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Model of chiral spin liquids with Abelian and non-Abelian topological phases
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We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed
by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two
alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase
approximation (RPA) for the single-particle Green’s functions of the Majorana fermions built from their exact
forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases,
one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition.
Remarkably, the Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin
liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev
model) domain walls propagating along only one of the two space directions.

DOI: 10.1103/PhysRevB.96.224420

I. INTRODUCTION AND RESULTS

A. Motivation

Most of the observed low-temperature phases in condensed
matter physics are characterized by spontaneous symmetry
breaking (SSB) through the onset of a local order parameter
acquiring a nonvanishing expectation value. Antiferromag-
netism is the paradigmatic example of SSB with the staggered
magnetization as the local order parameter. On the other hand,
it has been found that such states as exist in the fractional
quantum Hall effect (FQHE) possess a hidden (topological)
order not associated with any local order parameter. This
type of order may exist only if the bulk is incompressible,
in which case it reveals itself in several ways. In particular, a
sufficient condition for the topological order is the existence
of robust gapless boundary excitations. If the system is
situated on a manifold without boundaries, the ground state
is degenerate and the degeneracy depends on the genus of
the manifold. These characteristics of topological order were
formulated by Wen in Ref. [1], but the notion has been later
refined by relating it to the presence of long-range quantum
entanglement in Refs. [2–4]. The other feature in (2 + 1)-
dimensional space-time is the presence of gapped pointlike
excitations obeying braiding statistics that is neither fermionic
nor bosonic. This sharpening of what constitutes the essence
of topological order in (2 + 1)-dimensional space-time has
opened the possibility of its classification [5,6]. However, these
discussions of topological order have been conducted with
little reference to microscopic models. There are very few of
them, which can be treated by controlled approximations; most
notably the quantum dimer model on the triangular lattice [7]
and the Kitaev model on the honeycomb lattice [8]. The latter
is a model of interacting quantum spins, whose excitations
are Majorana fermions. Their propagation is facilitated by
the presence of the so-called visons, which in this model are
immobile Z2 gauge field fluxes.

One way to construct microscopic models with topological
order is to use the so-called wire construction. The idea, follow-
ing Kane and his collaborators [9–12], is to couple elementary
building blocks that realize a conformal-field theory (CFT) in

(1 + 1)-dimensional space-time [by construction this building
block cannot be gapped into a phase supporting topological
order in (1 + 1)-dimensional space-time] so as to realize an
incompressible phase of matter in (d + 1)-dimensional space-
time that supports topological order. Although, the diagnostic
for topological order is a degeneracy of the ground-state
manifold that depends on the genus of compactified space,
it is more convenient to use a stronger (a sufficient but not nec-
essary) condition for topological order, namely, the existence
of protected gapless boundary states that are localized on the
(d − 1)-dimensional boundaries of d > 1-dimensional space.
It is then suggested to weakly couple these building blocks
so as to gap the bulk while leaving the boundaries gapless.
A generic coupling between these building blocks will not do
that, for such a coupling can yield three possible outcomes.
First, the resulting phase of matter in (d + 1)-dimensional
space-time may be gapless and ordered. This is what happens
when antiferromagnetic spin-1/2 chains are coupled so as to
realize an antiferromagnetic square lattice [13–15]. Second,
the resulting phase of matter in (d + 1)-dimensional space-
time may be gapful, but without topological order. This is
what happens when antiferromagnetic spin-1/2 chains are
weakly coupled pairwise so as to realize a stacking of two-
leg ladders which, in turn, are even more weakly coupled
pairwise [16]. We are interested in the third outcome, namely,
when the resulting phase of matter in (d + 1)-dimensional
space-time is incompressible and supports topological order.
Which outcome is realized is determined by the choice of
the couplings between the building blocks, that is by the
energetics.

In this paper we will be dealing with a model in two-
dimensional space. In this case, a sufficient but not necessary
condition for topological order is that in the infrared limit
(i) the first and last building blocks acquire a nonvanishing
yet reduced central charge when their direct coupling is
forbidden by locality (open boundary conditions along the
stacking direction), whereas (ii) the ground state is fully
gapped when their direct coupling is compatible with locality
(closed boundary conditions along the stacking direction). This
situation is pictured in Fig. 1. Each block represents some
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(a) (b)

FIG. 1. (a) Alignment of blocks along an open line. Each block
represents a nonchiral conformal field theory in (1 + 1)-dimensional
space-time. One half of the gapless modes are left movers, the
other half are right movers. This partition into movers with opposite
chirality is represented by the coloring blue and red, respectively.
(b) Alignment of blocks along a circle.

given nonchiral CFT in (1 + 1)-dimensional space-time. The
stacking direction of the blocks is oriented by the arrow. The
coloring red and blue represents the left and right movers
from the CFT, respectively. It is possible to gap out a pair
of movers of opposite chirality belonging to two consecutive
blocks by coupling in a local way the right movers from a
block to the left movers of the nearest-neighbor block along
the stacking direction. This leaves the left movers from the
first block and the right movers from the last block gapless in
panel (a) from Fig. 1, whereas all states are gapped when
periodic boundary conditions are imposed as in panel (b)
from Fig. 1. The challenge is to realize Fig. 1 by appealing
only to local couplings between the microscopic degrees of
freedom such as lattice electrons or magnetic moments. This
challenge was met for all symmetry classes from the tenfold
way in Ref. [17], where it was shown that five of them can
support Abelian topological order (ATO) upon choosing local
(electronic) interactions between consecutive blocks.

A proposal to realize a spin liquid supporting chiral edge
states with noninteger valued central charges was given in
Refs. [18,19]. It is the fractional part to the chiral central charge
of the edge states that signals the non-Abelian topological
order (NATO). This proposal relies on local interactions
within and between consecutive blocks from Fig. 1 that
are both marginally relevant and compete with each other.
Consequently, it could not be proven that all states are gapped
when periodic boundary conditions are imposed as in panel
(b) from Fig. 1. The purpose of this paper is to modify the
field theory studied in Ref. [19] to rule out the possibility
that the flow to strong coupling in Ref. [19], when periodic
boundary conditions are imposed as in panel (b) from Fig. 1,
delivers a gapless phase of matter. This modification makes the
theory amenable to a mean-field approximation that predicts
two gapped phases separated by a gap-closing transition when
the couplings between consecutive blocks are chosen to be
marginally relevant. One gapped phase supports ATO. The
other gapped phase supports NATO. We also find a third
gapless phase, a two-dimensional sliding Luttinger phase when
the couplings between consecutive blocks are chosen to be
marginally irrelevant.

B. Results and outline

As was the case with Ref. [19], we shall take the blocks
from Fig. 1 to realize an Ising CFT on the boundary, i.e., a
CFT with central charge c = 1/2. However, unlike in Ref. [19]
where this Ising CFT was driven by marginal perturbations to
a CFT with central charge c = 2, in this paper, the Ising CFT

is driven by a strongly relevant perturbation. This distinction
gives a much better control on the strong coupling fixed point
that realizes the Ising NATO when two consecutive blocks are
coupled through interactions.

Throughout this paper, we are mostly preoccupied with
the analysis of the field theory corresponding to Fig. 1. The
choice of a microscopic theory delivering the Ising criticality
is dictated by simplicity at the level of CFT rather than by
simplicity on the microscopic level. This microscopic theory
is a quantum spin-1/2 ladder, whose low-energy effective
field theory is depicted by any one of the single square box
colored in red and blue in Fig. 1. This was also the case in
Ref. [19]. However, instead of relying on two-body spin-1/2
interactions which are reduced to marginal current-current
interactions at low energies, as was the case in Ref. [19],
we shall rely in this paper on four-body spin-1/2 interactions
which are reduced to a mass term for three out of the four
gapless Majorana fields that encode the critical theory of two
decoupled antiferromagnetic quantum spin-1/2 chains. Once
a single spin-1/2 ladder is tuned to the Ising critical point,
we couple the ladders as was done in Ref. [19]. The resulting
lattice model is depicted in Fig. 2. Each ladder viewed from
the side in Fig. 2. is represented by a square box colored in red
and blue in Fig. 1 at low energies.

The lattice model for a single spin-1/2 ladder is defined
in Sec. VI. The lattice model for a one-dimensional array of
coupled spin-1/2 ladders is defined in Sec. VII. Its continuum
limit is derived and shown to agree with the Majorana
Hamiltonian (2.1).

The continuum limit is derived under the assumption that
one can eliminate couplings between the most relevant fields
on consecutive ladders and neglect those between more distant
ladders. Then, at low energies, the coupled quantum spin-1/2
ladders in Fig. 2 admit an effective description in terms of
an interacting quantum field-theory with four Majorana fields
per ladder. Dealing with the fermionic field theory, one has
to remember that its Hilbert space is greater than the one
of the original spin model. In particular, it allows states
created by odd numbers of Majorana fermions per ladder.
There are no such states in the spin model. This fermionic
field theory is the starting point captured by Eq. (2.1) from
Sec. II. In this mapping the Majorana fields carry a flavor
index m = 1, . . . ,n that labels the quantum spin-1/2 ladders.
The kinetic energy of the Majorana fields is encoded by a
Wess-Zumino-Novikov-Witten (WZNW) action ĤWZNW. This
kinetic energy ignores all interladder interactions and treats
any one of the ladders as two decoupled antiferromagnetic
quantum spin-1/2 chains, each of which is at an SU(2)1
quantum critical point. The intraladder interactions between
the quantum spin-1/2 turn at low energies into bare masses
mμ ∈ R (μ = 0, 1, 2, 3) for each Majorana field. The
interladder interactions between the quantum spin-1/2 turn at
low energies into an O(4)-symmetric interaction that couples
Majorana fields belonging to two consecutive ladders. This
interaction resembles the Gross-Neveu interaction, and we
shall call it a Gross-Neveu-like interaction.

We treat the O(4)-symmetric Gross-Neveu-like interaction
by two alternative methods. In Sec. III A, we use the mean-field
procedure based on decoupling of the four-fermion interaction
by means of the Hubbard-Stratonovich transformation. In
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FIG. 2. Coupled quantum spin-1/2 two-leg ladders that realize the Ising topological order in two-dimensional space. The intraladder
couplings J1, J⊥, J× = −J⊥/2, and JU (represented by the blue curly bracket) are defined in Eq. (6.1). The interladder couplings J∨
(represented by the green bond), J∨/2 (represented by the magenta bond), and Jχ (represented by the blue arrows) are defined in Eq. (7.1). The
lattice geometry can also be thought of as that of a bilayer of two square lattices.

