.
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I. INTRODUCTION

Collinear and planar noncollinear Heisenberg antiferro-
magnets (AFMs) always have at least a small amount of some
type of magnetocrystalline anisotropy present that establishes
the axis or plane, respectively, along which the ordered
magnetic moments are aligned with respect to the crystal
axes. These include single-ion anisotropy, spin exchange
anistropy in spin space, and anisotropy due to classical
magnetic dipole interactions. These anisotropies are known
to change the AFM ordering (Néel) temperature Ty as well
as the magnetic and thermal properties of the spin system
[1,2]. Recently, we carried out comprehensive studies of the
influence of dipolar and uniaxial quantum DS? magnetocrys-
talline anisotropies on the thermal and magnetic properties
of Heisenberg AFMs containing identical crystallographically
equivalent spins [3,4], where the Heisenberg interactions are
treated within unified molecular-field theory (MFT) [5-7]. In
this MFT, the properties of collinear and planar noncollinear
AFMs are calculated on the same footing and the theory is
expressed in terms of directly measurable quantities instead of
exchange interactions or molecular-field coupling constants
[5,6]. The theory for DSZ2 anisotropy applies only to spins
S > 1, a serious limitation, since the magnetic properties of
S = 1/2 systems are of great interest.

A generic classical anisotropy field Ha has been used
sporadically in the past to study the effects of anisotropy. In
particular, this field can give rise to an energy gap in the spin-
wave spectrum ~+/2 Ha Hexcn, Where Hexen 1S the exchange
field, and can affect macroscopic properties such as yielding
an anisotropy in the external field-induced magnetization [8].
For collinear AFMs, a field applied along the easy axis can
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give rise to a spin-flop transition, where the ordered moments
flop to an orientation roughly perpendicular to the easy axis,
given by Eq. (140) below [9], which again involves Hy.

However, a complete formulation of the classical anisotropy
field and comprehensive study of its influence on the thermal
and static magnetic properties of Heisenberg AFMs are
lacking. Here we report results from such investigations.
An important advantage of this type of anisotropy is that
such uniaxial and planar (XY) anisotropies apply to systems
with § = 1/2 in addition to S > 1. Another is that the
anisotropy parameter in a system is much more easily derived
from experimental magnetic data on single crystals compared
to that for single-ion anisotropy. The Heisenberg exchange
interactions are treated within the unified MFT, again assuming
identical crystallographically equivalent spins.

Results from the unified MFT of Heisenberg AFMs that are
needed to develop the theory incorporating classical anisotropy
fields are summarized in the Appendix. A summary of notation
and thermodynamics expressions used in the paper are given
in Sec. II. We use two forms of anisotropy field depending on
whether the anisotropy field induces collinear AFM ordering
along the z axis or collinear or planar noncollinear AFM
ordering in the xy plane. A detailed discussion of these is
presented in Sec. III.

Calculations of the AFM ordering (Néel) temperature Ty
and ordered moment versus temperature 7' in the presence
of both the exchange and anisotropy fields in zero applied
field H are given in Sec. IV for arbitrary antiferromagnets
containing identical crystallographically equivalent spins.
Laws of corresponding states for these properties and others
are the same for all AFMs and ferromagnets (FMs) when
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expressed in terms of the universal reduced parameters of the
unified MFT. Expressions for the magnetic internal energy,
heat capacity, entropy, and free energy of the AFM phase in
zero field for both uniaxial and planar anisotropy are also
derived and plotted in Sec. IV. The anisotropic magnetic
susceptibilities x arising from the classical anisotropy field
are derived for the paramagnetic (PM) phase in Sec. V and for
the AFM phase in Sec. VI, and the perpendicular high-field
magnetizations for the PM and AFM states are calculated in
Sec. VIL

The high-field magnetization parallel to the easy axis of
a collinear AFM is of special interest. This is derived for
the PM phase together with its free energy Fi,g versus H in
Sec. VIII B. The spin-flop (SF) phase is treated in Sec. VIII C,
in which are presented the ordered moment versus 7' in H = 0,
the thermal-average moment u;, versus H using two different
approaches, the spin-flop critical field A.sp at which the SF
phase exhibits a second-order transition to the PM phase
with increasing H, the zero-field internal energy Upag versus
T, and the (Helmholtz) free energy Fnae versus T and H.
The more involved calculations of the magnetic properties
of the AFM phase in high longitudinal fields are given
separately in Sec. IX, including the z-axis sublattice, average
and staggered moments, and Fy,,g versus 7, H, and anisotropy
parameter /4.

Phase diagrams are constructed in Sec. X. We start with the
determination of the low-temperature properties of the AFM,
SF, and PM phases and their dependencies on the parameters
of the MFT in Sec. X A. The H, versus ha; phase diagrams
at T =0 are then constructed. In addition, u, versus H,
plots are provided for various values of 44 to compare with
experimental data at T < Tn. In this section, 7 = 0 phase
diagrams in the H, -ha; plane for fields H, perpendicular to
the easy z axis of a collinear AFM or easy plane of a planar
noncollinear AFM are presented.

We then move on to construct phase diagrams in the H,-T
plane in Sec. X B from free energy minimization with respect
to the SF and z-axis collinear AFM phases (the PM phases are
high-field extensions of these phases beyond their respective
critical fields). Representative phase diagrams are presented
for spins S = 1/2 for six values of ha;. For ha; = 0O, the only
stable phases with increasing H, are the SF and higher-field
PM phases, as expected. With increasing 44, the AFM phase
appears at low fields for T < Ty followed by the SF and PM
phases with increasing field. Further increasing ha; results
in the gradual disappearance of the SF phase and appearance
of a tricritical point on the AFM-PM phase boundary. When
ha; is sufficiently large, the SF phase disappears, leaving
only the AFM and PM phases in the phase diagram with
both first- and second-order transitions between them along
the transition curve with a tricritical point separating the two
regions. At T = 0, the AFM to PM transition is a 180° spin-flip
transition of the moment initially opposite in direction to
the field to being parallel to the field, whereas at finite T
the transition is a “gradual” spin flip where the magnitude
of the initially oppositely directed moment smoothly decreases
to zero and then that moment increases with field in the
direction of the field, eventually becoming the same in a
second-order transition to the PM phase as that of the moment
that was initially in the direction of the field.
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A summary is given in Sec. XI. We discuss in depth how /15
and another parameter f; can be derived from experimental
data using our formulas for different magnetic properties.
Also discussed are the relationships between the formulas
for Ty and the Weiss temperature 6, in the Curie-Weiss
law for the present classical anisotropy field treatment with
those with DS? anisotropy [4] and arrive at a proportional
relationship between ha; and D for small values of D. In
general, magnetic anisotropy data are much easier to analyze
in terms of the present classical anisotropy field than in terms
of DS? anisotropy.

II. NOTATION AND THERMODYNAMICS

A. Notation summary
Henceforth we designate two parameters changed by the
presence of the anisotropy field by removing the subscript J
to indicate that these values contain the contribution of the
anisotropy field in zero applied field:

Ing = TN, Opy — 6,. (1a)

The Tny, 6,5, and f; parameters retain their meanings in terms
of the Heisenberg exchange constants and magnetic structure
as given in Egs. (A6a), (A6b), and (A7), respectively. We
normalize energies, fields, and temperatures by 7Ty in this
paper, as given in the following summary and definitions of
parameters:

_ Mo Mo
e = = , (1b)
Mesat gSMB
H,
hy = 8587 (1o)
ksTny
gnsH
Ta = 222 (1d)
kg
T, H,
hAlEﬂz‘g“B—Al>0’ (le)
Tny ks Ty
Ops
fr=2= (1f)
T Ty
P—_— (1g)
= —, g
Tny
In = Ing + T (1h)
T; T
o4+ 2 =14, (1i)
TNy NJ
P (1j)
ATIN T 14har !

The magnetic susceptibility per spin x, in the « principal-
axis direction is rigorously defined in the absence of a
ferromagnetic component to the magnetization as

Xoa = 1}3130 /’Lat(Hoz)/Hot- (2)

We define two reduced magnetic susceptibilities in the o
principal-axis direction. The first is

i
x;‘h—a

(3a)

% 1he—0
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The second is

__ XalIng ( 3
Xa = =

C S+ 1

where the single-spin Curie constant C; is given in Eq. (A1b).

> Xa (3b)

B. Thermodynamics

In this section, we give thermodynamics expressions
needed in this paper assuming that the ordered and/or induced
moment of a representative spin ji; versus field and temper-
ature has already been determined within the unified MFT
as outlined in the Appendix in the case of zero applied and
anisotropy fields.

The magnetic internal energy Uy, of spin i for a local
magnetic induction B; in the « principal-axis direction is

Umagi = _/'LiotBiau (4)
where here B;, is written in general as
Bia = %(Hexchia + HAiOt) + Hou (5)

and H,;, is the local anisotropy field seen by spin i discussed
later. We have seen that the exchange field seen by a spin is
proportional to (;. This is also true for the anisotropy field by
assumption in Sec. Il below. Thus the parts of Uyy,g; associated
with these fields are both proportional to ,ul-za, indicating that
they both ultimately arise from interactions between pairs of
spins, hence the prefactor of 1/2 in the first term of Eq. (5) as
discussed in regard to Eq. (A16) where only the exchange field
was present. We write the sum of the exchange and anisotropy
fields as

Hexchia + Haia = aldia, (6)

where the constant a contains the parameters associated with
these fields. Then Eq. (5) becomes

Biq = apiq + Hy. @)

1. Properties in zero applied field

When H, = 0, Egs. (4) and (5) yield the internal energy
per spin as

Unag(Hy = 0.T) = —%uim. ®)

We always assume that the spins are identical and crystallo-
graphically equivalent, so the subscript i is suppressed when
H, = 0. Then the magnetic heat capacity per spin Cp,, is

dUmag(Ha =0,7) d/“rx
= —aly .
T by O
The magnetic entropy Smag(Hy =0,7) per spin is then
obtained as
Smag(Ha =0,T)= mag(Ha =0,T=0)

+ /T Cmag(Ha = OvT)d
0

Cmag(Hoz =0,T) =

T T, @10

and the (Helmholtz) free energy Fi.(Hy = 0,T) as
Fmag(Hoz =0,T)= Umag(Hoz =0,T) - TSmag(Ha =0,7).
an
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2. Properties at nonzero temperature and nonzero applied field

Itis most convenient in this paper to calculate the thermody-
namic state functions in the H,-T plane by choosing the path
from (H, = 0,T = 0)to(H, = 0,T) asin the previous section
and then at constant 7 from (H, = 0,7) to (H,,T). The
differential of the free energy for the second part of the path at
constant T, d Frag = —Smagd T — pod Hy withdT = 0, yields

dFmag(HouT) = —Uqd H,. (12)
Then using Eq. (11) one obtains

H,
Fmag(HouT) = Fmag(Ha =0,T) - / o(Hy, T)dHy,
0

13)

where F,o(H, = 0,T) is found as described above.
The variation of the magnetic entropy with field at constant
temperature is found from the Maxwell relation

_(3pta(Ha.T)
(dSmag)T - ( —aT )HadHa. (]4)

Then using Eq. (10) one obtains
Smag(He, T) = Smag(Hy = 0,T)
+ /Hd <w> dH,. (15
0 oT H,
An increment of internal energy is
AUnag = TdSiag — tad H,y. (16)
Using Eq. (14) for d Sy, at fixed T gives

(dUmag)T = [T(M) - Ma:|dHa, (17)
T )y

and hence

Umag(HouT) = Umag(Hot =0,T)

He g (Hy, T
+f [T(—“( )> —ua]dHa.
A T )

(18)

In the free-energy expression (13), the integral of
(Oue(Hy,T)/0T )y, over Hy in Spae and Upgg is not present
because it canceled out in the definition Fiyag = Umag — T Smag-

3. Expressions in reduced variables

In order to formulate laws of corresponding states for
the thermodynamic properties, we normalize all energies by
kg Tny, where Ty is the Néel temperature in zero field arising
from exchange interactions alone as discussed in the Appendix.
We also define the following dimensionless reduced variables:

g“’BBa
by = —F—, (19a)
kg T~y
a
= , (19b)
ks TN
by = Afiy + he. (19¢)
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Then also using Eqs. (1), the expressions in the above two
subsections become

Unag(ha =0.1)  AS _,

hy = 0,1), 20
kT > Ayl ) (20a)
Chac(hy = 0,1 dig(h, =0,
M - _Asﬂa(t)u’ (20b)
kg dt
Smag(ha =0,1) _ Smag(ha =0,r=0)
kg B kg
" Cmag(he = 0,0)/ k
+ / mag( t )/ Bdf, (200)
0

Fmag(ha = 0,[) _ Fmag(ha = O’t) _ Smag(ha = Ost)

kgTny ks Tng kg
(20d)
Fmag(havt) _ Fmag(ha = Ost)
kpTny kTN
ha
- S/ /_La(hmt)dhm (206)
0
Smag(havt) _ Smag(ha =0,1)
ke kp
ha (3 fig (g t
+ S/ <M> dhy,  (20f)
0 at hy
Umag(havt) _ Umag(hot =0,1)
kpTny kpTny
ha iy (hy.t
s / [I< o ))
0 ot By
- laa(hout):| dhut~ (2Og)

III. AFM ORDERING IN A CLASSICAL
ANISOTROPY FIELD

The lowest-order uniaxial anisotropy free energy Fa; per
spin associated with a uniaxial or planar anisotropy symmetry
asinFigs. 1 and 2, respectively, for an ordered and/or magnetic
field-induced thermal-average magnetic moment i; is written
as [2]

Fa; = Ky, sin® 6}, 1)

where 6; is the polar angle between ji; and the uniaxial z
axis. Here, we assume that this relation is valid for the entire
angular region 0 < 6 < . The z axis for Fa; from which
6; is defined is assumed to be a uniaxial axis of the lattice,
and hence the anisotropy is fundamentally magnetocrystalline
in origin. This generic model is assumed to apply to spin
systems with any spin angular momentum quantum number
S (in units of 7, which is Planck’s constant divided by 27)
and can therefore treat systems with S = 1/2 for which a
magnetocrystalline DS? term in the Hamiltonian gives no
anisotropy. The anisotropy constant K is in general different
for different moments ji; because of their different magnitudes
as discussed below, hence the subscripts i in Eq. (21). If
K,; is positive and H = 0, then the lowest free energy of a
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FIG. 1. The orientation of a representative magnetic moment /i;
described by spherical coordinates ; and ¢; in an applied magnetic
field H = H. k and a generic classical anisotropy field Hy; directed
along the £z axis. For such an anisotropy field, collinear AFM
ordering along the z axis is favored if H, = 0.

system occurs with sin §; = 0 for all i;, for which the ordered
moments are collinear and aligned parallel or antiparallel to
the uniaxial z axis, whereas if Kj; is negative the lowest
free energy occurs when sin6; = 90° for all j1;, resulting in
collinear or coplanar ordering in the xy plane. Using Eq. (21),
the magnitude ta; of the torque on each ji; by its anisotropy
field Hy; (see below) has the same form for all moments and
is given by

dFpi
W = |

50 | = 2|K; sin6; cos 6;]. 22)

A. Collinear ordering along the z axis: Uniaxial anisotropy

For collinear AFM ordering along the z axis in H = 0 with
uniaxial anisotropy, one has 6; =0 or 180° in Fig. 1. The
anisotropy field Hy; along the z axis in such a collinear AFM

~
H
zZ
A
0 M
- >y
Wiz
b _
X Hp;

FIG. 2. The orientation of a representative magnetic moment ji;
in an applied magnetic field H = H. k and an anisotropy field Hy;
in the xy plane that is directed along the projection of ji; onto the
xy plane as shown. For such an anisotropy field, collinear or planar
noncollinear AFM ordering within the xy plane is favored if H, = 0.
The azimuthal angle ¢; is in general different for different moments
but the value for each moment is not affected by H.
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FIG. 3. Comparisons of the free energy and anisotropy fields, respectively, for (a) and (b) axial z-axis anisotropy and ordering and (c) and
(d) xy-plane anisotropy and ordering. The anisotropy free energy per spin Fa; normalized by |Ky;| is given in Eq. (21), where K;; > 0 for
axial anisotropy and K; < 0O for planar anisotropy. The anisotropy fields Hy; for axial and planar anisotropies are given in Egs. (23) and (27),

respectively.

is defined to be in the same direction £k as that of the ordered
moment ji;, which can be written as

Ha, = Hag; cos6; K, (23a)

I‘IA,‘Z = HAO[ CoS 9,', (23b)
where Hag; > 0 is the amplitude of the anisotropy field for
axial anisotropy. For uniaxial ordering K;; > 0 in Eq. (21),
so that the minimum free energy Fa; = 0 occurs for collinear
AFM ordering with the moments oriented along the z axis as
shown in Fig. 3(a). If the moments all rotate with increasing
field into a “spin-flop” phase to give 6; < 90° for each spin,
then from Eq. (21) and Fig. 3(a) the anisotropy free energy of
each moment increases to ~K;.