Secs. IV and V, we use the approach, which is based on
combination of nonperturbative results extracted from the
exact solution of the O(4)-symmetric Gross-Neveu model
and random phase approximation. The phase diagram from
Fig. 3 is conjectured from a mean-field approximation that we
derive in the reminder of Sec. III. In Fig. 3, λ denotes the
coupling of the non-Abelian current-current interactions be-
tween consecutive blocks. This interaction is either marginally
irrelevant for negative λ or marginally relevant for positive
λ. The mean-field phase diagram in Fig. 5 is parametrized
by mt and the mean-field value of the spectral gap |φ (λ)|/2
under the assumption that the so-called singlet Majorana is
gapless, m0 ≡ ms = 0, while a triplet of Majoranas have
the isotropic mass ma ≡ mt for a = 1, 2, 3. There exist
mean-field critical lines that correspond to the condition
|φ (λ)|/2 = |mt| along which the mean-field Majorana gap
vanishes. The regions |φ (λ)|/2 > |mt| and |φ (λ)|/2 < |mt|
correspond to phases of matter supporting NATO and ATO,
respectively.

From the mean-field phase diagram in Fig. 5, we conjecture
the phase diagram in Fig. 3 that is parametrized by the
interladder interaction with the uniform coupling λ and by
the triplet mass mt. The bare value of the triplet mass is a
function of the microscopic magnetic couplings of any one of
the ladders. For λ > 0, the O(4)-symmetric Gross-Neveu-like
interaction guarantees a nonvanishing value for the mean-field
φ(λ). On the other hand, for λ < 0, the O(4) Gross-Neveu-like
interaction also guarantees that the mean-field φ(λ) vanishes.
The line mt = 0 is exactly solvable and we use this solution
in Sec. IV. The dashed green line in Fig. 3 corresponds to the
mean-field transition line. The phases NATO and ATO in Fig. 3
correspond to the mean-field regions |φ(λ)|/2 > |mt| and
|φ(λ)|/2 < |mt|, respectively. The nonvanishing mean-field
values for φ(λ) follow from integrating over the Majorana
fields in Sec. III C and deriving a mean field equation obeyed
by φ(λ) in Sec. III D.

In Secs. IV and V, we establish the form of the bulk
excitation spectrum. It consists of Majorana fermions prop-
agating in two spatial dimensions and visons excitations,
which can propagate only along chains. As far as we
are aware, this is the only microscopic model (besides

the Kitaev one) where such particles have been rigorously
obtained.

As we have mentioned above, the lattice model for a single
spin-1/2 ladder is defined in Sec. VI, where we also derive
its continuum limit. The lattice model for a one-dimensional
array of coupled spin-1/2 ladders is defined in Sec. VII.
We then discuss its continuum limit, which is the Majorana
Hamiltonian (2.1). We conclude with a summary in Sec. VIII.

II. MAJORANA FIELD THEORY

A. Definition

We begin with

Ĥ := Ĥ0 + Ĥintraladder + Ĥinterladder, (2.1a)

Ĥ0 =
n∑

m=1

3∑
μ=0

i

2
vμ

(
χ̂

μ

L,m∂xχ̂
μ

L,m − χ̂
μ

R,m∂xχ̂
μ

R,m

)
,

(2.1b)

Ĥintraladder =
n∑

m=1

3∑
μ=0

i mμ χ̂
μ

L,mχ̂
μ

R,m, (2.1c)

Ĥinterladder =
n−1∑
m=1

λ

4

⎛⎝ 3∑
μ=0

χ̂
μ

L,m χ̂
μ

R,m+1

⎞⎠2

, (2.1d)

where the velocities vμ, the masses mμ, and the coupling λ

are all real valued. The quantum fields obey the Majorana
equal-time anticommutators{

χ̂
μ

M,m(x),χ̂μ′
M′,m′(x ′)

} = δMM′ δmm′ δμμ′ δ(x − x ′), (2.1e)

where μ = 0,1, 2, 3 labels a quartet of Majorana fields, M =
L,R denotes the left and right movers, and m,m′ = 1, . . . ,n

is the ladder index. Hamiltonian (2.1) has the following
symmetries.

First, the μ-resolved fermion parity is conserved owing
to the symmetry of Hamiltonian (2.1) under the Ising-like
transformation

χ̂
μ

M,m(x) �→ σμ χ̂
μ

M,m(x), σμ = ±1, (2.2)
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mt

λ

FIG. 3. Conjectured phase diagram of the theory (2.1) with m0 =
0 and ma = mt for a = 1, 2, 3.

for any μ=0, . . . ,3, M = L,R, m=1, . . . ,n, and 0�x �Lx .
Second, Hamiltonian (2.1) is invariant under the m-resolved

Z2 transformation by which

χ̂
μ

M,m(x) �→ σm χ̂
μ

M,m(x), σm = ±1, (2.3)

for any μ=0, . . . ,3, M=L,R, m=1, . . . ,n, and 0�x �Lx .
We observe that Ĥ0 defined by Eq. (2.1b) is O(4) sym-

metric if vμ ≡ v is independent of μ, Ĥintraladder defined by
Eq. (2.1c) is O(4) symmetric if mμ ≡ m is independent of
μ, and Ĥinterladder defined by Eq. (2.1d) is O(4) symmetric.
This global O(4) = Z2 × SO(4) symmetry encodes the global
Z2 × SU(2) × SU(2) symmetry of the microscopic interladder
interactions depicted in Fig. 2, as will be explained in more
details in Secs. VI and VII.

B. Limiting cases

In this section, we consider the following limiting cases for
the theory defined by Eq. (2.1) under the assumptions that

v0 ≡ vs, m0 ≡ ms = 0,

va ≡ vt, ma ≡ mt, a = 1, 2, 3. (2.4)

A cartoon picture of the theory (2.1) with these assumptions
is depicted in Fig. 4(a).

Case λ = 0 and mt 	= 0. There are n gapless helical
Majorana fields χ̂0

L,m and χ̂0
R,m for m = 1, . . . ,n that propagate

in opposite directions in each bundle m. The two-dimensional
system is critical in the singlet Majorana sector where it
realizes a sliding Luttinger phase. This case corresponds to
the vertical axis of the conjectured phase diagram in Fig. 3.

Case λ 	= 0 and mt = 0. The Hamiltonian (2.1)
simplifies to

Ĥ := Ĥedge-states,m=1 + Ĥedge-states,m=n

+
n−1∑
m=1

ĤGN,m, (2.5a)

Ĥedge-states,m=1 :=
3∑

μ=0

i

2
vμ

(−χ̂
μ

R,m=1∂xχ̂
μ

R,m=1

)
, (2.5b)

χL
a

mt mt mt

λ λλ

χR
0 χL

0χR
a χL

aχR
0 χL

0χR
a χL

aχR
0 χL

0χR
a

λ

(a)

(b)

χL
a

mt mt mt

λ λλ

χR
0 χL

0χR
a χL

aχR
0 χL

0χR
a χL

aχR
0 χL

0χR
a

FIG. 4. (a) A pictorial representation of the theory (2.1) with
m0 = 0 and ma = mt for a = 1, 2, 3 when open boundary conditions
(OBC) are imposed along the y direction. (b) A pictorial represen-
tation of the theory (2.1) with m0 = 0 and ma = mt for a = 1, 2, 3
when periodic boundary conditions (PBC) are imposed along the y

direction.

Ĥedge-states,m=n :=
3∑

μ=0

i

2
vμ

(+χ̂
μ

L,m=n∂xχ̂
μ

L,m=n

)
, (2.5c)

ĤGN,m :=
3∑

μ=0

i

2
vμ

(
χ̂

μ

L,m∂xχ̂
μ

L,m − χ̂
μ

R,m+1∂xχ̂
μ

R,m+1

)

+ λ

4

⎛⎝ 3∑
μ=0

χ̂
μ

L,m χ̂
μ

R,m+1

⎞⎠2

. (2.5d)

Here, the four-Majorana interaction in Eq. (2.5d) is an O(4)-
symmetric interaction of the Gross-Neveu type.

The m-resolved symmetry (2.3) of Hamiltonian (2.5) is
enhanced to the invariance under the M- and m-resolved Z2
transformation

χ̂
μ

M,m(x) �→ σM,m χ̂
μ

M,m(x), σM,m = ±1, (2.6)

for any μ = 0, . . . ,3, M = L,R, m = 1, . . . ,n, and 0 � x �
Lx . Indeed, whereas any transformation (2.6) changes

φ̂m,m+1 := λ

3∑
μ=0

iχ̂μ

L,m χ̂
μ

R,m+1 (2.7)

according to the rule

φ̂m,m+1 �→ σL,m σR,m+1 φ̂m,m+1, (2.8)

it leaves φ̂2
m,m+1 unchanged. Any one of these M- and m-

resolved symmetries obeying the conditions σL,m σR,m+1 = −1
and either σL,m = −σR,m or σL,m+1 = −σR,m+1 for some m is
broken if any one of the masses mμ is nonvanishing. This
enhanced symmetry relative to the symmetry (2.3) reflects the
fact that the limit with all masses mμ vanishing is nothing
but n decoupled Hamiltonians, each of which represents
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φ

φ = 2mt

φ > 2mt > 0

φ = −2mt

> φ > 0

FIG. 5. The mean-field phase diagram presented in terms of mt

and the mean-field value φ under the condition of m0 = 0 and ma =
mt for a = 1, 2, 3.

a pair of interacting nonchiral Majorana fields evolving in
(1 + 1)-dimensional space-time.

In this limit, Hamiltonian (2.5) is known [20] to be
integrable and gapped (gapless) when vμ = v with μ =
0,1, 2, 3 and λ > 0 (λ < 0). Thus we should further distinguish
between the following two cases.

Case λ > 0. The bulk is gapped with the four gapless chiral
Majorana edge modes χ̂

μ

R,m=1 and χ̂
μ

L,m=n. Since the chiral
central charge of each edge is two, the corresponding bulk
hosts an ATO. This case corresponds to the positive horizontal
axis (represented by the solid green line) of the conjectured
phase diagram in Fig. 3.

Case λ < 0. The four pairs of gapless helical Majorana
fields χ̂

μ

L,m and χ̂
μ

R,m with μ = 0,1, 2, 3 are freely propagating in
each ladder m = 1, . . . ,n. The two-dimensional bulk is critical
and shares the same universality class as a sliding Luttinger
phase. This case corresponds to the negative horizontal axis
(represented by the solid red line) of the conjectured phase
diagram in Fig. 3.

Case λ < 0 and mt 	= 0. We conjecture that, since the
Gross-Neveu interaction with λ < 0 is marginally irrelevant,
the resulting theory is the same as the case of λ = 0 and
mt 	= 0. This case corresponds to the blue colored region of
the conjectured phase diagram in Fig. 3.