Using Eq. (A27a) for a representative moment ii;, the
torque due to the anisotropy field on the moment tilted by
an angle 6 with respect to the z axis is

Tai = ili x Hai = 1 Haoi sin6; cos 6;[sin ¢; i — cos ¢ J1,
(24a)
with magnitude
(24b)

Tai = |1 Haoi sin6; cos 60;],

where p; is the magnitude of the (thermal-average) ii; and 6;
is the polar angle in Fig. 1. Comparing Egs. (24b) and (22)

gives the anisotropy constant for moment i as

i Hpoi
2

Ky = > 0, (25)

where K; is positive for uniaxial collinear ordering in zero
field as discussed above. As noted above, K| can depend on
the specific moment i if the magnitude w; is not the same for
all moments.

The maximum magnitude of Hy; from Eqgs. (23) occurs at
6; = 0 or 180°, at which the anisotropy free energy in Eq. (21)
is minimum (zero) as shown in Fig. 3(a). A plot of Ha;,/Hao;
versus 6; from Eq. (23b) is shown in Fig. 3(b), which by
comparison with Fig. 3(a) demonstrates that the maximum
magnitude of the anisotropy field occurs at the ordering angles
for collinear AFM ordering, for which the free energy is
minimum.

B. Collinear or planar noncollinear ordering in the x y plane:
Planar anisotropy

When planar (XY) anisotropy is present, the ordered AFM
structure in H = 0 can be either a collinear structure or a planar
noncollinear structure with the ordered moments aligned in the
xy plane for both structures. In either case, the polar angle for
the orientations of all ordered moments for H = 01is 6; = 90°
in Fig. 2. In order that these magnetic structures have a lower
magnetic free energy than for collinear AFM ordering along
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the z axis requires that
K i< 0 (26)

in Eq. (21), as shown in Fig. 3(c).

From Fig. 2, Hy; is directed along the projection of ji;
onto the xy plane instead of along the z axis as described
in Eq. (23a) for uniaxial anisotropy. Therefore, instead of
Eq. (23a), we now write Hy; in spherical coordinates as

(27a)
(27b)

Hy; = Hag; sin6;(cos ¢; i+ sin ¢, j),

Hyjxy = Hagi sin6;,

where Ha; is the magnitude of Hs; when 8; = 90°. The torque
exerted by Ha; on ji; is obtained from Egs. (27a) and (A27)
as

Tai = il x Hai = —p; Hao; sin6; cos 6;(sin ¢; 1 — cos ¢; j),
(28)
with magnitude
Tai = |1 Hao; Sin6; cos 6;]. (29)

This is the same expression as in Eq. (24b) for collinear AFM
ordering along the z axis, but here the zero-torque condition
applies to 6, = 7 /2 instead of O or & as appropriate for z-axis
collinear ordering.

Comparing Eqs. (29) and (22) and using (26) gives

i Haoi
2

which is the same as in Eq. (25) for axial anisotropy except
for the sign. A plot of Hy;y/Hap; versus 6; from Eq. (27b)
is shown in Fig. 3(d), which by comparison with Fig. 3(c)
demonstrates that the anisotropy field is maximum at the
ordering angle 6; = m /2 for planar AFM ordering for which
the free energy is minimum.

Ky = <0, (30)

C. Fundamental anisotropy field Hy,

In the present treatment of either uniaxial or planar
anisotropy, we write the anisotropy field amplitude Hag; > 0
in Egs. (23) and (27) as

Hag(T) = 2200 1y = —8__ ), Gl
S+1 gusS(S+ 1)
where the subsidiary anisotropy field
Hpp 20 (31b)

does not depend on the moment zi; or on T and is therefore
a more fundamental anisotropy field than Hag;. The reason
for including the factor 3/(S + 1) in Eq. (31a) is explained
in Sec. IV below. The reduced ordered moment i; = [4;/hsat
can be numerically calculated for all moments in H = 0 using
Egs. (37) below but the value can be different for different
moments if H # 0. Inserting Eq. (31a) into (25) or (30) gives

Hay

3gupSHy 20y
2guS(S+ 1)

wi (T)

|Kyi| = ;
2(S+1)

nX(T), (32)
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where we used Eq. (1b). Since f;(T =Tn) =0 if H=0
where Ty is the Néel temperature in the presence of both
exchange and anisotropy fields (see below), one has K;(T —
Ty) =0if H = 0[10]. However, for H > 0, a field-induced
thermal-averaged moment y; arises in the paramagnetic state
at T > Ty, and this anisotropy therefore influences both the
AFM and PM (FM-aligned) states.

IV. NEEL TEMPERATURE, ORDERED MOMENT,
INTERNAL ENERGY, HEAT CAPACITY, ENTROPY,
AND FREE ENERGY OF THE ANTIFERROMAGNETIC
PHASE IN ZERO APPLIED FIELD

The definition of the anisotropy field Hy; in Eq. (23a) for
collinear AFM ordering along the z axis (6; =0 or 180°)
and in Eq. (27a) for ordering in the xy plane shows that for
H = 0, Hy; is parallel to each ordered magnetic moment i; in
the ordered state below Ty, just as the exchange field Heycp; is.
Since the local exchange and anisotropy fields are both in the
same direction as that of the respective ordered moment in the
AFM state in H = 0, they reinforce each other, and also have
the same values for each moment because all moments are
identical and crystallographically equivalent by assumption.

For H = 0, the parameters o, fto, K1, and Hag do not
depend on the spin i and hence we drop the subscript i when
discussing these quantities for H = 0. Here the parameters
and fig respectively refer to the ordered moment and reduced
ordered moment in H = 0 but in the presence of both the
exchange and anisotropy fields as appropriate.

From Eqs. (A9) for the exchange field in H = 0 together
with Eq. (A1b), one obtains

gugHexcno 31wy a
kg T S+nr "

Using Eq. (31a), a similar expression for the anisotropy field
is

(33)

gusHpo  3gugHa _ 3Ty
kT S+ DT T S+ DT

where the anisotropy temperature Ta; (not a real temperature)
is defined in terms of Hy; in Eq. (1d). For H = 0, the magnetic
induction obtained by MFT that is seen by each moment is
B = Hexcno + Hao- Using Eqgs. (33) and (34), jio is governed
by the Brillouin function Bg(y) according to Egs. (A10) as

o, (34)

3 o
T Ta1)—. 35
S+1(NJ+ AI)T (35)
The ordering temperature occurs as jip — 0. Using the first-
order Taylor series expansion term of the Brillouin function
in Eq. (A11b), Eq. (35) gives the Néel temperature 7 = Ty in
the presence of both the exchange and anisotropy fields as

In=Tng + Tar = Tng(1 + hay), (36)

ito = Bs(yo), yo=

where ha is defined in terms of Tx; and Hya in Egs. (le)
and (11). Thus the presence of the reinforcing anisotropy field
ha1 > 0 increases the Néel temperature, as expected. From
Eq. (36), the fractional increase in the Néel temperature due
to the anisotropy field, TT—NI — 1, is equal to k4, an appealing
physical interpretation ofh a1- This behavior is comparable to
the influence ofa DS Zz anisotropy on Ty at small D where Ty is
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0.6 + S=1/2,3/2,5/2,7/2 4

0.0 " 1 n 1 " 1 " 1 n
0.0 0.2 0.4 0.6 0.8 1.0

t= T/TN

FIG. 4. Reduced ordered moment fi, vs reduced temperature
ta in zero applied field but in the presence of an anisotopy
field. These behaviors are valid within MFT for both uniaxial and
planar anisotropies for any type of magnetic ordering of identical
crystallographically equivalent spins.

proportional to D, but is very different from the behavior of Ty
versus D at larger D where Ty varies nonlinearly with D [4].
However, for the classical anisotropy treated in this paper both
the ordering temperature 7Ty and the Weiss temperature 6, (see
below) vary linearly with %, in the same way for arbitrary
values of /4.

To determine the zero-field ordered moment versus temper-
ature for 7 < Ty, we use Egs. (1j) and (36) and then Eqs. (35)
become

o = Bs(yo), (37a)
3o

= . 37b

Yo TESIA (37b)

These equations, which are used to numerically calculate
fLo(ta), have the same form as Eqs. (A14) for H = Hp; = 0,
except with 14 = T/Ty in Eq. (1j) replacing t = T/ Tny as
shown in Fig. 4 [11]. Hence the reason we introduced the
factor of 3/(S + 1) in the definition of the anisotropy field
Hpo; in Eq. (31a) was to require Egs. (37) to have the same
form as Egs. (Al4).

To determine fig in terms of t = T /Ty instead of 1t =
T/ Tn, one can use Egs. (1j) and (37) to obtain

_ 3jio(1 + har)
= Bg| ————|. 38
o s[ TESLY (38)
Setting ha; = 0, one recovers Egs. (A14) for the case of zero

anisotropy.

In zero field, all spins have the same internal energy per
spin U; according to Eq. (5), which has two contributions for
either z-axis or xy-plane ordering given by

Ui = Uexcno + Ui (393)
Uexehi = _%MHCXCh07 (39b)
Uni = — 3 iHaoi- (39¢)
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00 02 04 06 08 10
t =T/T
A N

FIG. 5. Magnetic internal energy per spin Up,, normalized by
kg Tn, of the AFM phase vs reduced temperature 75 in zero applied
field in the presence of a reduced anisotopy fields sa; = 0 to 1 for
spins (a) S = 1/2 and (b) S = 7/2 obtained using Eqs. (37) and (40c).

Normalizing the energies by kg Tny, Egs. (A17), (1), (23b)
or (27b), and (31a) yield

UexchO 38 _2
= _ , 40
T, 28+ DM (402)
Uai 38 )
= hiay A2, 40b
kelws | 2(S+1) AHo (400)
U 3S
L= 1+ ha) 2. 40
ko To 2(S+1)( + ha1)itg (40c)

Shown in Fig. 5 are plots of U;/kgTn; versus reduced
temperature f for a range of reduced anisotropy parameters
ha1 =0 to 1 and for spins S = 1/2 and § = 7/2 obtained
using Eqgs. (37) and (40c). One sees that the zero-temperature
internal energy decreases (becomes more stable) with in-
creasing ha; as expected. Also, the internal energy goes to
zero when the ordered moment goes to zero with increasing
temperature.
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FIG. 6. Magnetic heat capacity per spin Cp,, of the AFM phase vs
reduced temperature 7, in zero applied field for any reduced anisotopy
field ha; > 0 and spins S = 1/2 to 7/2 in half-integer increments.
The hump that develops with increasing S at a temperature ~f, /4
is intrinsic to molecular-field theory. (b) Magnetic entropy per spin
Smag/ kB Vs t for the same parameters as in (a).

The magnetic heat capacity per spin is

Cmag _ d(Ui/kpTyy)

kg dt
35 di
- _<s—+1)“ + hanio(ta) 25"*),
_ (35 \. diio(ta)
= (S n 1>/'L()(IA) th s (41)

where we used Eq. (1) to obtain the third equality, fio(zs) is ob-
tained by solving Eqs. (37), and djio(ta)/d?A is obtained from
Eq. (Allc) where y = yy is given in Eq. (37b). Equation (41)
for Cpyg is identical in form to the equation for Cp,e with
ha1 = 0 and with ¢ replacing ta [11]. The presence of ha; in
Eq. (41) is therefore equivalent to the replacements Tn; — Tn
and t — 1A in the equation for ha; = 0. Plots of Ciag/ta
versus fa are shown for S = 1/2 to S = 7/2 in Fig. 6(a). One
sees that with increasing S, on approaching Ty from below
Cmag/ ta approaches a constant value for increasing S given by

Conglta — 1,5 — 00)
kg

=5/2, (42)

PHYSICAL REVIEW B 96, 224428 (2017)

consistent with the exact expression for finite S [6]:

Cmag(tA - 1) _ SS(S + 1)
kg TI425(S+ D

The broad hump that develops in Cyag/kpta at to ~ 1/4 for
large S is intrinsic to the MFT [6], and is therefore prominantly
observed in the AFM state of compounds containing spin-only
Eut? and Gd™ ions with large spin S = 7/2 [6]. It arises from
a practical point of view in order that the statistical mechanics
value for the magnetic entropy per spin at Ty, given by

Smag(ta = 1)/ kg = In(2S + 1), (44)

(43)

continues to increase with increasing S, since as just stated
the Ciag(ta ~ 1) is bounded with increasing S and hence the
increasing entropy must arise by increasing Cy, at lower and
lower temperatures with increasing S.

The Smae/ ks versus t5 for iy > 0 is obtained using

Smag(tA) _ /rA Cmag(tA)/kB
0

dtp, 45
ks A (45)

A
where Spag(fa = 0) = 0 because the energy levels are nonde-
generate at 14 = 0 due to the presence of nonzero Hey, and
Hy, and Cpag(ta)/ kg is obtained as described above. The Sy,
is plotted versus za for § = 1/2to § = 7/2 in Fig. 6(b), where
the high-7" limit in Eq. (44) is indeed obtained for each value
of SforT > Ty.

The reduced Helmholtz free energy per spin versus reduced
temperature 7, is given in general by

F, U, S
mag mag A mag . (46)
kB TNJ kB TNJ kB

Shown in Fig. 7 are plots of Fiag/kpTny for H = 0 versus
ta with ha; values from O to 1 for spins S = 1/2 and 7/2
obtained from the data in Figs. 5 and 6. One sees that Fy,e
varies monotonically with z, but that the sign of the slope
depends on the value of &15;. Another important feature is that
Fnag 1s independent of ha for 4 > 1 because Upyye = 0 in
that temperature range and Sy, versus #4 is independent of
hay for a given value of the spin § because the influence of
ha1 is already included via its effect on Ty in the definition
ta =T/ 1n.

V. MAGNETIC SUSCEPTIBILITY OF THE
PARAMAGNETIC PHASE

In the paramagnetic (PM) phase at T > Ty, there is no
ordered or induced moment in the absence of a field H
applied along a principal-axis direction. When H, > 0, the
field-induced thermal-average moment of each spin points in
the direction of H. From Eq. (A21a), the magnitude of the
exchange field seen by each moment is

Hexche = M Has 47
gus(S+1)
where 0; is the Weiss temperature due to the exchange
interactions alone, which is defined in terms of the exchange
constants in the spin system in Eq. (A6b), and fiy, = [ty /hsat =
U /gSup is the normalized thermal-average moment induced
by H, in the « direction.
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FIG. 7. Reduced magnetic free energy per spin Fp,e/kgTny of
the AFM phase vs reduced temperature ¢, in zero applied field for
anisotopy fields /14, as listed and spins (a) S = 1/2 and (b) S = 7/2,
obtained using Eq. (46) and the data in Figs. 5 and 6.