Case λ > 0 and mt 	= 0. We conjecture the competition
between two phases, an ATO phase and a NATO phase
separated by a bulk gap closing transition (represented by the
dashed green lines in Fig. 3). This conjecture will be verified
within a mean-field approximation.

III. MEAN-FIELD APPROXIMATION

We are going to carry out a mean-field calculation from
which we deduce the mean-field phase diagram in Fig. 5.
Afterwards, we establish the conjectured phase diagram in
Fig. 3.

Our strategy does not rely on the O(4) symmetry of the
Gross-Neveu-like interaction, it can generically be broken by
anisotropic singlet (vs) and triplet (vt) velocities, i.e.,

vs 	= vt. (3.1)

If we decouple the Gross-Neveu-like interaction in an O(4)-
symmetric way through a scalar field φ, then a uniform and
nonvanishing expectation value for φ provides the singlet and
triplet Majoranas with an O(4)-symmetric mean-field mass.

In the process of solving the mean-field gap equation
(3.32a), we shall be primarily interested with the case ms = 0
for which the decoupled ladders are fine-tuned to an Ising
critical point. In Fig. 3, we identify the regions from the λ-mt
plane for which the mean-field single-particle singlet gap is
nonvanishing when periodic boundary conditions (PBC) are
imposed.

A. Hubbard-Stratonovich transformation

We proceed with some manipulations on the partition
function

Z := Tr exp

(
−β

∫ Lx

0
dx Ĥ

)
, (3.2)

where β is the inverse temperature, the trace is over the Fock
space spanned by the Majorana fields, and Ĥ was defined in
Eq. (2.1). We can manipulate the interladder current-current
interaction (2.1d) by introducing an auxiliary scalar field. This
we do using the path-integral representation of the partition
function.

We work in two-dimensional Euclidean space-time and
use the path-integral representation of our model. Periodic
boundary conditions are imposed in space across the rectangle
of area Lx × Ly . We shall denote by ay ≡ 1/	y the separation
between two consecutive ladders. We shall denote by ax ≡
1/	x the ultraviolet cutoff along the ladders. The boundary
conditions along the imaginary-time segment [0,β[ are peri-
odic for bosonic fields and antiperiodic for Grassmann-valued
fields. The model is defined by

Z :=
∫

D[φ]
∫

D[χ0,χ1,χ2,χ3] e−S, (3.3a)

S :=
∫ β

0
dτ

∫ Lx

0
dx

Ly/ay∑
m=1

(Lχ,m + Lφ,m + Lχ,φ,m),

(3.3b)

Lχ,m := 1

2

3∑
μ=0

[
χ

μ

L,m(∂τ + ivμ∂x)χμ

L,m

+χ
μ

R,m(∂τ − ivμ∂x)χμ

R,m

]
, (3.3c)

Lφ,m := 1

4 λ
(φm,m+1)2, (3.3d)

Lχ,φ,m :=
3∑

μ=0

i mμχ
μ

L,m χ
μ

R,m +
3∑

μ=0

1

2

(−iχμ

L,m χ
μ

R,m+1

)
φm,m+1.

(3.3e)
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Here, the engineering dimensions of the Majoranas are
length−1/2, the engineering dimensions of the auxiliary
bosonic fields are length−1, and the engineering dimensions of
the couplings λ are length0. The action (3.3b) has the following
symmetries.

First, the μ-resolved Majorana parity is conserved owing
to the symmetry of S defined in Eq. (3.3b) under the Ising-like
transformation

χ
μ

M,m(τ,x) �→ σμ χ
μ

M,m(τ,x), σμ = ±1, (3.4)

for any μ = 0, . . . ,3, M = L,R, m = 1, . . . ,n, 0 � τ � β, and
0 � x � Lx .

Second, action (3.3b) is invariant under the m-resolved
Ising-like transformation

χ
μ

M,m(τ,x) �→ σm χ
μ

M,m(τ,x), σm = ±1,

φm,m+1(τ,x) �→ σm σm+1 φm,m+1(τ,x),
(3.5)

for any μ = 0, . . . ,3, M = L,R, m = 1, . . . ,n, 0 � τ � β, and
0 � x � Lx .

The m-resolved symmetry (3.5) of the action (3.3b) is
enhanced in the massless limit mμ = 0 for μ = 0,1, 2, 3 to
the M- and m-resolved symmetry under the transformation

χ
μ

M,m(τ,x) �→ σM,m χ
μ

M,m(τ,x), σM,m = ±1,

φm,m+1(τ,x) �→ σL,m σR,m+1 φm,m+1(τ,x), (3.6)

for any μ = 0, . . . ,3, M = L,R, m = 1, . . . ,n, 0 � τ � β, and
0 � x � Lx . Any nonvanishing mass mμ reduces the M- and
m-resolved symmetry of the action (3.3b) to the m-resolved
symmetry (3.5).

B. Mean-field Majorana single-particle Hamiltonian

To proceed, we assume that the scalar fields are independent
of space-time and of the index m, i.e.,

φm,m+1(τ,x) ≡ φ, Sφ = β Lx

Ly

ay

1

4λ
φ2. (3.7)

This assumption implies translation symmetry in space-time.
Hence we introduce the Fourier transformations

χ
μ

M,m(τ,x) =
√

ay

β Lx Ly

∑
ω,kx ,ky

e−i(kx x+ky may−ω τ )χ
μ

M,ω,k

(3.8a)

with the reality condition

χ
μ∗
M,ω,k = χ

μ

M,−ω,−k (3.8b)

for μ = 0,1, 2, 3, M = L,R, and m = 1, . . . ,Ly/ay . We shall
make use of the identity∫ β

0
dτ

∫ Lx

0
dx

Ly/ay∑
m=1

χ
μ

L,m χ
μ

R,m+1

=
∑
ω,k

e−iky ay χ
μ

L,−ω,−k χ
μ

R,ω,k (3.9)

for any μ = 0,1, 2, 3. We should emphasize that we have
imposed periodic boundary condition along the y direction,

χ
μ

M,n+1 ≡ χ
μ

M,1, M = L,R, (3.10)

when we perform the Fourier transformation. This amounts to
extending the upper limit for the summation from n − 1 to n

in the original interladder Hamiltonian (2.1d). This choice of
boundary conditions is depicted in Fig. 4(b). If so,

Sχ + Sχ,φ ≡
∫ β

0
dτ

∫ Lx

0
dx

Ly/ay∑
m=1

(Lχ,m + Lχ,φ,m)

=
∑
ω,k

3∑
μ=0

1

2

(
χ

μ

R,−ω,−kχ
μ

L,−ω,−k

)( iω − vμkx −i
(
mμ − e+iky ay 1

2φ
)

i
(
mμ − e−iky ay 1

2φ
)

iω + vμkx

)(
χ

μ

R,ω,k

χ
μ

L,ω,k

)
. (3.11a)

The mean-field Majorana single-particle Hamiltonian is de-
fined by

Ĥ MF
k :=

3∑
μ=0

Ĥ MF
μ,k, (3.11b)

where

Ĥ MF
μ,k := 1

2

(
−vμkx −i

(
mμ − e+ikyay

φ

2

)
i
(
mμ − e−ikyay

φ

2

)
vμkx

)
.

(3.11c)

Thus there are eight branches of mean-field excitations with
the dispersions (under the assumption that φ is real valued)

εμ,±(kx,ky) = ±1

2

√
v2

μk2
x + m2

μ + φ2

4
− mμφ cos(kyay),

(3.12)
for μ = 0, . . . ,3. The mean-field gaps are nonvanishing if and
only if

mμ − e±iky ay
φ

2
	= 0. (3.13)

More specifically, the mean-field Majorana gap around (kx =
0,ky = 0) and (kx = 0,ky = π ) are, for μ = 0, . . . ,3,

εμ,+(0,0) − εμ,−(0,0) =
∣∣∣∣mμ − φ

2

∣∣∣∣ (3.14a)
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and

εμ,+(0,π ) − εμ,−(0,π ) =
∣∣∣∣mμ + φ

2

∣∣∣∣, (3.14b)

respectively. The mean-field gap (3.14a) and (3.14b) is
the smallest gap when sgn(mμφ) = + and sgn(mμφ) = −,
respectively.

For any nonvanishing mean-field Majorana gap �μ,

�μ :=
∣∣∣∣|mμ| − |φ|

2

∣∣∣∣, (3.15)

the flavor μ realizes an insulating phase. Whether this
insulating phase is trivial (no protected edge state when OBC
are imposed along the y direction) or nontrivial (existence
of protected edge states when OBC are imposed along the
y direction) depends on the relative magnitude of |mμ| with
respect to the mean-field value |φ|/2. The flavor μ realizes a
topologically trivial insulating phase if

|mμ| >
|φ|
2

, (3.16a)

while it realizes a topologically nontrivial insulating phase if

|mμ| <
|φ|
2

. (3.16b)

The criteria (3.16) for the topological nontrivial and trivial
phases can be understood as follows. In the limit |mμ|/|φ| =
∞, the single-particle mean-field Hamiltonian is gapped by
pairing left- and right-moving Majorana modes in one ladder
at a time. By construction there is no edge state. This is
the topologically trivial insulator. In the opposite limit of
|mμ|/|φ| = 0, not all Majorana modes are paired. A pair
of Majorana modes with opposite chiralities remains free to
propagate in the first and last ladder. A phase transition should
occur when |mμ|/|φ| is of order 1/2. Figure 6 captures the
essence of this criterion.

Once it is established that φ is nonvanishing, the resulting
central charge of the edge states depends on how many mμ

for μ = 0,1, 2, 3 satisfy the topologically nontrivial condition
(3.16b). For instance, if one (three) out of the four mμ satisfies
Eq. (3.16b), then the central charge of the edge state is
1/2 (3/2). We conclude that the gapped bulk hosts NATO.
Similarly, if two (four) out of the four mμ satisfy Eq. (3.16b),
then the central charge of the edge states is 2 (4). We conclude
that the gapped bulk hosts ATO.

We close this discussion by observing that the mean-field
single-particle Hamiltonian (3.11c) was studied recently by
Kane et al. in Ref. [12] [see their Eq. (58)] from a different
perspective, namely that of a wire construction for paired states
in the FQHE at an even-denominator filling fraction ν, say
ν = 1/2.

C. Integrating out the Majorana fields

In what follows, we only consider the case v0 ≡ vs, m0 ≡
ms, va ≡ vt, and ma ≡ mt for any a = 1, 2, 3. The extension
to the case of arbitrary values for vμ and mμ does not present
major difficulties.

Integration over the Majorana fields delivers the product of
two Pfaffians. There is a Pfaffian that arises from integrating

(a)

(b)

mμ

χR
μ χL

μ

mμ

χR
μ χL

μ

mμ

χR
μ χL

μ

(c)

φ
χR

μ χL
μ χR

μ χL
μχR

μ χL
μ

φ φ

1
2

0

FIG. 6. (a) Flavor(μ)-resolved phase diagram for the single-
particle mean-field Hamiltonian as a function of |mμ|/|φ|. The
topologically trivial insulating phase in the limit |mμ|/|φ| = ∞ is
depicted in (b). The topologically nontrivial insulating phase in the
limit |mμ|/|φ| = 0 is depicted in (c). A phase transition should occur
when |mμ|/|φ| is of order 1/2. (b) When φ = 0 and mμ 	= 0, the
single-particle mean-field Hamiltonian is gapped by pairing left- and
right-moving Majorana modes in one ladder at a time. By construction
there is no edge state. This is the topologically trivial insulator. (c)
When mμ = 0 and φ 	= 0, not all Majorana modes are paired. A pair of
Majorana modes with opposite chiralities remains free to propagate in
the first and last ladders. This is the topologically nontrivial insulator.

over the singlet χ0’s, and another Pfaffian that arises from
integrating over the triplet χa’s. It follows that

Z ∝
∫

D[φ] e−S ′
, (3.17a)

S ′ := Sφ + SF, (3.17b)

Sφ := β Lx Ly

ay

φ2

4λ
, (3.17c)

SF := −1

2

∑
ω,k

[
ln

(
−ω2−v2

s k
2
x −m2

s − φ2

4
+ msφ cos

ky

	y

)

+3 ln

(
−ω2−v2

t k
2
x−m2

t −
φ2

4
+ mtφ cos

ky

	y

)]
.

(3.17d)

Here, we have introduced the momentum cutoff

	y := 1

ay

. (3.17e)

The action S ′ controls the global symmetries of the theory.
It is invariant under the global Ising-like (Z2) transformation
defined by

φ �→ −φ (3.18a)
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if we compensate this change of sign with the change of
variable

ky �→ ky + π	y (3.18b)

in the summation over ky .

D. Mean-field gap equations

The saddle-point equation

0 ≡ ay

β Lx Ly

∂S ′

∂φ
(3.19)

is then explicitly given by

0 = 1

2 λ
φ − ay

β Lx Ly

∑
ω,k

⎡⎣1

2

1
2φ − ms cos

ky

	y

ω2 + v2
s k

2
x + m2

s + 1
4φ2 − ms φ cos

ky

	y

+ 3

2

1
2φ − mt cos

ky

	y

ω2 + v2
t k

2
x + m2

t + 1
4φ2 − mt φ cos

ky

	y

⎤⎦. (3.20)

We observe that Eq. (3.20) is invariant under

φ �→ −φ,

ms �→ −ms,

mt �→ −mt.

(3.21)

It is also invariant under

ms �→ −ms, mt �→ −mt, (3.22a)

if we compensate this change of sign with the change of variable

ky �→ ky + π	y (3.22b)

in the summation over ky . The same is true of the partition function defined in Eq. (3.17).
In the limit β → ∞, Lx → ∞, and Ly → ∞ (zero temperature and thermodynamic limit), the sums become integrals

in three-dimensional space-time. Power counting predicts that those momentum integrals are logarithmically divergent in the
ultraviolet. A momentum cutoff is thus needed to evaluate those integrals. It is chosen to be |kx | � π	x and |ky | � π	y . All
integrals over the Matsubara frequencies are performed before the momentum integrals by application of the Residue theorem.
To this end, the identity ∫ +∞

−∞

dω

2π

a2

ω2 + b2
= 1

2

a2

√
b2

, a,b ∈ R, (3.23)

is used. The remaining integral over kx is of the form∫ b

0
dx

1√
x2 + a2

= arcsinh

(
b

a

)
, 0 < a,b. (3.24)

Finally, the remaining integral over ky can be simplified by changing variable

q := ky

	y

. (3.25)

In summary, the saddle-point equation has become the single integral

0 = φ

2π	x

− λ

4π

[
1

vs

∫ +π

−π

dq

2π

(
φ

2π	x

− 2ms

2π	x

cos q

)
arcsinh

(
2π	xvs√

4m2
s + φ2 − 4ms φ cos q

)]
− 3λ

4π
[s → t]. (3.26)

Equation (3.26) is a nonlinear equation for one unknown φ

2π	x
. It can only be solved numerically for arbitrary value of λ, mt

2π	x
,

and ms
2π	x

(set vs = vt ≡ 1) if no further approximation is imposed. Nevertheless, it is still useful to look at two limiting cases of
the saddle-point equation (3.26).

Case λ = 0. The solution for φ is simply

φ = 0. (3.27)

Case ms = mt = 0. Assuming φ 	= 0, Eq. (3.26) simplifies to (set vs = vt ≡ 1)

1 = λ

π
arcsinh

(
2π	x

|φ|
)

. (3.28)
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Since arcsinh( 2π	x

|φ| ) is positive, we must require λ > 0 to find the solution of φ from (3.28). Nonvanishing solutions for φ are

|φ| = 2π	x

1

sinh
(

π
λ

) , λ > 0. (3.29)

E. Approximate mean-field gap equations

Insertion of the asymptotic expansion

arcsinh(x) ≈ ln (2x) + O(x−2) (3.30)

into the saddle-point equation (3.26) gives

0 = φ

2π	x

− λ

4π

[
1

vs

∫ +π

−π

dq

2π

(
φ

2π	x

− 2ms

2π	x

cos q

)
× ln

(
4π	xvs√

4m2
s + φ2 − 4ms φ cos q

)]
− 3λ

4π
[s → t] (3.31a)

with the conditions

0 �
√

4m2
s + φ2 − 4ms φ cos q � 2π	xvs (3.31b)

and

0 �
√

4m2
t + φ2 − 4mt φ cos q � 2π	xvt. (3.31c)

The integrals in Eq. (3.31a) can be carried out. There follows

0 = φ

2π	x

− λ

4π

1

vs

⎧⎨⎩ φ

2π	x

× ln

⎛⎝ 4
√

2π	xvs√
4m2

s + φ2 + ∣∣4m2
s − φ2

∣∣
⎞⎠

− 1

4

(
φ

2π	x

)−1
[(

φ

2π	x

)2

+
(

2ms

2π	x

)2

−
∣∣∣∣∣
(

φ

2π	x

)2

−
(

2ms

2π	x

)2
∣∣∣∣∣
]}

− 3λ

4π

1

vt
{s → t} (3.32a)

with the conditions

0 � 2|ms| + |φ| � 2π	xvs (3.32b)

and

0 � 2|mt| + |φ| � 2π	xvt. (3.32c)

From now on, we treat the case ms = 0 for which

0 = φ

2π	x

− λ

4π

1

vs

φ

2π	x

× ln

(
4π	xvs

|φ|
)

− 3λ

4π

1

vt

{
φ

2π	x

× ln

(
4
√

2π	xvt√
4m2

t + φ2 + |4m2
t − φ2|

)

− 1

4

(
φ

2π	x

)−1
[(

φ

2π	x

)2

+
(

2mt

2π	x

)2

−
∣∣∣∣∣
(

φ

2π	x

)2

−
(

2mt

2π	x

)2
∣∣∣∣∣
]}

(3.33a)

with the conditions

0 � |φ| � 2π	xvs (3.33b)

and

0 � 2|mt| + |φ| � 2π	xvt. (3.33c)

Equation (3.33) is solved for the following four cases.
Case mt = 0. Assuming φ 	= 0, Eq. (3.33) simplifies to (set

vs = vt ≡ 1)

1 = λ

π
ln

(
4π	x

|φ|
)

(3.34a)

with

0 � |φ| � 2π	x. (3.34b)

Since ln (x) is positive for x > 1, we must require λ > 0 to
find the solution of φ from (3.34a). Hence a solution with a
nonvanishing |φ|/(2π	x) is

|φ|
2π	x

= 2 × e− π
λ , λ > 0. (3.35)

This is the usual weak-coupling BCS gap.
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Case |φ| < 2|mt|. It follows that 4m2
t − φ2 > 0. Assuming

φ 	= 0, Eq. (3.33) simplifies to (set vs = vt ≡ 1)

1 = λ

4π
ln

(
4π	x

|φ|
)

+ 3λ

4π
ln

(
2π	x

|mt|
)

− 3λ

8π
(3.36a)

with

0 � |φ| � 2π	x (3.36b)

and

0 � 2|mt| + |φ| � 2π	x. (3.36c)

Hence a solution with a nonvanishing |φ|/(2π	x) is

|φ|
2π	x

= 2 × e−3/2 ×
( |mt|

2π	x

)−3

× e−4π/λ. (3.37)

Increasing |mt| decreases |φ|. Increasing λ > 0 decreases |φ|.
There is a competition between λ > 0 and |mt|.

Case |φ| > 2|mt|. It follows that 4m2
t − φ2 < 0. Assuming

φ 	= 0, Eq. (3.33) simplifies to (set vs = vt ≡ 1)

1 = λ

π
ln

(
4π	x

|φ|
)

− 3λ

2π

(
mt

φ

)2

(3.38a)

with

0 � |φ| � 2π	x (3.38b)

and

0 � 2|mt| + |φ| � 2π	x. (3.38c)

Hence a solution with a nonvanishing |φ|/(2π	x) is

|φ|
2π	x

e
+ 3

2 (
mt
φ

)2 = 2 e−π/λ. (3.39)

Case φ = ±2mt. Assuming φ 	= 0, Eq. (3.33) simplifies to
(set vs = vt ≡ 1)

1 = λ

π
ln

(
4π	x

|φ|
)

− 3λ

8π
(3.40a)

with

0 � 2|φ| � 2π	x. (3.40b)

Hence a solution with a nonvanishing |φ|/(2π	x) is

|φ|
2π	x

= 2|mt|
2π	x

= 2 × e−3/8 × e− π
λ . (3.41)

F. Hessian at the saddle points

We are going to compute the Hessian of the effective
potential defined by S ′ in Eq. (3.17). To this end, define

Veff := ay

β Lx Ly

S ′. (3.42)

We begin with the saddle points of Veff for ms = 0 within
logarithmic accuracy. They are simply given by the right-hand
side of Eq. (3.33a). Next, we turn our attention to the second-
order derivative of Veff ,

∂2 Veff

∂φ2
= 1

2λ
− 1

8π

1

vs

[
ln

(
4π	xvs

|φ|
)

− 1

]
− 3

8π

1

vt

⎧⎨⎩ln

⎛⎝ 4
√

2π	xvt√
4m2

t + φ2 + ∣∣4m2
t − φ2

∣∣
⎞⎠− 1

+ 1

4

(
φ

2π	x

)−2
[(

φ

2π	x

)2

+
(

2mt

2π	x

)2

−
∣∣∣∣∣
(

φ

2π	x

)2

−
(

2mt

2π	x

)2
∣∣∣∣∣
]}

(3.43a)

with

0 � |φ| � 2π	xvs (3.43b)

and

0 � 2|mt| + |φ| � 2π	xvt. (3.43c)

There are four cases to consider.
Case mt = 0. Insertion of Eq. (3.35) into Eq. (3.43) gives

(set vs = vt ≡ 1)

∂2 Veff

∂φ2

∣∣∣∣
saddle

= 1

2π
> 0. (3.44)

Solution (3.35) is a local minima of the effective potential.
Case |φ| < 2|mt|. Insertion of Eq. (3.37) into Eq. (3.43)

gives (set vs = vt ≡ 1)

∂2 Veff

∂φ2

∣∣∣∣
saddle

= 1

8π
> 0. (3.45)

Solution (3.37) is a local minima of the effective
potential.