A. Anisotropic paramagnetic susceptibility with a uniaxial
anisotropy field along the z axis

1. Hlz

Here, we consider a uniaxial anisotropy field Hy; along the
z axis as in Eq. (23a) and Fig. 1 with the induced moments in
the PM state with T > Ty aligned perpendicular to the z axis
due to an infinitesimal H applied in the xy plane. According
to Egs. (24) with 6; = 90°, the torque of Ha; on i; is zero.
Hence the anisotropy field has no influence on p; , where the
1 direction is perpendicular to the easy axis or plane for AFM
ordering. Therefore the low-field susceptibility x; follows the
Curie-Weiss law given by Eq. (A23b) for exchange interactions
alone as

x1pm(T 2 IN) = x0y(T 2 Tn) = . (48a)
T — 0y
The xy-plane susceptibility at Ty is thus
C C
Kaem(Ty) = —— L, (48h)

Tn—0py  Tny+ Tar — Opy

where we used Eq. (36) for Ty to obtain the second equality.
The presence of the infinitesimal H; does not measurably

PHYSICAL REVIEW B 96, 224428 (2017)

affect Tn. The reduced susceptibilities defined in Eqs. (3) are

_ x1pmIng 1 1
T 2 T; = = = y
xLem( N Cy t—fr ta(l+ha)— fy
(49a)
1
ton(T =Th) = ————, 49b
X 1pm( N) T+ — /) (49b)
Tl S+1)\_
Xom(T = Ty) = B (2= Xiem(T = Ty)
h 3
S+1 S+1
= + = + , (49¢)
3¢ — fr)  3ltal+ha) — fi]
S+1
XTI =TN) = ————. (49d)
M T30+ har - f)
2.H|z

If H is along the z axis, then an anisotropy field in the
direction of H and of the induced moment is present with
magnitude Hyg given by Eq. (31a). The normalized induced
moment in the z direction (f)) is given by Egs. (A10), (A21b),
(31a), and (1d) as

_ g1
iypm = Bs S8 (Hexen + Hao + Hz)
kgT

3 iy gusH,
= Bg| ———(0,; + Ty = + 2222
S[S—i—l( p/ Al)T kT

Using the first-order term in the Taylor series expansion of the
Brillouin function in Eq. (A11b) one obtains the Curie-Weiss
law

:|. (50)

4l ¢
T>To=1 , 51
Xipm( N) H - T =0, (51a)
C
n) = 51b
xpm(TN) TN—"0, (51b)
€ (51¢c)

T+ ha) =6,

where the Weiss temperature in the presence of the anisotropy
is

Op = 65 + Tar = 6py + 0pa = Opy + hatTny, (51d)

Opa = Tar = hatTny. (51e)
Equations (51) yield the reduced forms (3) as

BT > 0 = 62

Xiem(T = Tn) = 1 —]fJ’ (52b)

Xipw(T > 1) = 3+ hAlftjj fr—=hatl’ (52

Xipm(T =Tn) = 3(1%4_]10]) (52d)

Thus the Weiss temperatures from the exchange interactions
and from the anisotropy are additive. This additivity also oc-
curs for anisotropy arising from the magnetic dipole interaction
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[3] and from the uniaxial DSZ2 single-ion anisotropy at small
D [4]. From Egs. (51a) and (51d), one sees that the z-axis
anisotropy field in the direction of H increases ypm at fixed T,
as expected since the anisotropy field increases the magnitude
of the local magnetic induction seen by each induced moment.
In addition, one finds that Ty in Eq. (36) and 6, in Eq. (51d)
for H directed along the z axis are both shifted towards positive
values by the same amount due to the anisotropy field, and
therefore
Tn — 0y = Tng — 6y (H || easy axis). (53)
By comparing Eqs. (48a) and (51a), the Weiss temperatures
are seen to be different for x pm and xjpm and hence Eq. (53)
applies for H || z but not for H L z. From the definition for f;
in Eq. (A7) together with Eq. (53), Eq. (51b) can alternatively
be written as

e
Tns — 6 Tny(1— f1)

xi(Tw) = (54)

as is also apparent from Eq. (52b).

Since Ty > Tny, one sees by comparison of Egs. (49b)
and (52b) that x(Tn) > x1.(Tn) if the g values for fields in
the two directions are the same.

B. Anisotropic paramagnetic susceptibility
with XY planar anisotropy

If the anisotropy field is in the xy plane as in Fig. 2, one
cannot identify a unique easy-axis direction. Hence we specify
the anisotropic susceptibilities as x and y,, instead of x, and
X| > respectively. In the presence of an applied field in some
direction in the xy plane, the induced moments in the PM state
are aligned in the same direction.

Following the same steps as in the previous section, we find
that x.(T > Tn) is the same as x, (T > Ty) in Egs. (48), i.e.,

C
T — pj’
o Ci
Tn— 60y  Tny+Tar — 0

X(T 2 1Tn) = (55a)

XZ(TN) =

. (55b)

where Ty is defined in Eq. (1d).
Similarly, x.,(T > Ty) is the same as (T > Ty) in
Eq. (51a):
G C
T—-6, T—Ta—06y

Xxy(T > 1TN) = s (550)

Therefore at the Néel temperature, using Eq. (53) one obtains

oG
Tn—0, Tns—Ops

Xay(IN) = (56)

Thus in the paramagnetic state with T > Ty, if one has z-
axis uniaxial anisotropy then x. > X.y, whereas for xy planar
anisotropy one has X, > x.. These relationships are expected,
since a uniaxial anisotropy field helps to align the moments
along the z axis, whereas an xy planar anisotropy field helps
to align the moments in the xy plane.

PHYSICAL REVIEW B 96, 224428 (2017)

Hyy

FIG. 8. Figure showing the influence of an infinitesimal magnetic
field H along the L axis on each spin in the xy plane. The H induces
a tilting of each ordered magnetic moment /i towards the magnetic
field direction by an infinitesimal angle y, which results in an induced
L -axis component u,; of . The angle y in the figure is greatly
exaggerated for clarity. To first order in y and H, the magnitude of
the ordered moment is unaffected by the presence of H.

VI. ANISOTROPIC MAGNETIC SUSCEPTIBILITY
OF THE ANTIFERROMAGNETIC PHASE

A. Perpendicular susceptibility

To calculate x,apm(T < Tn) in the presence of Hp, we
assume here the presence of a planar XY anisotropy as in
Fig. 2 with the ordered moments aligned in the xy plane for
H = 0. The expression for x; apm in Eq. (61) below is valid
for both collinear and planar noncollinear AFM structures. We
calculate the infinitesimal angle y in Fig. 8 for which the total
torque on a representative moment ji; is zero, and from that
XJ_AFM(T < TN) is obtained.

From Fig. 8, one finds that the ordered moment magnitude
Ko in H, = 0 does not change to first order in H, and the
radian angle y . Thus using spherical coordinates, the magnetic
moment ji; to first order in y is

fii = po(cos g i+ sing j+y 1), (57)

where ¢; is the angle between [i; and the positive x axis
in H = 0. The torque contribution due to the exchange field
is obtained writing 6 = 5 —y and thus sinf cosf =y in
Eq. (A28) and then using Eqgs. (A1b) and (1b) yield

Y G .
i X Hexeni = —C—"(sin ¢ii—cosg; H(Tny — 6p1)
1
Y UG R
= ——(singp; i — cos ¢ J), (58)
XL1J

where Eq. (A33b) was used to obtain the second equality. The
contribution of the applied magnetic field to the torque to first
orderin H| is

fi x H = poHL(sin¢i i — cos ¢ ). (59)

The torque on ji; exerted by Hy; to first order in y = 90° — 6
is given by Eq. (28) as

fi x Haj = =y poHpo(singi i —cos¢ij).  (60)

Then setting the sum of the three torques to zero, solving for
y o = iy and using Egs. (Alb), (A23c), (31a), and (36), one
obtains the perpendicular susceptibility x;apm = 1 /H, in
the AFM state as
C _ C

In—06p TNy +Tar — 6y
which agrees with Eq. (48b) for the PM state at 7. Thus x 1 apm
is independent of T below Ty with the value x| pv (7). From
Eq. (61), one sees that y apm(T < Tyn) is reduced compared

x1arm(T < Ty) = , (61
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to the pure Heisenberg case in which T,; would be zero,
since that anisotropy field resists the tilting of the moments
out of the xy plane by H, . The same 7 independence of y
for T < Ty was found for AFM ordering in the presence of
magnetic dipole interactions with or without the presence of
exchange interactions [3]. In contrast, when quantum uniaxial
DS? anisotropy is present in a Heisenberg spin system, x
decreases with decreasing T below Ty [4].

B. Parallel susceptibility of collinear z-axis
antiferromagnets below Ty

In this section, we calculate x;(T < Ty) in the presence of
a uniaxial anisotropy field along the easy z axis as in Fig. 1.
Here we follow the approach of Ref. [4] in which the influence
of quantum DSZ2 anisotropy was studied instead of the present
generic classical anisotropy. In the collinear ordered state, we
consider two sublattices. Sublattice ji; = u; K is taken to point
in the direction of the field H, and sublattice ji; = —u; k to
point in the opposite direction in zero field.

The exchange field seen by a spin on sublattice i is [4]

3kgTny
2823 S(S + 1)

If H, =0, one has ji; = —i; and pu; = po for all spins,
yielding

Hexeni = i1+ f) — i (1= £, (62a)

3kgTnyito

Hexchio = ——— 62b
exchiO gMB(S n 1) ( )
and
8B Hexchi 3 _
= = . 62
Yexch0 kT 5T l)tuo (62¢)
The anisotropy field seen by ji; in the z direction is
3Hay 3Hap _
Hppi; = iz = , 63
Aiz gMBS(S+1)MZ S+1M0 (63a)
yielding
Va0 = SMBIIAG Al (63b)

kT S+ i©

Thus the parameter yj is

Y0 = Yexcho + Yao = ﬁ(l + haito (64)
However, to = t/(1 + ha1), S0 one can also write
3 _
Yo = m#o- (65)

Then the reduced ordered moment in zero field fi( is obtained
at each ¢ or 7 by solving

ito = Bs(yo). (66)
When a field H, is present, one has

gusH; h
==, 67
YH kaT ; (67)

If H, is infinitesimal as needed to calculate x;, one must
go back to Eq. (62a) to obtain the infinitesimal change in the
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exchange field. In this case one has dfi; = dji;, and Eq. (62a)
then gives

3kpTh
dHexchiz = M ize (68)
gu(S+1)
Then one obtains
31y
dYexchi = dii,. 69
Yexch, (S+1)t Hiz ( )
From Egs. (63b) and (67), one also has
3har dh,
dyai = diii,, dyy=—. 70
YA TESY Hiz YH p (70)
The sum of the three changes in dy; is
dy; = 5 (fy + ha)dfi +th (71)
yt—(S+1)t J AlL)A iz P

The change dji;, in the reduced moment on sublattice i is
governed by the Brillouin function, i.e.,

diii; = Bs(yo)dy;. (72)

Substituting dy; from Eq. (71) into (72) and solving for di;,
gives the reduced z-axis susceptibility per spin according to
Eq. (3b) as

1

Xjapm(t) = m, (73)
where
o (S
1) = 3BL00) (74)

If ha1 =0, one recovers the j; expression for the pure
Heisenberg case given in Refs. [5,6].

Using Eq. (1j), one can also calculate jjarv in Eq. (73)
versus fpo = T/ Ty instead of versus ¢t = T /Ty, from

1

X W)= ———, 75
X1aem(Za) = () + han) (75)
where
(S + Dta(l + har)
i (tpa) = - . (76)
AT 3B(y0)
We find
1
Xa=1)=——, (77
e 1= f;
so from Eq. (75), one obtains
X t 1-—
Xiaem(fa) fi (78)

Xta =1 tita) — (fr +ha))’

where 73 (fa = 1) = 1 4 ha; and hence the ratio in Eq. (78) at
ta = 1 is equal to unity as required.

C. Summary: Anisotropic susceptibility of collinear z-axis
antiferromagnets in reduced parameters

Using the definition of the reduced susceptibility in
Eq. (3b), together with Eqgs. (1), (48a), (51), and (75), the
anisotropic reduced susceptibilities versus ta = T/ Ty for the
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FIG. 9. Anisotropic reduced magnetic susceptibilities jy; and j
vs reduced temperature ¢, for two different S values, two different f,
values and for a fixed anisotropy parameter s5; = 1/4, according to
Egs. (79).

PM and AFM phases are summarized as

1
~ JEyem (AFM, 02 < 1)
L= 1 (79a)
T, PM, 14 > 1),
1
— (AFM, 14 < 1)
XH — { A (fJJrhlAl) i, . (79b)
(I+hata—=(fr+har) ( ;A= D,
T h
XII( N) -1+ Al ’ (79¢)
x1(TN) 1—f;
where
S+ DA+ hat
ot = S+ )(/ + har)ia (79d)
3B5(yo)
3o
= 79e
YT S+ Dia e
fto = Bs(yo). (791)

In these reduced susceptibility units, 1 (¢4) is independent
of § for all to, and jjarm(ta < 1) is dependent of S since T
depends on S. These features are illustrated in plots of ji (fa)
and j(ta) in Fig. 9 for S =1/2 and 7/2 and for f; = —1
and f; = 0.5, all with a fixed value of the reduced anisotropy
parameter ha; = 1/4. An important feature of the temperature
dependencies is that xjpm > x1pm at o = 1, but a crossover
occurs where yjapm < Xx1arum at lower 75. From Eq. (79¢),
as f; increases algebraically towards its upper limit of unity
at a fixed value of ha;, the ratio x(Tn)/x . (In) increases, as
observed in Fig. 9.

VII. HIGH-FIELD PERPENDICULAR MAGNETIZATION
OF THE ANTIFERROMAGNETIC
AND PARAMAGNETIC PHASES

In this section, the “perpendicular” direction 1 of an applied
field H refers to a direction perpendicular to the easy axis (for
a collinear AFM) or plane (for a planar noncollinear AFM) of
the anisotropy field Hy.

PHYSICAL REVIEW B 96, 224428 (2017)

Collinear Antiferromagnet
H

Planar Noncollinear Antiferromagnet

H=0
>

FIG. 10. Influence on the generic magnetic structure due to a
high magnetic field applied perpendicular to the easy axis of a
collinear antiferromagnet (AFM) (top panel) and to the easy plane
of a planar noncollinear AFM (bottom panel). Hodographs of the
zero-field magnetic moment vectors are shown on the left. In high
fields as shown on the right, the AFM structures become canted
towards the field. The ordered moments of the collinear AFM are
now coplanar, whereas those of the noncollinear AFM now lie on
the surface of a cone with the axis of the cone along the magnetic
field axis as shown. At a sufficiently high field H = H. arpu given
by Eq. (83), the moments in either case become parallel to each other
and a second-order transition from the canted AFM to the PM state
occurs.

A. Antiferromagnetic phase

The x, arm(T < Ty) for fields H; — 0 was calculated
in Sec. VI A. Here we determine the magnetization in high
perpendicular magnetic fields for both collinear and planar
noncollinear AFMs at fields below the perpendicular critical
field H.iapm = o(H = 0,T < Tn)/x1arm- We find that
UiarM 18 proportional to H; up to H.japm With the same
T-independent slope xapm as for H; — 0 in Eq. (48b), and
that the ordered moment p((7") is independent of H, in the
AFM phase.

For collinear AFMs at high fields, the canted moments lie in
a plane defined by the initial parallel axis and the applied field
as shown in the top panel of Fig. 10. In contrast, for a planar
noncollinear structure at H = 0, in large fields the moments
in a hodograph lie on the surface of a cone with the tails of the
moment vectors at the apex and the axis of the cone along the
applied field axis as shown in the bottom panel of Fig. 10. We
can therefore treat both the collinear and planar noncollinear
cases simultaneously, where the anisotropy field is in the plane
perpendicular to the applied field as shown in Fig. 2.