Case |φ| > 2|mt|. Insertion of Eq. (3.39) into Eq. (3.43)
gives (set vs = vt ≡ 1)

∂2 Veff

∂φ2

∣∣∣∣
saddle

= 1

2π
− 3

2π

(
mt

φ

)2

> 0. (3.46)

Solution (3.39) is a local minima of the effective potential.
Case φ = ±2mt. Insertion of Eq. (3.41) into Eq. (3.43)

gives (set vs = vt ≡ 1)

∂2 Veff

∂φ2

∣∣∣∣
saddle

= 1

8π
> 0. (3.47)

Solution (3.41) with λ > 0 is a local minima of the effective
potential.
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G. Interpretation

To proceed, we recall the definition of the mean-field
Majorana gap (3.15)

�0 ≡ �s := |φ|
2

(3.48a)

for the singlet Majorana field with ms = 0, and

�a ≡ �t :=
∣∣∣∣|mt| − |φ|

2

∣∣∣∣, a = 1, 2, 3 (3.48b)

for the triplet of Majorana fields, and the corresponding
topological criteria (3.16). One observes that the singlet
Majorana gap �s (3.48a) is nonvanishing as long as φ 	= 0.

The approximate mean-field solution given by Eqs. (3.35),
(3.37), (3.39), and (3.41) when |mt| = 0, |φ| < 2|mt|, |φ| >

2|mt|, and |φ| = 2|mt|, respectively, imply the mean-field
phase diagram shown in Fig. 5. More specifically, we first
look at the line mt = 0, along which we have a nonvanishing
value of φ. This corresponds to a phase with (mean-field)
ATO, for which the boundary realizes a CFT with central
charge 2 as both the singlet and triplet of chiral Majorana edge
states are gapless. We also find that |φ| reaches its maximum
value when mt = 0 for a given λ > 0. The generic trend is
that |φ| decreases as |mt| increases. If we increase |mt| a
little away from 0, |φ| decreases a little. However, the ATO
phase is robust, for the mean-field bulk gap �s and �t (3.48)
remain nonvanishing. We have to increase |mt| until it satisfies
2|mt| = |φ| for the mean-field triplet bulk gap �t (3.48b) to
close. Only then can the (mean-field) ATO phase be destroyed.
The triplet bulk gap �t reopens when 2|mt| > |φ|, however the
triplet of chiral Majorana edge states are now gapped, leaving
only a singlet of massless chiral Majorana edge states. This
mean-field phase supports (mean-field) NATO, for which the
boundary realizes a CFT with central charge 1/2. In the large
|mt| limit, the value of |φ| is further suppressed [see Eq. (3.37)].
However, the mean-field bulk gap �s and �t remain gapped,
whatever the small but nonvanishing value of |φ| is.

The assumption that the singlet mass ms vanishes in order
to derive the nonvanishing solutions (3.35), (3.37), (3.39), and
(3.41) to the gap equation (3.33) is not essential as long as
a nonvanishing ms is smaller in magnitude than the saddle-
point |φ/2|. This is to say that the ATO and NATO phases for
λ > 0 and ms = 0 extend to nonvanishing yet not too strong
|φ/2| > |ms| > 0. The ATO and NATO phases do not require
a precise tuning of the two-leg ladders to their Ising critical
point provided the detuning is smaller in magnitude than |φ/2|.

IV. BEYOND MEAN-FIELD THEORY: DIMENSIONAL
CROSSOVER FROM A RANDOM PHASE

APPROXIMATION

The mean-field approximation of Sec. III is done in two-
dimensional space. It posits that all excitations belong to a
quartet of pointlike particles obeying the Majorana equal-time
algebra. However, the line mt = ms = 0 when vμ = v for
μ = 0,1, 2, 3 in Fig. 3 corresponds to an integrable model for
which this is not the case. As was alluded to below Eq. (2.5),
Hamiltonian (2.5) with λ > 0 is a massive theory in which
the quartet of Majoranas do not exist as sharp (coherent)

excitations, i.e., none of the components

G1d
μ,M,m;μ′M′,m′(ω,kx)

:= −〈0|χ̂μ

M,m(ω,kx) χ̂
μ′
M′,m′(−ω, − kx) |0〉 (4.1)

(the ket |0〉 denotes the ground state) support poles. Here, ω

is a fermionic Matsubara frequency, kx is a one-dimensional
momentum, μ,μ′ = 0,1, 2, 3 refer to the index for the
quartet of Majorana fields, M,M′ = L,R refer to the left-
and right-moving components of the Majorana fields, and
m,m′ = 1, . . . ,n refer to the index of the ladders.

The line mt = ms = 0 when vμ = v for μ = 0,1, 2, 3 in
Fig. 3 consists of decoupled one-dimensional Gross-Neveu
Hamiltonians with O(4) symmetry, recall Eq. (2.5d), each one
of which has the Lagrangian density

L̂GN := L̂0 + Ĥint, (4.2a)

L̂0 = 1

2

3∑
μ=0

[
χ̂

μ

L

(
∂τ + iv ∂x

)
χ̂

μ

L + χ̂
μ

R

(
∂τ − iv ∂x

)
χ̂

μ

R

]
,

(4.2b)

Ĥint = λ

4

⎛⎝ 3∑
μ=0

χ̂
μ

L χ̂
μ

R

⎞⎠2

, (4.2c)

where the velocity v and the coupling λ are all real valued.
We are going to extract the single-particle Green function

for the Majorana fermions with the Hamiltonian (4.2) using
nonperturbative results valid for integrable systems. We will
then treat a nonvanishing mass mt 	= 0 nonperturbatively
within the random phase approximation (RPA).

It is known [20] that the O(4) GN defined by the Lagrangian
density (4.2) is equivalent to two independent copies of the
sine-Gordon model. We identify the first copy as the spin-
sector and the second copy as the charge sector for interacting
spin-1/2 electrons. In turn, the creation ψ̂

†
M,σ and annihilation

ψ̂M,σ operators for the electrons are related to the Majorana
fermions by

ψ̂
†
M,↑ ≡ 1√

2

(
χ̂1

M − iχ̂2
M

)
, ψ̂M,↑ ≡ 1√

2

(
χ̂1

M + iχ̂2
M

)
, (4.3a)

ψ̂
†
M,↓ ≡ 1√

2

(
χ̂3

M − iχ̂0
M

)
, ψ̂M,↓ ≡ 1√

2

(
χ̂3

M + iχ̂0
M

)
, (4.3b)

where M = L,R and σ = ↑,↓. By relying on Abelian
bosonization rules, the O(4) GN Lagrangian density (4.2)
becomes

L̂GN = L̂GN,s + L̂GN,c, (4.4a)

L̂GN,s = 1

2

[
v−1

s (∂τ ϕ̂s)
2 + vs(∂xϕ̂s)

2]− λ

4
cos(β ϕ̂s), (4.4b)

L̂GN,c = 1

2

[
v−1

c (∂τ ϕ̂c)2 + vc(∂xϕ̂c)2]− λ

4
cos(β ϕ̂c), (4.4c)

with

vs = vc ≡ v (4.4d)
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and

β =
√

8π

1 + λ
2π

. (4.4e)

Equation (4.4) is also derived in Sec. VII starting from the
spin-1/2 lattice model depicted in Fig. 2.

The quantum critical point λ = 0 (β2 = 8π ) supports an
ŝu(2)1 ⊕ ŝu(2)1 current algebra. When λ > 0 (β2 < 8π ), each
cosine interaction becomes marginally relevant, a spectral gap
opens up, and solitonlike excitations (kinks) by which the
asymptotic expectation values of ϕ̂a(x,τ ) with a = s,c at x =
−∞ and x = +∞ changes by ±2π/β over a region of size
1/M can be thought of as massive particles with the mass M

a function of the deviation 8π − β2 > 0. At β2 = 4π , L̂GN,a
is a noninteracting massive Dirac theory for both a = s and
a = c. When β2 < 4π , breather modes supplement the kinks
as massive point-like excitations.

If the real-valued scalar field ϕ̂a(τ,x) is decomposed into
left- and right-moving parts according to the rule

ϕ̂a(τ,x) = ϕ̂a,R(τ + ix) + ϕ̂a,L(τ − ix), (4.5a)

it is then possible to use the Mandelstam representation

ψ̂M,σ := ησ√
2π

ei
√

2π ϕ̂c,M eifσ

√
2π ϕ̂s,M (4.5b)

with M = L,R, σ = ↑,↓, f↑ = −f↓ = 1, and ησ the Klein
factors fulfilling

{ησ ,ησ ′ } = 2δσ,σ ′ . (4.5c)

The chiral vertex operator exp(±i
√

2π ϕ̂a,M) carries the
Lorentz spin

s := ±1/4, (4.6)

i.e., under the rotation

τ + ix �→ eiα(τ + ix) (4.7)

of two-dimensional Euclidean space, it is multiplied by the
phase exp(±iα/4). The chiral electron annihilation operator,
which must carry the Lorentz spin s = 1/2, is glued by taking
the product of two chiral vertex operators, each of which carries
the Lorentz spin s = 1/4, according to Eq. (4.5).

To calculate the two-point correlation functions for the
chiral Majorana fields, they are first expressed in terms of two-
point functions for the chiral electron fields using Eq. (4.3).
The Mandelstam representation (4.5) is then used to represent
the two-point Green’s functions for the Majorana fields in
terms of two-point functions for the chiral vertex operators.
Finally, the two-point functions for the chiral vertex operators
are calculated using the form factors of the massive integrable
theory defined by the Lagrangian density (4.4).

In a relativistically invariant massive integrable theory
in two-dimensional Euclidean space, all multiparticle states
are the kets

|θn, . . . ,θ1〉εn,...,ε1
(4.8a)

with the many-body energy
n∑

j=1

Eεj
(θj ), Eεj

(θj ) := M cosh θj , (4.8b)

the many-body momentum
n∑

j=1

Pεj
(θj ), Pεj

(θj ) := M

v
sinh θj , (4.8c)

where θi denotes the rapidity of a single-particle state with
the quantum number εi . They are pairwise orthogonal and
orthogonal to the ground state |0〉 with the resolution of the
identity

1 = |0〉〈0| +
+∞∑
n=1

∑
εi

∫ +∞

−∞

dθ1 · · · dθn

(2π )nn!

× |θn, . . . ,θ1〉εn,...,ε1

ε1,...,εn〈θ1, . . . ,θn|. (4.8d)

The two-point functions for the chiral vertex operators are
calculated using an integral representation for the form factor

〈0|e±i
√

2π ϕ̂a,M |θn, . . . ,θ1〉εn,...,ε1
(4.9)

due to Ref. [21]. Following Refs. [22,23] we will truncate
the resolution of the identity (4.8d) to the order n = 1 when
evaluating the form factors for the electron operators.

The one-particle form factors for the pair of chiral vertex
operators exp(i

√
2πϕ̂a,M) between the vacuum and a state

supporting a single soliton are

〈0|ei
√

2π ϕ̂a,R |θ〉 ≈ √Z0 (2πMv−1)1/4 e+θ/4, (4.10a)

〈0|ei
√

2π ϕ̂a,L |θ〉 ≈ √Z0 (2πMv−1)1/4 e−θ/4. (4.10b)

The dependence on the rapidity θ is fixed by Lorentz
invariance, whereas the positive constant Z0 is not fixed by
symmetry, but was calculated in Ref. [21] to be

Z0 ≈ 0.92. (4.10c)

In the same work, it was demonstrated that most of the
spectral weight is contained in the emission of a single
kink. For example, about 80% of the spectral weight in the
spectral functions entering the Majorana two-point functions
(4.12) originate from the emission of a single kink. After
substituting these matrix elements into the Lehmann expansion
for the Majorana two-point functions in (1 + 1)-dimensional
Euclidean space, we obtain, for any μ = 0,1, 2, 3 and after
setting v = 1,

G1d
LL(τ,x) := −〈0|χ̂μ

L (τ,x) χ̂
μ

L (0,0)|0〉 = −Z2
0

(
τ + ix

τ − ix

)1/2(∫ +∞

−∞

dθ

2π
e−θ/2 e−M ρ cosh θ

)2

= − Z2
0 e−2M ρ

2π (τ − ix)
, (4.11a)
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G1d
RR(τ,x) := −〈0|χ̂μ

R (τ,x) χ̂
μ

R (0,0)|0〉 = −Z2
0

(
τ − ix

τ + ix

)1/2(∫ +∞

−∞

dθ

2π
e+θ/2 e−M ρ cosh θ

)2

= − Z2
0 e−2M ρ

2π (τ + ix)
, (4.11b)

G1d
LR(τ,x) = G1d

RL(τ,x) := −〈0|χ̂μ

L (τ,x) χ̂
μ

R (0,0)|0〉 = −Z2
0 M

(∫ +∞

−∞

dθ

2π
e−M ρ cosh θ

)2

= −Z2
0 M K2

0 (M ρ)

π2
, (4.11c)

where

K0(z) := 1

2

∫ +∞

−∞
dt e−z coshz, ρ :=

√
τ 2 + x2. (4.11d)

Fourier transformation to imaginary frequency (ω̄) and momentum (q) space followed by the analytic continuation ω̄ →
−iω + 0+ delivers the retarded two-point Green functions for the chiral Majorana fields given by

G1d
LL(ω,q) := lim

ω̄→−iω+0+

∫
dτdx eiω̄ τ−iq x G1d

LL(τ,x) ≈ Z2
0

ω − q

(
1 − 1√

1 − s2/(2M)2

)
, (4.12a)

G1d
RR(ω,q) := lim

ω̄→−iω+0+

∫
dτdx eiω̄ τ−iq x G1d

RR(τ,x) ≈ Z2
0

ω + q

(
1 − 1√

1 − s2/(2M)2

)
, (4.12b)

G1d
LR(ω,q) = G1d

RL(ω,q) := lim
ω̄→−iω+0+

∫
dτdx eiω̄ τ−iq x G1d

LR(τ,x) ≈ − Z2
0

2M

2

π

arcsin(s/2M)

[s/(2M)]
√

1 − [s/(2M)]2
, (4.12c)

where

s2 := ω2 − q2. (4.12d)

Observe that the Green functions (4.12a) and (4.12b) are
even functions of M , while the Green function (4.12c) is an
odd function of M . This latter fact follows from the bond
operator (2.7) being odd under any transformation (2.6) with
σL,m σR,m+1 = −1.

Once we turn on a nonvanishing mt, we restore true
two-dimensionality of space. In the spirit of the RPA for
dimensional crossovers from lower to higher dimensions, we
make the RPA ansatz for the retarded Green’s function in
momentum space:

Ĝ2d RPA(ω,kx,ky) := 1

[Ĝ1d(ω,kx)]−1 − M̂(ky)
, (4.13a)

where

Ĝ1d(ω,kx) :=
⎛⎝G1d

LL(ω,kx) G1d
LR(ω,kx)

G1d
RL(ω,kx) G1d

RR(ω,kx)

⎞⎠ (4.13b)

and the Fourier transform of the perturbation M̂(ky) is given
by

M̂(ky) :=
(

0 mμ e+iky

mμ e−iky 0

)
. (4.13c)

If the operator-valued denominator on the right-hand side
of Eq. (4.13a) acquires first-order zeros as eigenvalues, then
this RPA predicts that a nonvanishing mμ turns the Majorana
fields into well-defined quasiparticles. The condition for this
to happen is that the determinant of the denominator on the
right-hand side of Eq. (4.13a) vanishes, namely,

0 = 1 − 2 mμ G1d
LR(ω,kx) cos ky − m2

μ det Ĝ1d(ω,kx).

(4.14)

Substituting the retarded Green’s functions from Eq. (4.12),
we obtain the dispersion for the triplet of Majoranas (the
singlet ones at ms = 0 do not propagate, at least in this RPA
formalism) from solving

cos ky ≈ 1 − (Z2
0 mt

2M

)2[
g2
(

s
2M

)− f 2
(

s
2M

)]
(−2)

(Z2
0 mt

2M

)
f
(

s
2M

) , (4.15a)

where we have introduced the auxiliary functions

g(x) := 1

x

(
1 − 1√

1 − x2

)
, f (x) := 2

π

arcsin (x)

x
√

1 − x2
,

(4.15b)

with the limiting values

lim
x→0

g(x) = 0, lim
x→0

f (x) = 2/π, (4.15c)

and the asymptotic expansion for |x| � 1

g(x) = −1

2
x − 3

8
x3 · · · , f (x) = 2

π

(
1 + 2

3
x2 + · · ·

)
.

(4.15d)

We note that the RPA spectrum (4.15a) is invariant under
the simultaneous transformation

ky �→ ky ± π, mt �→ −mt. (4.16)

For small |mt/M| � 1, we deduce from Eq. (4.15) the
relation

(s/2M)2 ≈ 1 − (Z2
0 mt/M

)2
cos2 ky, |ky | < π/2. (4.17)

As it should be, no RPA excitations can be found below
the threshold 2M for the two-soliton continuum when mt =
0. However, for any infinitesimal mt 	= 0, one finds RPA
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FIG. 7. The solid lines are the dispersions s/(2M) for the
triplet of Majorana modes as a function of ky that follows from
solving Eq. (4.15a) for different values of A = −Z2

0 mt/(2M). The
dashed lines are the corresponding dispersions obtained from the
approximate dispersion relation (4.24a).

excitations that are dispersing along the m direction with the
momentum ky below the threshold 2M .

For arbitrary |mt/M|, one can solve Eq. (4.15) numeri-
cally, thereby confirming the analytical results obtained for
|mt/M| � 1. Figure 7 displays the values of the pair

(ky,s) ≡ (ky,

√
ω2 − k2

x

)
(4.18)

that solve Eq. (4.15a) holding

A := −Z2
0 mt

2M
> 0 (4.19)

fixed. By inspection of the dispersions (s,ky) for different
values of A, we deduce the existence of a spectral gap except
for the special case when

A → π

2
, (4.20)

which is nothing but the solution to Eq. (4.15a) in the limit
ky → 0 and s → 0, namely the solution to

0 =
(

1 − 2

π
A

)2

. (4.21)

The condition

−Z2
0 mt

2M
= π

2
(4.22)

is nothing but the RPA counterpart to the mean-field transition
from the ATO to the NATO phases by which the number of
Majorana edge states changes. The numerical value of the
condition (4.22) with Z2

0 ≈ 0.85 is

|mt|
M

≈ 3.7. (4.23)

When |A − (π/2)| � 1, we can expand the right-hand side
of Eq. (4.15a) in powers of s/(2M) with the help of the

asymptotic expansion (4.15d). One finds the dispersion

ω2 ≈ k2
x +

[
32

3πA
cos ky +

(
1 − 64

3π2

)]−1(4M

A

)2

×
[

sin2 ky +
(

2A

π
− cos ky

)2
]
.

(4.24a)

The squared mass [take A ≈ π/2 in the first square bracket
and kx = ky = 0 on the right-hand side of Eq. (4.24a)]

m2
RPA ≈

(
8M

π A

)2(
A − π

2

)2
� M2 (4.24b)

for the triplet of Majorana fields follows.
At values of A > π/2, the gap increases fast. It should

also be noted that the dispersion does not include the entire
Brillouin zone; there is a critical value of ky beyond which
it crosses into the two-soliton continuum above the energy
threshold 2M .

V. TWO-DIMENSIONAL MAJORANA FERMIONS,
ONE-DIMENSIONAL SOLITONS

Both the mean-field approach and the one based on
combining the exact solution for the Majorana two-point
correlation functions of the one-dimensional Gross-Neveu
Hamiltonian (2.5) with the RPA tell us that the excitations
of the model of coupled wires obeying periodic boundary
conditions in all space directions can include Majorana modes.

In the limit mt = ms = 0, the low-lying excitations of
the Gross-Neveu Hamiltonian (2.5) are exclusively made of
solitons. These solitons propagate along the x direction only
(i.e., in one dimension only) above the energy threshold M

introduced in Sec. IV. Remarkably, these solitons are also
present in the spectrum when a small in magnitude mt 	= 0 is
added to the Gross-Neveu Hamiltonian (2.5), i.e., they are not
confined by the crossover to two-dimensional space induced by
the coupling mt 	= 0. To arrive at this conclusion, we proceed
as follows.