From Fig. 2, the torque on ji; due to a perpendicular field
H in Eq. (59) is the same as that due to Hy; in Eq. (60) except
for the scalar prefactor and the opposite direction. Therefore
comparing Egs. (59) and (60) one can include the influence of
Hj,,; on the value of the induced moment p; by setting H =
H, — Hppcos 8 in the expression setting the net torque equal
to zero in the absence of Hag [4]. Then using the definitions
w1 =pcosh, i = u/(gSus), and Hpp in terms of Hpp in
Eq. (31a) gives

_ 1
Tng — 6y

3Haipo

M1 l—gS(S~|—1),uB

[CIHL _c } (80)
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where the single-spin Curie constant C is given in Eq. (A1b).

Solving for u; gives

_ CiH,
Tn —6py

L G

where to obtain this equation we used the expression for Ty in
Eq. (36) and the definition of T, in Eq. (1d). Hence

w1 (T <Tn) = xiaemHL (1 < po),

Ci
N

(82)

XLAFM =

where x,apm 1S seen to be the same as the zero-field
perpendicular susceptibility already obtained in Eq. (61),
which in turn is the same as x, pm(7x) in Eq. (55b).

This independence of w, /H, with respect to H, in the
AFM phase indicates that the magnitude w of the moments
is independent H, and in particular is equal to the zero-field
value, i.e., u(T) = uo(T). Thus the T-dependent critical field
H. | apm 1s given by the field at which u, = uo(7), i.e.,

wo(T)
X LAFM '

He amm(T < Tn) = (83)

Using Eq. (3b) together with the variable definitions in
Egs. (1), Eq. (82) gives
1
L+har— fr’

which reproduces the first entry in Egs. (79a). Using Eq. (3b),
one obtains

XLAFM = (84)

S+1
3(1+har — f)

Then using the definition i, = x ] sp/L from Eq. (3a) and
setting i | = fip yields the reduced critical field

S+1_

*
XLAFM =

XL1ARM = 3 (85)

3iio(ta)
S+1

heiarm(ta) = [ i|(1 + hat — f1), (86)
where fiy(za) is found by solving Eqs. (37) and jig(ta = 1) =
0. The dependence of &) apm On £, is thus the same as that of
fo on t5 shown above in Fig. 4. For given values of 74, /a1,
and f7, heiapm(ta = 0) decreases with increasing spin S. At
ta = 0 one has ip = 1. Then Eq. (86) gives

3(L+har — f1)

heiam(ta = 0) = — 511 (87)

B. Paramagnetic phase

The paramagnetic (PM) phase can be reached from the
AFM phase by increasing the field to H, > Hejapm at T <
Tx or by increasing the temperature to 7 > Ty at H; = 0.
In either case, the thermal-average moment induced by the
applied magnetic field H is in the direction of H if H is in
a principal axis direction as considered in this paper. In this
section, both H and the field-induced PM moment 1, are in
the same 1 direction that is perpendicular to the easy axis of
a collinear AFM or to the easy plane of a planar noncollinear
AFM. Then according to Eq. (23a) and Fig. 1 or Eq. (27a) and
Fig. 2, respectively, the anisotropy field Hy is zero in either
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case. Therefore Eq. (A22) and the definitions of the reduced
variables in Eq. (1) immediately give

_ 3fiTnsitipm  gUBHL
=B 88
M 1PM s[ S+ DT ke T (88)
3friiipm | hy
= By| —— + —|. 89
S[(S+1)r+r} ®

Even though H, = 0 for the perpendicular moment orienta-
tion, one still has Ty > Tny if ha; > 0. Therefore to compare
with experimental data we reexpress the reduced temperature
ast — (1 + hay)ta using Eq. (1j), yielding

1 |:3fJﬁLPM +h_J_:|}
L+har LGS+ Dta  1a )

Aipm = Bs{ (90)

The i, pm for given values of ho1, f; and t is determined by
numerically solving Eq. (90).

The results for the two cases | < hciapm(fa) and i >
heiapm(fa) are summarized respectively as

ay(hy)
(S+Dh
_ {m (AFM, hy < heiapm)

B 1 3fi h P M
S{ 14+ha; [(S":{l;_A t:]} ( M, hJ_ = hCJ_AF )
1

)

where h.) apv 18 given in Eq. (86). Using Egs. (91), the i,
versus /i, curves for spin S = 1/2 and 7/2 with f; = —1 at
four reduced temperatures and 25, = 0 and 1/2 are plotted in
Fig. 11. A discontinuity in the slope of i, versus & is seen
at h) = hej apm for each reduced temperature 74, reflecting a
second-order transition from the canted AFM to the PM phase.

VIII. HIGH-FIELD PARALLEL MAGNETIZATION
OF z-AXIS COLLINEAR ANTIFERROMAGNETS:
PARAMAGNETIC AND SPIN-FLOP PHASES

A. Introduction

When a collinear AFM is placed in a magnetic field parallel
to the easy axis (defined to be the z axis here), different
T -dependent behaviors can occur. A first-order spin flop (SF)
transition may occur from the AFM phase to a SF phase as
shown in the top panel of Fig. 12, where the orientations of the
ordered moments aligned along the z-axis flop with increasing
field to an approximately perpendicular canted perpendicular
orientation [12]. It is common to use the term “spin flop”
to denote both the magnetic phase and the magnetic phase
transition. Upon further increasing the field, a second-order
spin flop to paramagnetic (PM) phase transition occurs in
which all moments then point in the direction of the field.

The PM phase is sometimes called a “ferromagnetic phase”
in the literature because the magnetic structure of the field-
induced PM phase has ferromagnetic (FM) alignment of the
field-induced moments. However, we reserve the term “ferro-
magnetic phase” for a ferromagnetic structure that is caused by
the interactions between the moments in zero applied magnetic
field, not by the field. Indeed, a thermodynamic transition from
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FIG. 11. Reduced perpendicular moment fi; = () /fhsa VS T€-
duced perpendicular field &, for spins S =1/2 and § =7/2 at
the reduced temperatures 4, = 7'/ Ty indicated for parameters f; =
—1 and reduced anisotropy fields (a) ha; = 0 and (b) hay = 1/2,
according to Egs. (91). Discontinuities in slope at fields A, (T) are
seen as the system undergoes second-order transitions from the canted
AFM state to the PM state with increasing field. The reduced critical
fields at 14 = 0 for ha; =0 are heiapy = 4/3 and 4 for S =7/2
and 1/2, respectively, and for hyy = 1/2 are hejapm = 5/3 and
5 for § =7/2 and 1/2, respectively. Both are in agreement with
Eq. (86).

a PM phase to a FM phase cannot occur versus 7 in finite H
because the FM order parameter (the net magnetization) is
never nonzero in a finite H at a finite 7.

A first-order spin-flip transition may occur with increasing
field directly from the AFM phase to the PM phase if the
anisotropy field along the z axis is sufficiently strong, as shown
in the middle panel of Fig. 12. Within MFT, the magnitude
and direction of the initially antiparallel moment can also vary
smoothly with field, resulting eventually in a second-order
AFM to PM transition as shown in the bottom panel of
Fig. 12.

B. z-axis induced moment and free energy
of the paramagnetic (PM) phase

In this section, we change notation for the PM phase from
i to wzpm. The general high-field expression for the PM phase
was already obtained in Eq. (50). Utilizing Eqgs. (1), Eq. (50)
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Collinear Antiferromagnets

1
AFM Spin Flop PM
1=~ —11
AFM PM

Al

Gradual Spin Flip
AFM PM

=l —=1—1]

FIG. 12. Phase transitions that can potentially occur in collinear
antiferromagnets (AFM) when a magnetic field H is applied along
the easy axis. The magnitude H of the field increases from left to
right. The top panel shows a first-order spin-flop (SF) transition that
occurs from a collinear AFM structure to a SF phase at a SF field
Hsp, which is a canted AFM structure. At higher fields, the angle
between the two sublattice magnetic moments goes continuously to
zero, corresponding to a second-order transition from the SF phase
to a paramagnetic (PM) phase at a critical field H.sg. Alternative
scenarios with increasing H include either a first-order spin-flip
transition directly from the AFM to the PM phase as shown in the
middle panel, or a continuous evolution (“gradual spin flip”) of the
AFM phase into the PM phase via a second-order phase transition as
illustrated in the bottom panel.

can be written in reduced variables as

izpm = Bs(ypm),

_ 3(fy +hA1)p_L n h
Ypm —(S+1)t ZzPM p
1 3(f5 + ha1) _
= h,|. (92
(1+hAl)tA|: S+1 MzPMJF z] ( )

When the reduced temperature is taken to be 7, one can write

b
ypm = sz (93)

where the reduced magnetic induction b, seen by a represen-
tative spin is

3(fy + har) _
b, = %uzm + h.. (94)

Shown in Fig. 13(a) are plots of jipm versus reduced field
h, obtained from Eqgs. (92) for parameters f; = —l and ha; =
1/2, each for spins S = 1/2 and 7/2, at reduced temperatures
t = T/ Tny as indicated. Perhaps unexpectedly, fi py for  —
0 is seen to be proportional to 4, from h, = 0 to a critical
field Acpm at which fipy saturates to the value of unity and
continues to have that value at higher fields. The scale of the
abscissais reduced by about a factor of 3 for § = 7/2 compared
tothat for § = 1/2. However, the shapes of the plots for the two
spin values are very similar for the same reduced temperature.
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FIG. 13. Reduced z-axis moment /4 pm/[Lsy Of the paramagnetic
(PM) phase vs reduced field h, = gugH,/kgTn, for spins (a) S =
1/2and (b) S = 7/2 at the indicated reduced temperatures t = 7'/ Ty,
and for f; = —1 and ha; = 1/2, according to Eqgs. (92).

Inh, = 0, one sees from Fig. 13 that ji_py = 0, so Eq. (20a)
gives the internal energy per spin as

Umag(hz =0,0) _

0. 95
ksTny ©>)

Also, the PM phase in 4, = 0 is completely disordered at all
temperatures, so the entropy per spin is

Smag(hz =0,1)

=In(25 + 1). (96)
kg
Thus the free energy in 4, = 0 is given by Eq. (20d) as

Frae(h, =0,t
Fiagh: = 0.1) _ —tIn(2S + 1). 97)
ksTny

Now including the field dependence using Eq. (20e) gives

Frnao(h. t he
Finaghe,) —tIn2S + 1) — s/ iz (h.,t)dh,. (98)
ksTny 0

The reduced free energy is plotted versus A, for spins S = 1/2
and S = 7/2 in Fig. 14 with the same parameters as in Fig. 13,
obtained using Eq. (98).
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FIG. 14. Reduced free energy Fi.,/kgTns of the paramagnetic
(PM) phase vs reduced field 4, for spins (a) S = 1/2and (b) S = 7/2
at the indicated reduced temperatures ¢ and for f; = —1 and ha; =
1/2, obtained using Eq. (98) and the data in Fig. 13.

C. Spin-flop phase of collinear antiferromagnets
1. Ordered moment in zero field

The magnetic structure and magnetic field orientation in
the spin-flop (SF) phase in the top panel of Fig. 12 with
nonzero anisotropy field Hp along the easy axis are the same
as those used for calculation of the high-field perpendicular
magnetization in the Appendix for the case of zero anisotropy
field Ha = 0. In that case we obtained Eq. (A38) in which
the reduced ordered moment i = w//g, depends only on
t = T/Tny and not on the applied field H, if H) < H,.
Equation (A38) is identical to Eq. (A14) for determining fio(?)
for H = Hp = 0. Similarly, in the spin-flop phase, H and Hp
are in the same direction perpendicular to the H = 0 AFM
ordering plane and hence the ordered moment again cannot
depend on H, or Hy and is therefore given by the same
Egs. (A38) and (Al14). We have confirmed this conclusion
from detailed numerical exact-diagonalization calculations in
Sec. VIII C 2b below. Thus Eq. (A38) in the case of the SF
phase reads

_ 3Lk
fsp = BS[—(S n 1)ti| (99a)
3jisp
=B , 9b
S[<S+1><1+hAl)zA] O
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FIG. 15. Reduced ordered moment fisp = ftsp/sa Of the spin-
flop phase vs reduced temperature ¢, for spins S = 1/2, 3/2, and 7/2
with ha; = 1/3, calculated from Eq. (99b). The ordered moment of
the SF phase does not depend on f; or on applied field for 4, < hcgp.

where to obtain the second equality we used Eq. (1j). The
ordered moment in the SF phase goes to zero at a temperature
Tny below the Néel temperature Ty, as shown in Fig. 15
for spins S = 1/2, 3/2, and 7/2 with ha; = 1/3 for which
Tny/ Tn = 3/4 according to Eq. (1i). This feature is critically
important to the construction of the phase diagrams in the /-5
plane that are presented in Fig. 32 below.

The total derivative of fisp with respect to reduced tem-
perature 74 is obtained by substituting t — (1 + hay)ta from
Eq. (1j) into Eq. (A15), yielding

djisp JLSF
- , (100a)
(S+D(1+ha1)
dita t,\[—wg_(y;;1 1]
where
30
Va il (100b)

T S+ D+ hanta’

fsr(ta) is obtained by numerically solving Eq. (99b) and the
Bs(ya) and Bg(ya) functions are given in Eqs. (All). For
ha1 = 0, Eq. (100a) reduces to Eq. (A15) (with o = 1), as
required.

2. Magnetization versus z-axis field

The magnetic susceptibility y.sp along the easy z axis of
the SF phase shown in the top panel of Fig. 12 is not the same
as y of the AFM phase in Eq. (61) obtained when the applied
field is perpendicular to the easy axis or plane as in Fig. 10. The
reason for this difference is that when the applied field is along
the z axis in the SF phase, this field and the anisotropy field
are in the same direction for all magnetic moments, whereas
in the AFM case the anisotropy field lies within the xy plane
and hence these two fields are perpendicular to each other.
Thus the reduced critical field for the spin flop phase hsF, at
which the ordered moments become parallel to the field with
increasing field, is smaller than A apm of the AFM phase in
a perpendicular field in the presence of an anisotropy field.
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a. Torque calculation. To calculate the z-axis suscepti-
bility of the SF phase, we use a similar calculation as in
Sec. VII A, but with the replacement

3 HAI ,ELSF cos b
H — H+Hys=H +—F——F,
s .+ Ha .+ S+ 1
where we have used Egs. (23a) and (31a) to express Hj in
terms of Ha; and have set6; — 0 and fi;, i — fisg. Inserting
this expression into Eq. (A30) gives

(101)

3ks _ 3gupHaifisk cos 0
Tng — 6 0= H, .
ST 1( NJ — Op)iksF €Os gusH; + ST 1
(102)
Then solving for ji,sp = [isp cos6 gives
_ (S + Dh,
= — 103
T R (103a)
30— fr—ha) _
hy = —— , 103b
or h; S+l zSF (103b)

where we used Tny — 6,y = Tny(1 — f;), the reduced
anisotropy field hs; was defined in Eq. (1i), and similarly
for the reduced applied field /.. Thus i, o< ki, in the SF phase.
Since j1; > 0, the maximum physical range of h; is

0< har < 1—fy. (104)

The reduced susceptibilities defined in Egs. (3a) and (3b) are
then

S+1
XSFk = ——— X, (105)
T30 = f = ha)

1
V.G = ——————————. 106
XzSF 1= f) (106)

One sees by comparison with Eq. (84) that x.sg > j1apm- This
inequality was qualitatively explained previously by Buschow
and de Boer [13].

b. Alternate Hamiltonian diagonalization calculation. In
this section, we give an alternative derivation of the field-
induced moment of the SF phase. The energy E; of a
representative spin i in a magnetic induction B; is

Ei = —ii; -B; = gusS-B;, (107)

where in the second equality we used the expression for the
magnetic moment operator

i = —gugS, (108)

the negative sign comes from the negative charge on the
electron, and S is the spin operator. As usual, we normalize all
energies by kg Tny, so Eq. (107) becomes

E;
€ = =S-b,‘,
ks Tng

(109)

where the reduced induction b; is defined as in Eq. (1c), and
b; is the sum of the reduced applied, anisotropy, and exchange
fields.