We are going to show that the symmetry (3.5), which
implies the conservation of the m-resolved Majorana parity,
(i) cannot be spontaneously broken at any nonvanishing
temperature T > 0 and (ii) is spontaneously broken at zero
temperature T = 0. The free-energy argument underlying
claim (i) is that there are gapped one-dimensional excitations
of solitonic character in the many-body excitation spectrum
of Hamiltonian (2.1) above the energy threshold M . Their
Boltzmann weight at the temperature T is of order e−M/T so
that their average separation is of order

ξ (T ) ∼ eM/T . (5.1)

This length scale thus diverges exponentially fast upon
approaching the zero-temperature limit at which long-range
order associated to the spontaneous symmetry breaking of the
symmetry (3.5) occurs.

Absence of spontaneous symmetry breaking of the symme-
try (3.5) at any nonvanishing temperature T is a consequence
of the local character of the symmetry (3.5) with respect to
the label m. Spontaneous symmetry breaking of the symmetry
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(3.5) at T = 0 results from the global nature of the symmetry
(3.5) with respect to imaginary time τ and the coordinate x.

The proof of claim (i) goes as follows. Integrating the
Majorana fermions in the partition function (3.3) endows
the dynamical field φm,m+1(τ,x) (that carries the engineering
dimension of length−1) with an effective action that must obey
the symmetry (3.5).

The effective action for the dynamical field φm,m+1(τ,x) with
a local Lagrangian density cannot contain a term such as

Lκ := κ [φm,m+1(τ,x) − φm+1,m+2(τ,x)]2, (5.2)

whereas a term like

Lζ := ζ

M2

[
φ2
m,m+1(τ,x) − φ2

m+1,m+2(τ,x)
]2

(5.3)

is allowed by the symmetry (3.5). Here, the couplings κ and ζ

are dimensionless. If we define the length scale

� := 1

M
(5.4)

and assume that φm,m+1 has the two-soliton profile

φm,m+1(τ,x) ∝ φ

[
arctan

(
x + R

�

)
− arctan

(
x − R

�

)]
,

(5.5)

along the x direction (φ > 0 is arbitrary), we find that, if
R � �, the action penalties are given by

Sκ ∼ κ φ2

T
R (5.6)

and

Sζ ∼ ζ �2 φ4

T
�, (5.7)

respectively. At any nonvanishing temperature T > 0, the
action penalty (5.6) causes the linear confinement of the
pair of solitons, centered at R and −R, respectively. At any
nonvanishing temperature T > 0, the action penalty (5.7)
is independent of the separation R between the pair of
solitons centered at R and −R, respectively, i.e., solitons are
deconfined. Thus, at any nonvanishing temperature T > 0,
the thermal fluctuations that are encoded by the proliferation
of solitons that interpolate between all the symmetry sectors
of the symmetry (3.5) about any mean-field that breaks the
symmetry (3.5) restore this symmetry.

The proof of claim (ii) goes as follows. At zero temperature,
there is no contribution from the solitons owing to the finite
energy of order of M needed to create them. The fact that the
symmetry (3.5) is m-resolved is inoperative when T = 0. On
the other hand, the symmetry (3.5) is global with respect to
τ and x. Because it is Ising like, the effective quantum action
at zero temperature can be thought of as a set of coupled
Landau-Ginzburg actions, each one of which describes the
classical Ising model in two-dimensional space and is labeled
by the directed bond 〈m,m + 1〉. Their coupling is controlled
by the Majorana mass mt for the triplet of Majorana fields
(we are setting ms = 0). Upon decoupling these classical
Ising models in two-dimensional space by setting mt = 0, we
know from Sec. IV that the Ising symmetry is spontaneously
broken. Switching on mt 	= 0 only reinforces this spontaneous

breaking of the Ising symmetry as the coupling induced by
mt 	= 0 is not frustrating.

It is instructive to establish the degeneracy of the ground
state manifold that is spontaneously broken. In the limit

mt = ms = 0, (5.8)

the Majorana modes decouple into the nonchiral pairs χ
μ

L,m

and χ
μ

R,m+1 with μ = 0,1, 2, 3, i.e., four flavors of Majorana
fields of opposite chiralities for each directed bond 〈m,m + 1〉.
For each directed bond 〈m,m + 1〉, the corresponding Majorana
fields are strongly interacting through a O(4)-symmetric
Gross-Neveu interaction. However, the Majorana fields be-
longing to distinct directed bonds, say 〈m,m + 1〉 and 〈m +
1,m + 2〉, are decoupled. We may thus identify these pairs
of interacting nonchiral Majorana modes as one-dimensional
bundles labeled by the directed bond variable 〈m,m + 1〉. Each
bundle 〈m,m + 1〉 can be bosonized. The interacting theory for
the bundle 〈m,m + 1〉 is characterized by the gap

〈ei
√

2π(ϕ̂L,m+ϕ̂R,m+1)〉 = ±|M|1/2. (5.9)

The sign ambiguity on the right-hand-side signals the breaking
of a global Z2 symmetry for each bundle 〈m,m + 1〉. Corre-
spondingly, the solitonlike excitations are nothing but sine-
Gordon solitons, i.e., domain walls separating regions along
the x coordinate with different signs of the order parameter.
From the point of view of the Majorana fermions χ

μ

L,m and
χ

μ

R,m+1 with μ = 0,1, 2, 3, different vacua are connected by
the gauge transformation that changes a sign of either the
left- or the right-moving Majorana fermion. As follows from
Eqs. (4.10) and (4.11c), the Green’s function G1d

LR(τ,x) for
a given bundle 〈m,m + 1〉 is proportional to φm,m+1 on this
bundle. At the mean-field level, φm,m+1 is nothing but an order
parameter that breaks the symmetry of the Hamiltonian under

χ
μ

L,m χ
μ

R,m+1 → σL,m σR,m+1 χ
μ

L,m χ
μ

R,m+1, σL,m,σR,m+1 = ±1.

(5.10)

In other words, the sign of the Green’s function (4.12c) is
arbitrary. Choosing one sign breaks spontaneously a twofold
degeneracy for the bundle 〈m,m + 1〉. Given that there are n

decoupled bundles of the form 〈m,m + 1〉, given the periodic
boundary conditions identifying m with m + n, one deduces
the degeneracy 2n among all the possible symmetry breaking
ground states that can be spontaneously selected.

However, the true degeneracy to be broken spontaneously
in a system with periodic boundary conditions is 2n−1 once we
switch on

mt 	= 0 (5.11)

while retaining ms = 0. The symmetry (3.5) allows us to freely
change the sign of the mean-field order parameter

φm′,m′+1(τ,x) = σm′ σm′+1 φ, m′ = 1, . . . ,n, φ > 0, (5.12)

for each bundle 〈m,m + 1〉, as long as the global condition
n∏

m′=1

φm′,m′+1(τ,x) = ±φn (5.13)

is satisfied. The sign on the right-hand side of Eq. (5.13)
is a gauge invariant quantity. The global condition reduces
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the number of choices by half, hence the 2n−1 ground-state
degeneracy when mt 	= 0. [Notice that, when ms = mt = 0,
symmetry (3.6) can be used instead of symmetry (3.5), in
which case condition (5.13) does not apply anymore.]

The symmetry (3.5) thus implies that the sign of the
Green’s function (4.12c) remains arbitrary even if the bundles
〈m,m + 1〉 and 〈m + 1,m + 2〉 are coupled by having mt 	= 0. As
we have explained above, it follows that the solitons, whose
existence is guaranteed from bosonization when mt = 0, are
not confined by the interactions induced by a mt 	= 0. On the
other hand, the amplitude of the order parameter undergoes
a change in magnitude in a region of size (5.4) around the
soliton core. The soliton energy is sensitive to any change of
amplitude in the order parameter. This is to say that solitons
from different bundles 〈m,m + 1〉 and 〈m + 1,m + 2〉 interact
when mt 	= 0. Because solitons cost energy, which magnitude
is bounded from below by the energy scale of the order of
M , their average separation ξ (T ) is given by Eq. (5.1) at any
nonvanishing temperature T > 0. The divergence of ξ (T ) in
Eq. (5.1) is a signature of the onset of long-range order at
T = 0 that breaks spontaneously the symmetry (3.5). Kitaev’s
honeycomb model also has an exponentially large correlation
length at T > 0 related to the thermal creation of local defects,
“visons” that are localized on the plaquette of the honeycomb
lattice. In that model the defects are not mobile. In our case
they are, although their mobility is one dimensional.

This proof can be generalized to any perturbation local in
the spin operators, as those described in Secs. VI and VII.
The proof holds since such perturbations are invariant with
respect to a simultaneous change of sign of the left- and right-
moving Majoranas on a given two-leg ladder m. Our model
has two sectors: the spin sector and the fermionic one. In the
latter sector, one is allowed to have operators which include
odd numbers of Majorana fermions on a given two-leg ladder
m. In the spin sector this is not allowed. In the microscopic
derivation which starts with the lattice Hamiltonian of spins as
in Secs. VI and VII, we arrive to the spin sector only. Hence the
2n−1-degeneracy described above is not directly observable in
the spin sector of our model, that is, in the subspace of the
Hilbert space generated by the local spin operators.

VI. A SINGLE TWO-LEG LADDER

A. Microscopic lattice model and its continuum limit

Consider the following quantum spin-1/2 Hamiltonian on
a (two-leg) ladder:

Ĥladder := Ĥleg + Ĥ ′
leg + Ĥrung + Ĥcross + Ĥfour−spin. (6.1a)

The first leg of the ladder hosts the quantum spin-1/2 operators
Ŝi on every site i = 1, . . . ,N , where any two consecutive sites
is displaced by the lattice spacing a. Similarly, the second
leg of the ladder hosts the quantum spin-1/2 operators Ŝ

′
i ′ on

every site i ′ = 1, . . . ,N . Hamiltonians Ĥleg and Ĥ ′
leg are a pair

of decoupled quantum spin-1/2 antiferromagnetic Heisenberg
model at criticality given by

Ĥleg :=
N∑

i=1

J1 Ŝi · Ŝi+1 (6.1b)

and

Ĥ ′
leg :=

N∑
i=1

J1 Ŝ
′
i · Ŝ

′
i+1 (6.1c)

with J1 � 0, respectively. The quantum spin-1/2 operators
on the two legs also interact through a SU(2)-symmetric
Heisenberg exchange interaction for each rung,

Ĥrung :=
N∑

i=1

J⊥ Ŝi · Ŝ
′
i , (6.1d)

with sgn(J⊥) arbitrary, a cross-type interaction for each
plaquette

Ĥcross :=
N∑

i=1

(J\ Ŝi · Ŝ
′
i+1 + J/ Ŝi+1 · Ŝ

′
i) (6.1e)

with sgn(J\ J/) arbitrary, and a four-spin interaction for each
plaquette

Ĥfour−spin :=
N∑
i

JU (̂Si · Ŝi+1)(̂S
′
i · Ŝ

′
i+1) (6.1f)

with sgn(JU ) arbitrary. Hamiltonian (6.1) has the following
symmetries.