Using Egs. (A3), (A6), (A27), and (107), the exchange part
of the reduced Hamiltonian for S;, assumed without loss of
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generality to lie in the xz plane, is

2
- SM_—i-SFl(SX sind + £,5. cos6)

Hexchi
ksTny

3
= 7 (Seflasr + frSefizsp),  (110a)

S+1

where we used the relations jisp = (Usp/gUBS, xsF =
fAspsin®, and fi,sp = fispcos@, and usg is the magnitude
of the ordered moment of each spin. Here, S, is the usual
combination of raising and lowering operators S, = (S +
S_)/2 and S, is diagonal in the |S, S;) Hilbert space. Similarly,
the parts of the Hamiltonian for the anisotropy and applied
fields are

Hai 3hat _

= S., 110b
ksTny S+ 1P ( )
Hui
kng = S.h.. (110¢)

We thereby obtain the total reduced Hamiltonian

H 3idxsE 3jisF
— . hat)+ b |S
kBTNJ (S+1> +|:(S+1 (fJ+ A1)+ z 4

= beX +sz17 (llla)
where
x = 3ﬁXSF, bz = 3ﬁZSF (f./ +hAl)+hZ' (lllb)
S+1 S+1

The reduced magnetic moment operators for reduced eigenen-
ergies €, = E,/kgTny withn = 1t0 2S5 + 1 are [4]

_ 1 de,

AP = —— : (112a)
S 3by by =31, /(S+1)
1 de,

A = — S (112b)
S 8bz b.=[3/1./(S+DI(fs+ha)+h:

Then the thermal-average reduced moments fi,sp and fi,sp
for the SF phase are calculated by solving the simultaneous
equations

| 23+
flose = —— 3 APe N,
ZS n=1
- (113a)
7 — 1 + _op _E"/t
MzSF = Z_S Z I’LZ e )
n=1
where the partition function is
25+1
Zs = Z el (113b)
n=1
the reduced magnitude of the ordered moment is
AsE = +/ W 2ep + 22 (113c)
MUSF Hysg T Mzsks C

and in this section we use the reduced temperature t = 7/ Ty -
The two Eqgs. (113a) are solved iteratively for fi,sg and ji sp
for each desired combination of f;, hay, h;, and ¢ for a fixed
spin S [4].
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FIG. 16. Reduced induced moment per spin fi, = i/ sy fOr the
low-field spin-flop (SF) and high-field paramagnetic (PM) phases of
a collinear or planar noncollinear antiferromagnet vs reduced field
h, for reduced anisotropy field 4y, = 1/2 and f; = —1 at reduced
temperatures t = T /Tyy; from 0.05 to 0.95 for spins (a) S = 1/2,
(b) 2, and (c) 7/2 calculated using Eqs. (113). The SF and PM field
ranges are separated by a break in slope in ji, versus /. at the reduced
critical field h, = h.sp(¢) in Eq. (114). Note the different abscissa
scales in (a)—(c).

Calculations of fi,sp versus &, isotherms at many ¢ values
obtained using Egs. (113) are shown in Fig. 16 for spins
S=1/2, 2, and 7/2 with f; = —1 and ha; = 1/2, where
the data for the PM phase at i, > h.sp (below) are obtained
automatically. These results agree with what would have been
obtained from the results in the previous section based on
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torque calculations. We also find that the magnitude of the
reduced ordered moment figr is independent of %, for the SF
phase (over the proportional part of the fi, versus &, isotherm)
at each temperature.

3. Critical field

The critical field H.sp of the spin flop phase is defined as
the value of the applied field H, at which all the magnetic
moments become aligned with the field, as in the right-hand
side of the top panel of Fig. 12. Since p,sp/ H, is independent
of H, within the SF phase, this criterion and Eq. (103a) gives
the reduced critical field

30— fr—har) _

hesp= ———— ,
cSF S+l MUSF

where figr versus t or ta is obtained by solving the first or
second of Egs. (99), respectively. The h.sr is dependent on
temperature because figr is. Since 0 < jisg < 1, the physically
relevant range for positive A g is

3(1 = f5 — har)
S+1 '

For h, > h¢sp, the system is in the PM phase with all induced
moments having the same magnitude ji_py and pointing in the
direction of H.

Shown in Fig. 17 are plots of h.sp versus t5 for f; = —1
and spins § = 1/2 and 7/2, each with anisotropy parameters
ha1 = 0to 1. The shapes of the curves are noticeably different
for the two spin values. One also sees that the critical fields are
much smaller for S = 7/2 than for § = 1/2, consistent with
Eq. (114).

(114)

0 < hese < (115)

4. Spin-flop and paramagnetic phase magnetization summary

To summarize, the field dependencies of the magnetization
for the low-field SF and high-field PM phases are given by
Egs. (103a) and (92), respectively, as

- (S + D,

=T (116
M zSF Mz 3(1 — fl — hAl) ( z cSF) ( a)
itzpm = Bs(ypm), (116b)

1 3(f7 +hay) _

= h

Y (1+hA1>tA[ sy1 T }
(h > hesp),

where hgp is given in Eq. (114) and jigp is obtained by solving
Eq. (99b). Note that the slope of fi.sp versus h, for the SF
phase in Eq. (116a) depends on S, f;, and k41, and not on the
temperature. The temperature only determines the maximum
field at which the proportionality occurs.

The reduced z-axis moment of the SF phase jisF is plotted
versus the reduced field %, in Fig. 18 for t4 = 1/2 and for
S =1/2 and 7/2 with ha; = 0 to 1. The low-field SF portion
is proportional to %, but then undergoes a second-order phase
transition via a slope reduction to the PM state for which fi,sr
exhibits negative curvature. For ha; = 1, only the PM phase
occurs for both spin values, as seen in Fig. 18, because one
can show that A.gp = 0 for any S if f; = —1, 14 = 0.5, and
ha1 = 0.5, as illustrated in Fig. 17 for S = 1/2 and 7/2. It is
important to note here that ¢4 is not proportional to the absolute
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FIG. 17. Reduced critical field h.sg for the spin-flop phase of a
collinear antiferromagnet vs reduced temperature 5 with f; = —1
and ha; = 0 to 1 for spins (a) S = 1/2 and (b) 7/2, calculated using
Eq. (114).

temperature, since it depends on s a; according to the formula
in the figures. Therefore, in Fig. 19, the same quantities are
plotted as in Fig. 18, but where the reduced temperature
t = T/Tny, proportional to the absolute temperature 7, is
fixed to the same value of 1/2. Qualitative differences are
seen between the two figures.

5. Internal energy versus temperature

We established in Sec. VIIIC2 that the ordered moment
fsr is independent of field within the SF phase, i.e., for 0 <
h, < hesp(t). For h, = 0, the ordered moments are oriented in
the xy plane for which the anisotropy field is zero as inferred
from Eq. (23) and Fig. 3(b). Hence the magnetic induction
seen by a spin is identical to that of a spin in an AFM in zero
applied and anisotropy fields, and therefore the internal energy
per spin is given by Eq. (A17) or by Eq. (40c) with ha; = O,
ie.,

Unag 38

2
= , (117)
kT Ho

2S5+ 1)
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FIG. 18. Reduced ordered moment fi, = .,/ Vs reduced
field h, for the spin-flop (SF) and subsequent paramagnetic (PM)
phases of a collinear or planar noncollinear antiferromagnet at
reduced temperature 1, = T/Ty = t(1 + hay) = 1/2 with f, = —1
and ha; = 0 to 1 for spins (a) S = 1/2 and (b) 7/2, calculated using
Egs. (114) and (116). The SF and PM ranges are separated by a break
in slope in w, /sy Vs h, at h, = h.sp. However, the curve in each of
(a) and (b) with ha; = 1 is paramagnetic over the full field ranges
shown.

where fi((¢) is obtained by solving Eq. (A14). At ¢t = 0, one
has jip = 1, yielding
Umag(hz < hesg,t = 0) _ 35
kT S+’

(118)

Shown in Fig. 20 are plots of Upag/ksTns versus ¢t for
spins S = 1/2 to 7/2 in half-integer increments. The internal
energy for all spin values goes to zero at the same temperature
T = Tny because fjip does. One also sees that Eq. (118) is
satisfied for all spin values.

6. Free energy

The free energy Fi,g is calculated from Egs. (20) using
Eq. (117) and Up,g data such as in Fig. 20 and i, (h_,t) data
such as illustrated in Figs. 16 and 19. Plots of Fiag/kpTny
versus h, at fixed values of r = T /Ty, from 0.05 to 1 for
spins S = 1/2 and 7/2 are shown in Fig. 21. Because the free
energy in Eq. (20e) is derived from an integral of j.(h,t)
over h,, the second-order transitions between the SF and PM

Reduced Field hZ

FIG. 19. Same as Fig. 18, except that the reduced temperature
t = T /Tny is fixed at the value of 1/2 instead of 1A =T/ Ty = 1/2.
The plots are different than in Fig. 18 because Ty depends on /4.

states at 1, = h¢sp are not obvious from the figure. The value
of h.sr(t = 0) for each spin value is given in the respective
panel.
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FIG. 20. Internal energy per spin Uy, normalized by kgTn; Vs
reduced temperature ¢ for the spin-flop phase with spins § = 1/2 to
7/2, obtained from Eq. (117). Upyg is independent of field in the field
range of stability of the SF phase with respect to the PM phase, given
by 0 < h, < hesp, Where h.gp is given in Eq. (114).
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FIG. 21. Reduced magnetic free energy per spin Fy,,/ksTn, for
the low-field spin-flop (SF) and high-field paramagnetic (PM) phases
of a collinear or planar noncollinear antiferromagnet vs reduced
field &, for reduced anisotropy parameter ha; = 1/2 and f; = —1
at reduced temperatures ¢ = T/ Ty, from 0.05 to 0.95 for spins (a)
S =1/2 and (b) 7/2, calculated using Egs. (20e), (116), and (117)
together with fi.(h,,t) data such as in Figs. 16 and 19. Note the
different axis scales for the two panels. The second-order phase
transitions from the SF to the PM phase occur at h, = hsp(?) in
Eq. (114) and Fig. 17 and are not obvious in either panel. The
respective value of h.sp(t = 0) [the upper limit of A sg(¢)] is shown
in each panel.

IX. HIGH-FIELD PARALLEL MAGNETIZATION
OF z-AXIS COLLINEAR ANTIFERROMAGNETS:
ANTIFERROMAGNETIC PHASE

Here we consider the general behavior of a collinear AFM
where the field is applied along the easy z axis of the AFM
structure at finite temperatures. By definition, in the collinear
AFM phase the ordered moments are always aligned along the
Z axis.

A. Preliminaries

When the magnetization along the easy axis of a collinear
AFM becomes nonlinear in finite fields, one must define two
different sublattices 1 and 2 because in general the magnitudes
of the ordered moments parallel and antiparallel to the applied
field H are different by amounts greater than infinitesimal.
Sublattice 1 is defined to consist of all moments that are

PHYSICAL REVIEW B 96, 224428 (2017)

parallel to H and sublattice 2 consists of the moments that
are antiparallel to H when H, = 0. When H, increases, the
magnitudes of the z-components (1, and w,, are in general
not the same, which gives a net uniform magnetization in
the direction of the field. However, within the unified MFT
we do not require the two sublattices to be bipartite, where
the exchange interactions only connect spins of one sublattice
with those on the other. The exchange interactions can connect
further neighbors and can be nonfrustrating and/or frustrating
for AFM order. An anisotropy field along the uniaxial z axis
is present, as shown in Fig. 1.

For moments /i; and /i; on the same (“s”) sublattice of a
collinear AFM structure, as defined above, the angle between
the moments is ¢;; = 0 in Eq. (A3) and for a pair of moments
on different (“d”) sublattices, the angle between them in H, =
0is ¢;; = 180°. We then write the expressions (A6a) and (A6b)
for Tyy and 6,5 at H; = 0 for the two-sublattice collinear
AFM, respectively, as

S(S+1) s d
Ty = BT 2}: Jij —; Ji |, (119a)

S+ 1) [ d
T DT+ Ji | (119b)
J J

Solving these simultaneous equations for the two sums gives

ZS _ 3ks(Ing +6ps) _ 3ksTny( + f2)
1y — =

’

- 25(5 4+ 1) 28(S+1)
(120)

Zd _ 3ks(Tny —6py) _ 3kgTny(1 — f))

Y28+ 1) 28+ 1)

where f; = 6,;/1Tny is defined in Eq. (A7). We emphasize
that Txy, Opy, and f; are defined, even in the presence of the
anisotropy field, only in terms of the exchange constants and
magnetic structure by the above equations, whereas Ty and 6,
are the actual Néel and Weiss temperatures in the presence of
a uniaxial anisotropy field and zero or infinitesimal magnetic
field that are both aligned along the easy z axis.

In the following, we parametrize the high-field magneti-
zation using the variables f;, which only depends on the
exchange constants and AFM structure, and the reduced
anisotropy field 4, defined in Eq. (1e). This choice of vari-
ables allows one to separate the effects on the magnetization
due to the anisotropy field from those due to the exchange
interactions and AFM structure.

B. Exchange, anisotropy, and applied fields

For a collinear AFM in a parallel applied field H, along
the easy z axis, only the z components of the moments and
the exchange fields are relevant. Using the definition f;, =
Wiz/sat = Miz/(gSup) for the two sublattices i = 1, 2, and
Egs. (A3) and (120), the z component of the exchange field
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seen by each moment on sublattice 1 is

1 N d
Hexeh1; = — > 2 MIZZ Jij +MZZZ Jij
8 Hp j j
3kpTny _
= —[f11:(1 — 1- .
S2in(S + 1)[ML( + f1) — o (1 = f1)]

(121a)

We express the magnetic fields in reduced form using Eq. (1¢).
For the local exchange field seen by a spin in sublattice 1 in
Eq. (121a), the reduced field is

_ 3L+ fy) — (1 = )]
B 28+ 1) '

SUB Hexch 1z
ks Tns

hexch 1z =
(121b)

Similarly, the exchange field for a spin in sublattice 2 is

1

d S
Hexchoz = — ) MIZZ Jij+ﬂ212 Jij
§ 1y j j
= N ) e+ )
= 2ams(S + 1) M1z J M2z J)1

(122a)
yielding the reduced exchange field

3[_lalz(1 - fJ) + ﬁZz(l + f./)]
25+ 1) '

8MUB Hexch 2z
ks TNy

hexch 2 =
(122b)

Using Egs. (23b), (31a), (A20), and the expression fi; cos 8 =
iz, one obtains the anisotropy field

_ 3Hy,
S+l
yielding the reduced anisotropy field

iz, (123a)

Ai

_ 8gupHai;  3har _

hpi; = = iz- 123b
Aiz kB TNJ S+ 1 iz ( )
One also has the reduced applied field
H
h, = 8HBT: (123¢)
kgTny

The total reduced local magnetic inductions seen by spins
in sublattices i = 1, 2 are then

guBB;;

b, =
ksTny

= hexchiz + hAiz + hz- (124)

Inserting the above expressions for the components on the
right-hand side gives

[ (1 + fr +2ha1) — flo (1 = )]

b, = S+ + h,, (125a)
by, — 3[=p(1 = fo) + (1 + fy + 2ha))] h
S 2S + 1)
(125b)
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C. Coupled equations for the two sublattice magnetizations

The values of fi;; (i =1, 2) versus H and T are governed
by separate Brillouin functions for the two sublattices as
in Egs. (A10). One thus has two simultaneous consistency
relations

_ biz .
Riz = BS(T) (i=12). (126)

Substituting Eqs. (125) into (126) gives

3.1 Qhay) — fin(l — h.
ﬂlz=Bs{ [Z1(1 4+ f7+2ha1) — fo( fJ)]_’__}’

2(8 + 1t t
(127a)
e = Bs{ 3= (1 = fr)+ flo,(1 + fr + 2ha1)] n E}
25+ i :
(127b)

When H,=0 and T < Ty, one has i, = —ji;; and
Egs. (127a) and (127b) each reduce to the same general
expression (37) for the ordered moment versus temperature,
as required. For the PM regime T > Ty, fi1, = i, and
Egs. (127a) and (127b) each reduce to the z-axis magnetic
moment of the PM state of the AFM given by Egs. (92), as
also required.

D. Sublattice, average and staggered moments, and free energy
versus magnetic field, temperature, and anisotropy parameter

Two important quantities can be obtained from Eqgs. (127)
from which the thermal-average sublattice magnetic moments
f1; and fi,, versus temperature, magnetic field and anisotropy
parameter are calculated. The first is the net average magnetic
moment, normalized by the saturation moment, which is

fzave = M (128a)
2
This is the uniform magnetization along the easy axis mea-
sured in a conventional magnetometer. The second important
quantity is the AFM order parameter FLI, which is the average
z-axis staggered moment in the z direction normalized by the
saturation moment, given by

Al = Bl R (128b)
2

By assumption fij, > fiy;, SO ,ELZ > 0. The spin system is in

the AFM phase when [Li > ( and is in the associated high-field

PM phase when ,11 = 0.

The potential phase transitions between collinear AFM and
PM states discussed below will be preempted if the free energy
of the AFM phase for some combination of ¢, h,, and ha; is
higher than that of the SF phase, and conversely. Therefore
in this section we eventually determine the free energy of
the AFM phase versus temperature from the values of the
thermal-average moments i1, and fi,, in the presence of the
anisotropy and applied fields for comparison with the free
energy of the SF phase found previously in Sec. VIIIC 6.

Equations (127) were solved for fi;, and fi,, versus h,
for given values of S, ¢, f;, and ha; using an iterative
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FIG. 22. Ordered moments fi;, = ;. /Msa (i = 1, 2) of the two magnetic sublattices along with the AFM order parameter ﬂz = (fl1; —
fi2;)/2 and the average ordered moment i, e = (@11, + fl2;)/2 for spin S = 1/2, f;, = —1, and ha; = 0, all vs the reduced applied magnetic
field &, along the easy z axis for reduced temperatures ¢t = 7'/ Ty, of (a) 0.1, (b) 0.5, (¢) 0.8, and (d) 0.95. The AFM regime is defined by the
region where [L‘; > 0, and the PM regime is defined by p,‘; = 0. The transition field between these two regimes is defined as the criticial field
hearm. Only second-order transitions are observed for 0 < 74 < 1 with f; = —1 and ha; = 0.

procedure [4]. Starting with 4, = 0, the initial value of fi;,
was set to 1 and ji,, solved for. Then for that value of jiy,, i1,
was solved for. These steps were iterated until the differences
in fi1; 2, between subsequent iterations were each less than
1071, Typically, the number of iterations needed was less
than 10, but occasionally up to ~10* iterations were needed
when approaching a phase transition. Once i, and fi,, were
determined, fizave = (@1, + f12;)/2 and ﬁé = (f1z — 22)/2
were determined. This sequence was repeated for the next
value of /., where the starting value of fi;, was the final value
from the previous value of 4.

Shown in Figs. 22 and 23 are plots of ji1;, 2, fzave, and
ﬁi versus i, for f; = —1,ha; =0, =0.1,0.5,0.8, and 0.95
for spins § = 1/2 and 7/2, respectively. The data versus A, for
S =1/2and S = 7/2 have similar evolutions of the shapes on
decreasing temperature, but the abscissa ranges for S = 7/2
are a factor of three smaller than for S = 1/2. Qualitative plots
of fi;,(i = 1, 2) similar to those in Figs. 22 and 23 were shown
in Fig. 11 of Ref. [14]. The boundary between the AFM and PM
states occurs with increasing field when ﬁz — 0T. We denote
this reduced critical field by A apm. Thus for i, > h¢ apm, One
has i1, = fi», and [LI = 0. Second-order transitions at /i Apm
are observed for the full temperature range 0 < o < 1 for
f] = —1 and hAl =0.

First-order transitions between the AFM and PM phases
can occur over a range of low temperatures ending at a
tricritical point temperature above which the transitions are
second-order. For example, we changed f; from —1 to the
value of —1/4 while leaving h.Al = 0 as in Fig. 22. Numerical
solutions for ji;, (i = 1,2), fi, and fi. 4 are plotted versus
in Fig. 24 for reduced temperatures 14 = 0.1, 0.5, 0.8, and 0.95.
At high T, the AFM to PM transitions are seen to be second
order. However, at ¢t = 0.5 and 0.1, the transitions are strongly
and weakly first order, respectively, where a discontinuous
change in the AFM order parameter ,ai occurs at the transition.

We carried out additional calculations of ,ai and i qve
versus /1, and reduced temperature t = T/ Ty . Plots of i ,ve
versus h, for spin S =1/2 and f; = —1 for t =0.05 to
0.95 for reduced anisotropy fields ks = 1/4, 1/2, 3/4, and
I calculated using Eqgs. (127) are shown in Fig. 25. One sees
a clear evolution from first-order to second-order transitions
with increasing temperature. The values of the AFM critical
field h.apm were determined from Fig. 25 as the value of A,
at which i — 0 with increasing /.. Second-order transitions
are characterized by a continuous change for i — 0, whereas
a first-order transition shows a discontinuous change as noted
above. After converting ¢ to t4 using Eq. (1j), plots of the
resulting h.apm versus fa are shown in Fig. 26 for S =
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FIG. 23. Same as Fig. 22 except for spin § = 7/2. Note the factor of three difference in the abscissa scale between this figure and that one.

1/2, f; = —1, and ha; values from O to 1. The first-order
transition data are represented by solid red curves, and the
second-order data by solid curves connecting data points of
different colors. These plots are not phase diagrams, which
are given in Fig. 32 below for the same values of h; as in
Fig. 25 and also for #x; = 0 and 1/8.

E. Magnetic free energy

Once i qve is determined as described above, the reduced
magnetic free energy of the AFM phase Fiagarm/kpTny is
calculated versus ¢, h,, and ha; using Egs. (20). Plots of
Fnagarm/ kg Tny versus h for f; = —1, S = 1/2 and reduced
temperatures ¢ from 0.05 to 0.95 are shown for reduced
anisotropy fields ha; = 1/4to 1 in Fig. 27. One sees that at low
temperatures for each value of hia1, Fragarm/ksTns shows a
discontinuity in slope at the respective Acapy corresponding
to the first-order discontinuity in ji, in Fig. 25, whereas at the
higher temperatures Fragarm/ ks Ty varies smoothly through
hearm, corresponding to a second-order transition in fi,, as
quantified in Fig. 26.

X. PHASE DIAGRAMS

The phase diagrams discussed here are those with the
anisotropy field oriented along the z axis as in Fig. 1, for which
the ground state in 4, = Qis a collinear AFM aligned along that
axis, and with a reduced external field &, in the 4z direction.
We first discuss the zero-temperature properties and phase
diagrams of Heisenberg systems with classical anisotropy

fields and then extend the discussion to finite-temperature
phase diagrams. Because phase diagrams for S = 1/2 are not
relevant when uniaxial quantum DSZ2 anisotropy is present
in Heisenberg spin systems [4], here we emphasize phase
diagrams for this spin value.

A. Zero-temperature phase diagrams
and magnetizations versus field

The zero-temperature properties and phase diagrams are
determined from the relative free energies of SF and AFM
phases and their dependencies on the parameters S, f;, hai,
and 4. The PM phase appears at and above the critical field
of the phase with the lower free energy.

1. Spin-flop phase

For t — 0, the entropy of the SF phase in H, = 0 is zero
due to the nondegenerate ground state arising from the nonzero
exchange field, so Egs. (20) yield

FmagSF(hz =0, —> 0) _ UmagSF(hz =0,t = 0)
kBTNJ kBTNJ

he
s / Frasihost — O)dh..
0

(129a)
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FIG. 24. Same as Fig. 22 except that here f;, = —1/4. The data for + = 0.1 show strongly first-order transitions, for + = 0.5 weakly

first-order transitions, and second-order transitions for t = 0.8 and 0.95.

Equation (118) gives the first term as

Umagse(h: = 0,6 > 0) 3§ (129b)
ksTny 25+ 1)
and Egs. (116) give
h:/hese  (hy < hesr)
isp(h;,t — 0) = , 129
fasilheot = 0) {1 h > hes) 00
where Eq. (114) gives the SF critical field as
31— f; —har)
hesp(t > 0)= ————— 129d
st — 0) S+ (129d)

using fisg = 1 fort — 0. Thus Eq. (20e) gives the normalized
free energy of the SF phase versus £, for ¢+ — 0 as

FmagSF(hz’t - O)

kgTny
38 2
_ 7w e (h, < hesr)
— s — S[E + (h. — hesp)] (e = hesp).
(130)

2. Antiferromagnetic phase

For the AFM phase at t — 0, the moments cannot respond
to the field without a spin-flip transition to the PM phase.
Also, the entropy is zero at ¢+ — 0 because the ground state
is nondegenerate on account of the presence of the exchange

and anisotropy fields. Thus using Eq. (40c) with fig = 1, the
reduced free energy per spin is

FmagAFM(hzyt - 0)

ksTny
_ UmagAFM(hzat - 0)
kgTny
3S(1 + hay)
= U T < hoar). 131
25+ 1) (h; cAFM) (131)

Thus if hay = h, = 0, the free energies of the SF and AFM
phases in Egs. (130) and (131), respectively, are the same, as
required. The AFM critical field hcapm, at which fi,, = —1
flips to the PM state with fio, = fi1; = 41 with increasing 4,
is determined next.

The spin-flip field to the PM state (the t = 0 AFM critical
field hcapm) is determined by the conditions under which [ﬁ
in Eq. (128b) goes to zero with increasing /.. This was carried
out by solving Eqgs. (127b) at t+ = 0.01 for various values of
S,ha1 > 0and —1 < f; < 1. In this way, we obtain

hearm = %_’_hlm) (
which is independent of f; in the given f; range. This
expression is in agreement with our numerical data for the
AFM to PM spin-flip transition field at # — O obtained from
numerical calculations such as the extrapolations to ¢t =0
in Fig. 26 above for § = 1/2, f; = —1, and various values

-0, -I<fr<D, (32
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FIG. 25. Reduced average z-axis moment per Spin fi e = MUzave/Msa fOr the low-field AFM and high-field PM phases of a collinear
antiferromagnet versus reduced field 4, for spin S = 1/2 and f; = —1 at reduced temperatures t = T/ Tn, as shown for reduced anisotropy
fields (a) hay = 1/4, (b) 1/2, (c) 3/4, and (d) 1 calculated using Egs. (127) and (128a).

of haj, and in the phase diagram in Fig. 32(f) below for
S = 1/2, fj = —1, and hAl =1.

Using Eqgs. (20) and (131), we obtain the field dependence
of the free energy per spin of the AFM phase (and high-field

T X T ] T L T L] T

S=112 7

first order

second order

hAl =0,1/8,1/4,1/2,3/4,1

AFM Critical Field h -
(3]

0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

t = T/TN

FIG. 26. AFM critical field s apv Vs reduced temperature 5 for
S =1/2 with f; = —1 and &, from O to 1 as indicated. First-order
transition lines are in red without data points and second-order
transitions are in other colors with data points. A tricritical point
separates the first- and second-order transitions on the transition line
for each ha; > 1/8.

PM phase) as
FmagAFM(t e O) _ _35(1 +hA1)

(h; < hearm), (133)

kg Ty 28+ 1)
Fragarm(t — 0) 3S(1 + har)
= — —Sth, —h
ko To) S+ 1) (h; — hearm)

(h; = hcapm)-

3. Comparison of the free energies of the spin-flop
and antiferromagnetic phases

Figure 28 illustrates the free energies Fy,, per spin versus
reduced field %, of the SF and AFM phases (and their high-
field PM phases) for + — 0, given in Eqs. (130) and (133),
respectively, for f; = —1 and anisotropy parameters hy; = 0
to 1.5. For ha; = 0, the lowest-energy phase for z, > 0 is the
SF phase. Upon increasing h4;, one sees an evolution where
the AFM phase is more stable at low fields, but transforms to
the SF phase at increasing values of %, where the AFM to SF
phase transition is first order due to the discontinuity in slope
of Finag versus ki at the transition point, which corresponds to
a discontinuity in the magnetization there.

Shown in Fig. 29 are zero-temperature phase diagrams in
the h.-ha; plane for collinear z-axis AFMs with f; = —1
and for spins S = 1/2 and S = 7/2, obtained by determining
which of the AFM and SF phases (and associated high-field
PM phases) has the lower free energy using Eqgs. (130)
and (133). One sees that the phase diagrams are the same
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FIG. 27. Reduced magnetic free energy per spin Fy,,/ kg Ty for the low-field AFM and high-field PM phases of a collinear antiferromagnet
vs reduced field 4, for spin S = 1/2 and f; = —1 at reduced temperatures t = 7'/ Ty, as shown for reduced anisotropy fields (a) ha; = 1/4,
(b) 1/2, (c) 3/4, and (d) 1 calculated using Egs. (20) and data such as in Fig. 25.

for § = 1/2 and 7/2, apart from a reduction in ordinate scale
by a factor of three for S = 7/2 compared to that for § = 1/2.
For ha; > 1, the AFM phase undergoes a spin-flip transition
directly to the PM phase with increasing /_, sidestepping the
intermediate SF phase.

The anisotropy parameter 24, = 1 at which the hgp and Ay
lines meet in Fig. 29 is a point where the SF and PM phases
are degenerate and hence PM, which occurs at the lower end
of a vertical line in the figure. The upper end of a vertical line
also corresponds to the PM phase. We thus infer that all points
along a vertical line correspond to a transition line between
the PM and AFM phases. Consistent with this, the region to
the immediate left of a vertical line is PM and to the right is
AFM. A first-order transition from the PM to the AFM phase
thus occurs on crossing a vertical line with increasing /4.

The analytic behavior of the AFM-SF transition field Asp

for f; = —1 such as in Fig. 29 in the region 0 < ha; < 1 s
found to be
hsp = 3 \/2h h (134)
SF = S+1 Al Al*
However, this expression is only valid for f; = —1, which

corresponds to a bipartite AFM with only nearest-neighbor
exchange interactions of equal value. If f; # —1, we find

e = < Sl = £ — I3 (135)
S+1 Al»

0<har<(—=fp/2, =35 fr<l,

where the upper h,; limit is the maximum value for which
hsg < hesp, the lower limit on f; is obtained by requiring
hsg < heapym for the given ko) range, and the upper limit on f;
is required for any AFM, where the value f; = 1 corresponds
to a FM rather than an AFM.

Thus the deviation of f; = 6,;/Tny from the value of —1
usually assumed can have a very significant influence on the
variation of hgp with 4 according to Eq. (135), a situation not
investigated previously to our knowledge. This is important in
view of the fact that within MFT one can have —oco < f; < 1
for AFMs. Indeed, most real AFMs are not bipartite with more
than nearest-neighbor interactions.

The reduced fundamental exchange parameter hjp; is
expressed in terms of the reduced exchange field hag at T = 0
using Eq. (31a), the t = 0 value fi; = 1, and the definition in
Eq. (1c) as

S+1
har = hao- (136)
Inserting this into Eq. (134) gives
S+1
hSF=\/2<T)hA0—h/2w. (137)

Now using Eq. (A13) for the exchange field together with
Eq. (1c) gives the reduced exchange field at 7 = 0 as

S+1

hexchO = 5

3 (138)
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listed. The data were calculated from Eqgs. (130) and (133).

Substituting this into Eq. (137) gives

hse = \/ 2hexehohiao — hag - (139)
In terms of the unreduced fields, one has
Hsp = \/ZHexchOHAO — H}, . (140)

This expression is identical to the standard equation for Hgp
obtained using spin-wave theory assuming f; = —1 [9]. A
more accurate expression obtained from Eq. (135) is

Hgp = \/HexchOHAO(l — f1)—HZ, .

As noted previously, f; < 1 for an AFM.

(141)

4. Magnetization versus field
The magnetization of the SF phase is proportional to field
according to Eq. (103a), which at T = 0 reads

_ h.

MUz =

(h; < hesr), (142)

thF

where the spin-flop critical field is given by Eq. (114) with

Asp=1latT =0as

3(L— fy — har)
S+1

According to Egs. (135), if ia; > (1 — f,)/2 the AFM phase

undergoes a first-order transition with fi . = O to the fully
saturated PM state with i ave = 1 atthe T = 0 transition field

hesp = (143)
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FIG. 29. Zero-temperature phase diagrams in the h,-ha; plane
for collinear z-axis AFMs with f; = —1 and for spins (a) S = 1/2
and (b) 7/2. The phases in competition are the collinear z-axis
antiferromagnetic (AFM) and canted spin-flop (SF) phases, with the
paramagnetic (PM) phase in each case above the respective critical
field h.apm and h.se. Note that the ordinate axes are different for the
two spin values. The transitions from AFM to PM and AFM to SF
are first order, and from SF to PM are second order. The vertical
transition lines separate the PM phase from the AFM phase, with a
first-order transition occurring upon traversing the lines horizontally.

h; = heapm in Eq. (132), whereas if ha; < (1 — f;)/2, the
AFM state instead has a first-order transition to the SF phase
at hgp until the SF phase saturates at 7, = hspto i, = 1 after
which it remains constant at i (h,) = 1. With these criteria,
the fi,(h,) behaviors were determined as shown in Fig. 30 for
S =1/2, f; = —1 and arange of h; values from 0.02 to 0.9
as shown. Changing the value of f; results in no qualitative
change in the ji, versus A, plots, but where the corresponding
ranges of /1 values and ordinate scales giving similar-looking
plots as in Fig. 30 are changed appropriately.

5. Perpendicular magnetic fields

When the applied field is perpendicular to the easy axis
or easy plane of a collinear or noncollinear AFM as shown
in Fig. 10, only one transition versus field occurs which is
a second-order transition from the canted AFM phase to the
PM phase at the perpendicular critical field k., apm given by
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FIG. 31. Zero-temperature phase diagrams in the &, -ha; plane
for collinear z-axis AFMs with f; = —1 to 0.5 and for spins (a)
S =1/2 and (b) 7/2. The phases in competition are the canted
antiferromagnetic (AFM) and the paramagnetic (PM) phase that
occurs above the respective critical field /., . The plots are drawn
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spin values. The transitions from canted AFM to PM are second order.
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FIG. 32. Reduced parallel magnetic field 4, vs reduced temperature ¢4 phase diagrams for spin S = 1/2 and reduced anisotropy fields /14,
equal to (a) 0, (b) 1/8, (c) 1/4, (d) 1/2, (e) 3/4, and (f) 1 obtained from numerical calculations. The SF to PM transitions are second order and
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Eq.(86)at T =0 as

(144)

3
heiapmo = (S_—|—1>(1 +har — f1).

The phase diagrams in the /| -h o plane for spins S = 1/2 and
7/2 are shown in Fig. 31, where the AFM-PM transition lines
vary linearly with s 4, for each value of S and f;.

B. Field versus temperature phase diagrams for fields
along the easy axis of collinear antiferromagnets

In order to determine the phase diagrams in the field versus
temperature plane for given values of S, f;, and &, one must
determine which of the AFM or SF phases and associated PM
phases have the lowest free energy at each temperature and
field for given values of S, hj, and f; using information such
as illustrated above in Figs. 21 and 27. The transitions from
the AFM to the SF phase are always first order. For transitions
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of the SF or AFM phase to the associated PM phase, the
transition field is determined as the field at which the angle

6 — 0 or MI — 0, respectively. First-order transitions have
discontinuities in these quantities on crossing a transition line.

Shown in Fig. 32 are the &, versus ¢t phase diagrams for
S =1/2, f; = —1, and six values of the reduced anisotropy
parameter /5 from O to 1. The phase diagrams were initially
constructed versus ¢t = T /Ty, but the abscissa was then
converted to to = T/ Tn using Eq. (1j). The ¢+ = O transition
fields obtained from Fig. 29 are included in Fig. 32. For
ha1 = 0, the phase diagram contains no z-axis-aligned AFM
phase because for any finite field the ordered moments flop
to form a canted AFM phase, the spin-flop phase. Even a
rather small value hy; = 1/8 gives rise to a SF phase in a
large area of the phase diagram in Fig. 32(b) and a bicritical
point appears where the AFM, SF, and PM phase lines meet.
With further increase of /), the SF phase region shrinks, as
shown for hy; = 1/4, 1/2, and 3/4 in Figs. 32(c)-32(e). In
addition, for ha; = 3/4, a tricritical point occurs at 14 ~ 0.56
separating second- and first-order AFM to PM transitions, as
shown. Finally, for ha; = 1 in Fig. 32(f), the spin-flop region
disappears and the tricritical point moves to higher temperature
with respect to Ty compared to that for h; = 3/4. We note
that in Fig. 32(e) for ha; = 1, the T = 0 value of the AFM to
PM transition field is larger than for lower /4 values at higher
temperatures, and is the same as the 7 = 0 value of the SF to
PM transition field for i5; = 0 in Fig. 32(a).

In a spin-flop transition of an otherwise collinear antifer-
romagnet, the spins flop from alignment along the z axis to
what is generally thought to be an approximately perpendicular
orientation. An interesting question is how close to a & = 90°
angle the moments in the SF phase make with the z axis (6sg)
on the (first-order) transition line between the AFM and SF
phases. Shown in Fig. 33 are plots of 6sp versus reduced
temperature f5 for the parameters in the phase diagrams
in Figs. 32(b)-32(e). These data were obtained as part of
the calculations required to construct the phase diagrams in
Fig. 32. One sees rather strong dependencies of Osg on both 74
and the anisotropy parameter /4 ;. Futhermore, the maximum
angle of the moments from the z axis on the transition line
versus temperature depends strongly on /4, varying from
only about40° for ha; = 3/4 toabout 77° for ha; = 1/8. Thus
when a spin-flop transition occurs, the angle that the moments
make with the z axis is generally not close to 90°. According
to Fig. 33, this discrepancy increases with increasing /4.

C. Magnetization versus field isotherms for fields along the easy
axis of collinear antiferromagnets

High-field magnetization versus field M (H ) isotherm mea-
surements are basic to characterizing the magnetic properties
of AFMs. Here we utilize the above information specifying
the conditions for phase transitions between the AFM, SF,
and PM phases with fields along the easy z axis to calculate
magnetization versus field data at particular temperatures
below the respective Ty. These calculations allow direct
comparisons to experimental M,(H) data on single crystals.

For anisotropy parameter s; = 0, for the spin-flop phase
plots of fi,sg versus h, for a fixed temperature to =T/ Ty =
1/2 and a selection of anisotropy parameters ha; =0 to 1

PHYSICAL REVIEW B 96, 224428 (2017)
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FIG. 33. The angle 6sg that the ordered moments in the spin-flop
phase make with the applied field along the z axis on the first-order
transition line between the AFM and SF phases in Fig. 32 vs reduced
temperature 7o for the same reduced anisotropy parameters /s15; for
which the phase diagrams in Figs. 32(b)-32(e) were constructed.

were presented in Fig. 18 for spins S = 1/2 and 7/2, which
included both the SF and PM regimes. Plots of ji sg versus i,
for fixed ha; = 1/2 with different values of t = T/ Ty were
presented in Fig. 16 for S = 1/2,2, and 7/2.

The behaviors of i, versus i, for § = 1/2 and f; = —1
were calculated for values of £, from ~0.1 to 0.9 and &,
values in the range 1/4 < ha; < 1, including the influence of
phase transitions as applicable. The calculations are shown
in Fig. 34, where the first or second-order nature of the
phase transitions are reflected in the field dependence of the
magnetization.

D. Phase diagrams for fields perpendicular to the easy axis or
plane of collinear or planar noncollinear antiferromagnets

The critical field A¢) apm dividing the canted AFM from
the PM state of collinear or planar noncollinear AFMs
versus reduced anisotropy ha; and f; parameters for fields
perpendicular to the easy axis or plane of collinear or planar
noncollinear AFMs is given in Eq. (86). Plots of /. apm
versus f5 are shown in Fig. 35 for the same values of %4
for which the phase diagrams in Fig. 32 were constructed.
From a comparison of the two figures, one sees that for each
value of ha; > 0, the hciapm(fa) value in Fig. 35 lies at a
higher field than the maximum transition field in Fig. 32 at the
same temperature.

XI. SUMMARY

The main purpose of this work is to enable an estimate
of the amount of uniaxial or planar anisotropy that exists in
an otherwise isotropic Heisenberg spin system to be made
from experimental magnetic susceptibility and/or high-field
magnetization data. The systems described contain identical
crystallographically equivalent spins. Another important goal
was to provide a classical description of magnetic anisotropy
of quantum S = 1/2 systems for which quantum uniaxial
DS? single-ion anisotropy is not applicable. In this paper, the

224428-30



INFLUENCE OF CLASSICAL ANISOTROPY FIELDS ON ...

1.0F S=1/2
f,=-1
0.8} _
h,, =1/4
- T T, =5/4
19? 0.6 N NI
Z
G T/T = 0.08, 0.40,
0.4 0.56, 0.72, 0.88
0.2 .
(a)
00 1 1
0 1 2 3 4
h
z
1.0F S=1/2
£=-1
0.8} _
h, =172
- T/T. =3/2
:Lsx 0.6 NN
z
j_N
04t AFM T/T.\l =0.07,0.33,
0.47, 0.60, 0.73, 0.87
0.2 .
(b)
0.0 1 1
0 1 3 4

PHYSICAL REVIEW B 96, 224428 (2017)

T/T, = 0.06, 0.29,

0.40, 0.51, 0.63,
0.74, 0.86

()

W)
S

FIG. 34. Reduced z-axis magnetic moment i, = i,/s, Vs reduced magnetic field h, = gup H,/kgTn; at the listed reduced temperatures
ta = T /Ty for spins S = 1/2, f;, = —1 and with reduced anisotropy parameters &,; equal to (a) 1/4, (b) 1/2, (c) 3/4, and (d) 1. The SF to
PM transitions are second order and the AFM to SF transitions are first order. The AFM to PM transitions can be second order [(a) and (b)], or
either first or second order in different field ranges separated by a tricritical point [(c) and (d)] (see the phase diagram in Fig. 32).

anisotropy is quantified by the fundamental reduced anisotropy
parameter ha; in Eq. (le), which depends on S and the
unreduced anisotropy field Haj;, normalized by the Néel
temperature in the absence of anisotropy 7y, but not on the

6 i
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FIG. 35. Phase diagram in the reduced perpendicular field /#, vs
reduced temperature ¢4 plane for easy-axis or easy-plane collinear or
planar noncollinear AFMs. Plots of data obtained using Eq. (86) are
shown for the same values of reduced anisotropy parameter /4, for
which the phase diagrams in Fig. 32 were constructed.

temperature 7. The T dependence of the anisotropy field is
included via the T dependence of the reduced ordered and/or
field-induced moment & in Eq. (31a). The present treatment
is strictly valid for local-moment antiferromagnets but not for
itinerant ones.

There are several ways to extract h,; from experimental
data for single crystals of local-moment collinear antiferro-
magnets with uniaxial or planar anisotropy. Indeed, if one
has single-crystal low-field magnetic susceptibility versus
temperature data as well as high-field magnetization isotherm
data, this parameter is overdetermined and one can compare
the values obtained from analyses of the respective data sets.
Since g anisotropy is not included in the present treatment, the
single-spin Curie constant C; in the Curie-Weiss law (A1) is
the same for fields parallel and perpendicular to the easy axis or
easy plane for the known value of S. However, g anisotropy for
the AFM and PM phases is easily accomplished by substituting
the appropriate values of g, for g in the expression for the
Curie constant if the values of g, are known from independent
measurements such as electron spin resonance.

A. Analysis of single-crystal magnetic susceptibility data

An easy way to determine %4 is to measure the anisotropy
of the Weiss temperature 6, in the Curie-Weiss law (A1) for
the paramagnetic susceptibility at 7 > Ty of single crystals.

224428-31



DAVID C. JOHNSTON

Here we only consider uniaxial z-axis anisotropy, since xy-
plane anisotropy gives the same expression for s;. From
Egs. (48) and (51), respectively, the Weiss temperatures in the
Curie-Weiss law for the xy plane and z-axis field directions at
temperatures T > Ty are

Opry = 65, (145a)
Opz = Ops + harTny, (145b)
SO
Opz — Opxy = ha1Tny. (146)
Then using Eq. (1i), one obtains
Bz — Opny = ]hthzl, (147)

which allows one to easily solve for /141 from the two measured
Weiss temperatures and the measured Néel temperature 7y.
Another parameter of the theory is f; =6,;/Tny, the
ratio of the Weiss and Néel temperatures due to exchange
interactions alone. This is not measurable directly but can be
derived as follows. Using Eqgs. (1i) and (145a), one obtains
epxy _ epJ _ fl i (148)
In  Tng(I4ha) 14 hay
from which f; can be obtained using h4; from above.
Another expression useful for determining the values of i1
and f; for collinear z-axis AFMs is Eq. (79c¢), which gives

T h
X(TN) g
Xxy(TN)

=7 (149)

Thus any of the combinations of two of Egs. (146), (148),
and (149) can be used to solve for 4, and f;. Self-consistency
can be checked by comparing the derived sets with each other,
and/or with values derived from high-field magnetization data
for collinear AFMs as described in the following section.

B. Analysis of high-field z-axis magnetization data

According to Figs. 4 and 15 for AFM and SF phases,
respectively, for T < 0.2 Ty the zero-field reduced ordered
moment is nearly saturated at the value of unity, irrespective
of the spin value. It is this low-temperature range of collinear
antiferromagnets aligned along the z axis for which the
high-field behavior is examined in this section.

For a1 > 0, according to Eq. (135) and Figs. 30 and 34(a)—
34(c), a spin-flop (SF) transition from the AFM phase to the
SF phase occurs at the reduced SF field

3
hsg = ——~/hai(1 — f; — hap).
SF= g 1\/ at(l = f5 —har)
This transition is easy to see in M, (H ) isotherm measurements
because it is first order. In the SF phase, the magnetization
is proportional to field according to Eq. (129¢c), which we
reproduce here:

(150)

h:/hese  (h; < hesy)
>

151a
1 (hz hCSF)7 ( )

f(hy,t — 0) = {
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where the SF critical field at which the SF phase undergoes a
second-order transition to its PM phase is

3(1 — fy — hay)
hesp = ————. 151b
oSF S+l ( )
From Egs. (150) and (151b), one has the ratio
he 1-— —h
hese _ JL2Ss = ha (152)
hsk hai

Thus if both h.sp and hgg can be measured at low temperatures,
an additional equation that does not involve the spin S is
available to solve for f; and /a;.

For h, < h.s, the reduced single-spin susceptibility j.sr
for the spin-flop phase is given by Eq. (106) as

Fosp = XeseIng 1
SF = e ,
‘ Ci L — f7—ha

(153)

where the single-spin Curie constant given in Eq. (Alb) is
assumed to be known from the fit of the high-temperature
susceptibility by the Curie-Weiss law, Txy = Tn/(1 + hat)
from Eq. (1i) and x,sF is often measurable at fields above hgg
if the SF transition is observed.

C. Analysis of high-field perpendicular magnetization data

The present section discusses the magnetic response to
high fields applied perpendicular to the easy axis or plane
of a collinear or planar noncollinear antiferromagnet. The
reduced perpendicular susceptibility per spin j apm 1S given
by Eq. (84) as

XiarmIng 1
C 1= fr4+ha

Comparing this equation with Eq. (153) shows that x; apm <
XzsF, With

(154)

1—fr—h
XLAFM fi Al (155)

Xest L= fr+har
Finally, the critical field for the AFM to PM transition, if it

occurs instead of a transition to a SF phase, is given by Eq. (87)
as

3 = fs 4+ har)
S+1

This field is somewhat larger than h.sr in Eq. (151b), the
difference being

heiarm = (156)

3hai

S+1°
This expression is very useful because it does not contain f;.
The drawback is that these two critical fields are often too large

to measure except for materials with low Ty. Alternatively, the
ratio of the two critical fields is

hesg  Hesg 1= f5—ha
Heiaen 1= fr+har

The right side is the inverse of the respective ratio of the
susceptibilities obtained from Eq. (155).

heiarm — hesp = (157)

(158)
he1AFM
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D. Comparison of classical anisotropy with quantum DSZ2
anisotropy predictions

Finally, we compare the predictions of the present work
for Ty and 6, with those for quantum DS? anisotropy [4]. In
the present case, the Néel temperature is simply described by
Eq. (1i) as

In = Tng(1 4 hay),

which is a linear function of ha; irrespective of its value.
However, for —DSZ2 anisotropy, where a positive sign of D
is defined such that z-axis collinear AFM ordering is favored
over xy-plane ordering, and with d = D/kgTn,, one obtains
a nonlinear dependence of Ty on d. On the other hand, for
small d one obtains [4]

(159)

d2s - 1)(25+3
N = TN1[1+ ( 1)5( + ):|. (160)
In contrast to Eq. (159), this linear dependence on d also
depends explicitly on S for S > 1. Comparison of Eqgs. (159)
and (160) indicates that for weak anisotropy one can relate
the anisotropy parameters in the present classical anisotropy

model to that in the quantum —DS? model for S > 1 by
d2S - 1)(2S +3)
15 ’

Similarly, the Weiss temperature in the Curie-Weiss law
with the field applied along the easy axis of a uniaxial
antiferromagnet is given by Eq. (51d) as

har = (161)

6, = Ops + Txshar. (162)

In the case of uniaxial DS? anisotropy, one also obtains a linear

dependence on d given by [4]

d2S—1)2S+3)
15 ’

where here again the second term depends on S, is zero for
S = 1/2, and gives the same correspondence as in Eq. (161).

6 = 0ps + Tn (163)
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APPENDIX: UNIFIED MOLECULAR-FIELD THEORY
IN THE ABSENCE OF ANISOTROPY

Here we review the properties of Heisenberg AFMs within
the context of the unified MFT [4—6] in the absence of any type
of anisotropy that are needed for the theoretical development
in the presence of classical anisotropy fields. All spins are
assumed to be identical and crystallographically equivalent.

1. Curie-Weiss law

The Curie-Weiss law for the magnetic susceptibility x, in
the paramagnetic (PM) state in the o principal-axis direction

PHYSICAL REVIEW B 96, 224428 (2017)

at temperatures 7 > Ty, where Ty is Néel temperature
resulting from the combined influences of the anisotropy and
Heisenberg exhange interactions, is written for a representative
spin by

j— Cl
T =6

Xa (Ala)

where the Weiss temperature 6y, depends in general on «,

_ ng(S + I)MZB
3kg

is the single-spin Curie constant, g is the spectroscopic
splitting factor (g factor), ug is the Bohr magneton and kg
is Boltzmann’s constant. For simplicity it is assumed in this
paper that the g factor is isotropic. For moments that are aligned
along a principal axis «, g can be replaced by a variable g,
in the respective equations. Here we consider isotropic Weiss
temperatures arising from exchange interactions only, denoted
as 6.

Ci (Alb)

2. Exchange field

In MFT, one replaces the sum of the Heisenberg exchange
interactions acting on a representative central spin i by an
effective magnetic field called the Weiss molecular field or
“exchange field” Hexch; and treats it as an applied field where
the exchange energy Eexcn; for spini is

Ecxeni = _lai ' Hexchi' (A2)

Taking into account the exchange interactions of ii; with all
neighbors [i; with which it interacts, the exchange field is
given in general by

1 o
Heehi = ——— Z Jijij, (A3)
8°Up F

where J;; is the Heisenberg exchange interaction between
spins i and j and a positive (negative) value corresponds to an
AFM (ferromagnetic FM) interaction. Since all magnetic mo-
ments are assumed to be identical and in crystallographically
equivalent positions in the lattice, each spin has the same local
exchange field in H = 0, irrespective of the orientation of the
spin with respect to those of the other spins in the system. The
component of Heyen; in the direction of j; is

. 1
Hexeni = i - Hexeni = _gz 5 E Ji,i“j CoS i, (A4)
B .
J

where «;; is the angle between i; and fi; when H # 0. If
H = 0 we denote these angles instead by ¢;;.

In the ordered magnetic state in H = 0, the component of
the local Hexen o in the direction of fi;, and also its magnitude,
is

Mo
Hexeno = ———5 Z Jijcosji, (A5)
8" 1B ;

where we dropped the subscript i because of the equivalence
of each moment in H = 0 and puo is the magnitude of the
T -dependent ordered moment in H = 0, which is the same for
all spins because of their crystallographic equivalence.
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3. Antiferromagnetic ordering

For H — 0, the AFM ordering temperature Ty, and the
Weiss temperature 6p; in the Curie-Weiss law (Al) due to
exchange interactions alone are respectively given by

S(S+1)
Tsz—TXj:J,’jCOS(pﬁ, (A6a)

SS+1)
Ops = T Xj: Jijs

(A6b)
where the sums are over all neighbors j of a given central
spin i, the subscript J on the left sides signifies that these
quantities arise from exchange interactions only, and ¢;; is
the angle between moments j and i in the AFM structure at
T < Tny with H = 0. The ratio f; is defined as
f = Ops. — i
Tng ) Jijcosdi’
where to obtain the second equality Egs. (A6) were used. For
aFM, ¢;; = Oforall j, and hence f; = 1. For AFMs, at least
one of the J;; must be positive (AFM interaction) and at least
one of the ¢;; # 0, leading to f; < 1. Thus within MFT, for
AFM ordering one has

(A7)

-0 < fy < 1. (A8)

By comparing Egs. (AS) and (A6a), one can write the zero-
field exchange field Hexcho seen by each magnetic moment ;o
as

Hor o — 3ksTnsiio Mﬁ'
exchiO gZM—]%S(S T 1) Cl i0s
(A9)
3kgTngpo Ty
SuESS+1 - G
where the single-spin Curie constant C is defined in Eq. (A1b).

Within MFT the thermal-average ordered and/or field-
induced magnetic moment ii; is in the direction of its
local magnetic induction B; = Hexp; + H. When a classical
anisotropy field is present, one adds Hy; to this. The magnitude
w; of ji; in that direction is determined using the Brillouin
function Bg(y) according to the self-consistency requirement

Hexeno =

i = Psa Bs(yi), (A10a)
where
B;
= SHBDI (A10b)
kgT

and B; is the component of B; in the direction of ;. Our
unconventional definition of the Brillouin function is [15]

Bs(y) = %{(25 + 1) coth |:(ZS + 1)%] — coth (%) },

(Alla)

for which the lowest-order Taylor-series expansion about
y=0is

S+ Dy

3
3 + OGB?).

Bs(y) = (Allb)
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The derivative of Bg(y) is

dBs(y)
dy

i{cschze) — (25 + 1)%csch? [(25 n 1)%} }

Bi(y) =

T 4s
(Allc)

From Eq. (Allb), the lowest-order term of a Taylor-series
expansion of Bg(y) about y = 0 is

S+1

By(y) = ——+ oG?). (Al1d)

We define the reduced temperature ¢ and reduced zero-field
ordered moment fig(z) in H = 0 as

t = i, (Al2a)
Tny
Al =~ (Al2b)
gSus
where the saturation moment g, Of each spin is
Msat = §SUB. (Al2¢)

Using Eq. (A12b), one can write the magnitude of the zero-
field exchange field in Eq. (A9) as

3kg Ty Lo
gup(S+ 1)

For H = 0, with B; = Hexcno in Eq. (A13), Eq. (A10a) for
calculating the ordered moment versus 7 in H = 0 becomes

HexchO = (A 1 3)

3o
(S+ e’
This zero-field expression is valid within MFT for a FM and
any type of AFM containing identical crystallographically

equivalent spins. The total derivative dji(/dt is obtained from
Eq. (Al14) as

ito = Bs(yo), with yp = (A14)

dio o

fo_ M0 (A15)
(S4+1)

dt (5500 — 1

where [io(?) is obtained by numerically solving Eq. (A14) and
the Bs(y) and Bg(y) functions are given in Egs. (A11).

4. Internal energy and heat capacity for AFM
ordering in zero field

The internal energy per spin Up,, in zero field is given for
any AFM containing identical crystallographically equivalent
spins by

Uexcho = — 3 140 Hexcho, (Al6)

where the factor of 1/2 compensates for the fact that Hexcho
arises from exchange interactions between a central spin and
each of its interacting neighbors, and hence arises from pairs
of spins, whereas Uexchg 1S per spin. Writing Uexcho in reduced
parameters using Eqgs. (A12) and using Eq. (A13) gives
)

_ 35k (A17)

2(8+1)

U, exchO
ks TNy
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The magnetic heat capacity per spin is given in reduced units
by
Cmag _ d(Uexcho/ksTng) _ [ 3Sio |dfio
ks dt T les+n]ar

where fio(¢) is obtained by solving Eq. (A14) and diy/dt is
given by Eq. (A15).

(A18)

5. Magnetization in the paramagnetic state

Let the applied field be in the o principle-axis direction.
In the paramagnetic state above Ty, the thermal average of
each magnetic moment is in the direction of the applied field.
Hence «j; = 0 in Eq. (A4) and one obtains

7 S
Hexchaz_z_azz-]ijz_ > Z]ijy
8§ M W 7

(A19)
gMUB

where we dropped the subscript i because all induced moments
are equivalent in the PM state. As in Eq. (A12b), we define the
reduced moment in the « direction as

[y = 1 (A20)
8Sus
Then using Eq. (A6b), Eq. (A19) becomes
3o ko
Hoxcha = —2 200 (A21a)
gus(S+1)
SO
Hexcha RJTC)
8 MB 1exch — Mabps . (A21b)
kgT S+ DT
Including the applied field H, in B;, Egs. (A10) give
RITC) H,
fi, = Bs Habps SHB (A22)
S+ DT kg T

For H, — 0, using Eq. (A6b) and the first-order Taylor
series expansion in Eq. (A11b), Eq. (A22) becomes

Cl Ha

1 A23
T -0, (AZ32)

Mo =

where C; is the single-spin Curie constant in Eq. (A1b), which
yields an isotropic Curie-Weiss law (A1) given by

xew(T) = 1 = 7 flepj, (A23b)
yielding
xema(Ing) = L (A23¢)
TNy — 6y

We define the reduced magnetic field &, in the « principal-axis
direction as

H,
, = 8HBla (A24)
kpTny
Then in reduced variables Eq. (A22) becomes
_ 3/101 fJ hrx
« =B —, =1 A25
i S|:(S+1)t+ti| ( ) (A25)

where the ratio f; =6,;/Tnys is given in terms of the
exchange constants and the magnetic structure in Eq. (A7).
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Equation (A25) must be solved numerically for fi, for given
values of S, f;, hy and 7.

6. Magnetization of a planar AFM in a perpendicular field

To determine the perpendicular component 1 of a mag-
netic moment in a collinear or planar noncollinear AFM
oriented in the xy plane, the net torque T on a representative
mmoment ji; is set to zero according to

T =it X Hexeni + i x H=0. (A26)

The magnetic moment vectors are written in spherical coordi-
nates as

[ = plsinO(cos ¢; i+ sing; J) + cos O K],
ftj = pulsinB(cos ¢; i+ sing; J) + cosH K]
= ufsinf[(cos ¢; cos ¢;; — sin¢; sin ¢;;) i
+ (sin ¢; cos ¢j; + cos ¢; sin ¢j,~)j] + cos O ﬁ},
(A27a)

where in the last equality we used trig identities with

bji =¢j — - (A27b)
Using the definition of the exchange field in Eq. (A3) and the
requirement that ) j Jijsingj; = 0 for stability of an AFM
structure [6], the first term in Eq. (A26) is found to be

i; x H 35K g 0(Txs — 6py)
i X Hexehi = — sin 6 cos -
1% exch S+1 NJ pJ
x (sin¢; i — cos ¢, J). (A28)
Taking H = H 1 k, the second term in Eq. (A26) is
fi x H= jigugSH, sin6(sin¢; i — cos ¢; J). (A29)

Substituting Eqgs. (A28) and (A29) into (A26) gives

3 ks
S+ O(Iny — 6py) = gusHy . (A30)
Using & = u/(gSus), one obtains
3kg
mﬂ cos O(ITng — Opy) = gueH.. (A31)

Referring to Fig. 2, the perpendicular component @ of the
induced magnetic moment of each spin is

Ui = pucosb, (A32)
where w(T) is the magnitude of the ordered moment. Then
Eq. (A31) gives

CiH,

L (A33a)
TNy — 6y

ML= = x1sHL,

I Ci
g =0L__ (A33b)
YT H T T - Ops
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This applies for fields H less than the critical field H,, ;(T')
at which the moments become parallel and the system exhibits
a second-order transition into the PM state. From Eq. (A33a),
the critical field is given by

T
Hey(ry = MO

X1J

(A34)

where £(T) is the ordered moment in the AFM state versus 7.
Comparing Eqs. (A33b) and (A23c) one sees that

x10(T < Tng) = xems(Ing)- (A35)

Thus yx,; in the AFM state at T < Ty is independent of T
with the value xpyy of the PM state at T = Ty .
Dividing each side of Eq. (A30) by kg TNy gives

3/1(:059(1 N =h
ST 7)) =hi,
3 cos? 6 hy cos
—(1 — = - A36
(S—i—l)t( fn ; (A36)
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The magnitude of the induced moment is obtained by solving

= Bs| (222 ) (Hexen: + H. cos6)
kgT

[1-(1- fj)coszé?] + w},

=Bs{—ﬂ
(S+ 1) :
(A37)

where H, cos@ is the component of H in the direction of
each of the magnetic moments, the reduced field is 4, =
gupH, /kgTn, from Eq. (A24) and the reduced temperature
ist = T /Tny according to Eq. (A7).

Substituting the left-hand side of Eq. (A36) for 4 cos(6)/t
into Eq. (A37) and simplifying yields

T 3
r= BS|:(S+ 1)r}'

This is identical to Eq. (Al4) for determining fio(¢) with
H = 0. Hence the ordered moment magnitude is independent
of field for /2 less than the reduced perpendicular critical field
h.1, which is given by the first of Eqs. (A36) with & = 0 as

L3R = fy)
cl S+1

where the ordered reduced moment & is temperature depen-
dent and hence so is A .

(A38)

) (A39)
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