There is the global unitary SU(2) symmetry generated by
the spin operator

Ŝtot := Ŝ + Ŝ
′
, (6.2a)

where

Ŝ :=
N∑

i=1

Ŝi , Ŝ
′

:=
N∑

i=1

Ŝ
′
i . (6.2b)

We also note that the sum of Hamiltonians (6.1b) and
(6.1c) has a global SU(2) × SU(2) symmetry generated in-
dependently by Ŝ and Ŝ

′
, respectively. This global symmetry

is broken down to the diagonal subgroup with the generator
(6.2) by the interactions (6.1d), (6.1e), and (6.1f).

There is the global anti-unitary symmetry under time
reversal under which

Ŝi �→ −Ŝi , Ŝ
′
i �→ −Ŝ

′
i , (6.3)

for all i = 1, . . . ,N .
When the condition

J\ = J/ ≡ J× (6.4)

holds, there are two additional involutive (Z2) symmetries.
Under condition (6.4), Hamiltonian (6.1) is invariant under

the transformation

Ŝi �→ Ŝ
′
i , Ŝ

′
i �→ Ŝi , (6.5)

for all i = 1, . . . ,N .
Finally, if PBC are imposed together with the condition

(6.4), Hamiltonian Ĥladder is invariant under all lattice transla-
tions generated by

Ŝi �→ Ŝi+1, Ŝ
′
i �→ Ŝ

′
i+1, (6.6)

for all i = 1, . . . ,N .
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′Si ′Si+1′Si ′Si+1

(a) (b)

FIG. 8. (a) Two quantum spin-1/2 chains can be arranged into a two-leg ladder. The intrachain couplings J1 are defined in Eqs. (6.1b) and
(6.1c). The interchain couplings J⊥ (represented by the vertical black bond), J\ (represented by the dashed orange bond), and J/ (represented
by the dashed green bond) are defined in Eqs. (6.1d) and (6.1e). The interchain four-spin coupling JU (represented by the blue open-bracket)
is defined in Eq. (6.1f). (b) The special case of Fig. 8(a) under the condition (6.9). Here, J× = −J⊥/2.

Figure 8 depicts Ĥladder (6.1). This Hamiltonian was studied
in Refs. [24,25]. We also refer the reader to Chap. 21 of
Ref. [26] and the Chap. 36 of Ref. [27] for some aspects
of Ĥladder.

The naive continuum limit Ĥladder of Ĥladder defined by
Eq. (6.1) is a ŝu(2)1 ⊕ ŝu(2)1 Wess-Zumino-Novikov-Witten
(WZNW) model perturbed by local interactions. For the upper
leg, it is obtained by making the replacements

i a → x, N a → L, (6.7a)

where the sites of the upper leg of the ladder are i = 1, . . . ,N

with N even and

Ŝ2i → a [ ĴL(x) + ĴR(x) + n̂(x)], (6.7b)

Ŝ2i+1 → a [ ĴL(x) + ĴR(x) − n̂(x)], (6.7c)

(−1)i Ŝi · Ŝi+1 → a ε̂(x), (6.7d)

for all sites i = 1, . . . ,N/2 of the upper leg, assuming that N is
even. The left- and right-moving currents ĴL and ĴR generate
the ŝu(2)1 affine Lie algebra of the c = 1 quantum critical point
of the nearest-neighbor antiferromagnetic quantum spin-1/2
chain. The fields n̂ and ε̂ have anomalous scaling exponents
1/2 at this quantum critical point. The same replacements
are done after adding a prime to the sites and the quantum
spin-1/2 hosted by the lower leg of the ladder. Hereto, the
left- and right-moving currents Ĵ

′
L and Ĵ

′
R generate another

ŝu(2)1 affine Lie algebra, while the fields n̂′ and ε̂′ have the
anomalous scaling dimensions 1/2 at this quantum critical
point. The perturbation to the ŝu(2)1 ⊕ ŝu(2)1 WZNW model
with the conserved currents ĴL, ĴR, Ĵ

′
L, and Ĵ

′
R is

V̂(x) := gnn n̂(x) · n̂′(x) + gεε ε̂(x) ε̂′(x)

+ gjj ( ĴL(x) · Ĵ
′
L(x) + ĴR(x) · Ĵ

′
R(x))

+ gjj ( ĴL(x) · Ĵ
′
R(x) + ĴR(x) · Ĵ

′
L(x))

+ gtw,n n̂(x) · ∂x n̂′(x) + gtw,ε ε̂(x)∂xε̂
′(x) (6.8a)

up to irrelevant local perturbations. Here the bare values of the
couplings are

gnn ≡ (g⊥
nn + g/

nn + g\
nn) (6.8b)

= 2 × a(J⊥ − J/ − J\) (6.8c)

for the interchain staggered magnetization coupling,

gεε ≡ a JU (6.8d)

for the interchain dimerization coupling,

gjj ≡ (g⊥
jj + g

/

jj + g
\
jj ) = 2 × a(J⊥ + J/ + J\) (6.8e)

for the interchain conformal current coupling,

gtw,n ≡ (g/
tw,n − g

\
tw,n) = a2(J/ − J\) (6.8f)

for the interchain twisted magnetization coupling, and

gtw,ε ≡ 0 (6.8g)

for the interchain twisted dimerization coupling.
The bare value of the interchain conformal current coupling

vanishes if [24]

J⊥ = −(J/ + J\). (6.9a)

The bare value of the interchain twist magnetization coupling
vanishes if [28]

J/ = J\ ≡ J×. (6.9b)

If we impose conditions (6.9), then the effective local
interaction (6.8) simplifies to

V̂tuned(x) := gtuned
nn n̂(x) · n̂′(x) + gεε ε̂(x) ε̂′(x), (6.10a)

where

gtuned
nn := 4 × a J⊥, gεε := a JU . (6.10b)

We depict the model Ĥladder (6.1) under the condition (6.9)
in Fig. 8(b). Its symmetry under transformations (6.5) or
(6.6) carries over in the continuum limit to the symmetry by
which unprimed and primed fields are exchanged or under sign
reversal of the staggered fields, respectively.

B. Abelian bosonization

To proceed, we follow Ref. [24] and apply the Abelian
bosonization rules on the tuned interaction density (6.10). To
this end, we consider the upper leg (lower leg) of the ladder
and introduce the pair of bosonic quantum fields φ̂(t,x) and
θ̂ (t,x) (φ̂′(t,x) and θ̂ ′(t,x)) by demanding that they obey the
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equal-time algebra

[φ̂(t,x),θ̂ (t,x ′)] = − i

2
sgn(x − x ′), [φ̂′(t,x),θ̂ ′(t,x ′)] = − i

2
sgn(x − x ′), (6.11a)

for any t ∈ R, and 0 � x,x ′ � Lx . The equal-time commutators between unprimed and primed fields are all vanishing. The two
pairs of bosonic fields are related to the staggered magnetization and staggered dimerization by

n̂x = + 1

πa
cos(

√
2π θ̂), n̂y = + 1

πa
sin(

√
2π θ̂ ), n̂z = − 1

πa
sin(

√
2π φ̂), ε̂ = + 1

πa
cos(

√
2π φ̂), (6.11b)

for the upper leg of the ladder and by

n̂′x = + 1

πa
cos(

√
2π θ̂ ′), n̂′y = + 1

πa
sin(

√
2π θ̂ ′), n̂′z = − 1

πa
sin(

√
2π φ̂′), ε̂′ = + 1

πa
cos(

√
2π φ̂′), (6.11c)

for the lower leg of the ladder. After some algebra, we arrive at the Abelian bosonized representation of the ŝu(2)1 ⊕ ŝu(2)1

WZNW model with the conserved currents ĴL, ĴR, Ĵ
′
L, and Ĵ

′
R perturbed by the intraladder tuned interaction density (6.10) that

is given by the Hamiltonian density

Ĥ := Ĥupper
leg + Ĥlower

leg + Ĥintraladder, (6.12a)

Ĥupper
leg := v

2
[�̂2 + (∂xφ̂)2], Ĥlower

leg := v

2
[�̂′2 + (∂xφ̂

′)2], (6.12b)

Ĥintraladder := −gtuned
nn − gεε

2(πa)2
cos[

√
2π (φ̂ + φ̂′)] + gtuned

nn + gεε

2(πa)2
cos[

√
2π (φ̂ − φ̂′)] + gtuned

nn

(πa)2
cos[

√
2π (θ̂ − θ̂ ′)]. (6.12c)

Here, we must supplement the equal-time algebra (6.11a) by the canonical bosonic equal-time commutators

[φ̂(t,x),�̂(t,x ′)] = iδ(x − x ′), [φ̂′(t,x),�̂′(t,x ′)] = iδ(x − x ′), (6.12d)

with

�̂(t,x ′) := (v−1 ∂t φ̂)(t,x ′), �̂′(t,x; ) := (v−1 ∂t φ̂
′)(t,x ′). (6.12e)

The symmetry under the transformation (6.5) follows from the invariance of the bosonic theory defined by Eq. (6.12) under
the transformation

θ̂ �→ θ̂ ′, φ̂ �→ φ̂′, θ̂ ′ �→ θ̂ , φ̂′ �→ φ̂. (6.13)

The symmetry under the transformation (6.6) follows from the invariance of the bosonic theory defined by Eq. (6.12) under the
transformation

φ̂ �→ φ̂ +
√

π

2
, θ̂ �→ θ̂ +

√
π

2
, φ̂′ �→ φ̂′ +

√
π

2
, θ̂ ′ �→ θ̂ ′ +

√
π

2
. (6.14)

C. Majorana representation

Left- and right-moving Majorana fields are defined by

χ̂1
L := 1√

πa
cos(

√
4π φ̂+,L) ≡ 1√

πa
cos[

√
π (φ̂+ + θ̂+)] ≡ 1√

πa
cos

[√
π

2
(φ̂ + φ̂′ + θ̂ + θ̂ ′)

]
, (6.15a)

χ̂2
L := −1√

πa
sin(

√
4π φ̂+,L) ≡ −1√

πa
sin[

√
π (φ̂+ + θ̂+)] ≡ −1√

πa
sin

[√
π

2
(φ̂ + φ̂′ + θ̂ + θ̂ ′)

]
, (6.15b)

χ̂3
L := 1√

πa
cos(

√
4π φ̂−,L) ≡ 1√

πa
cos[

√
π (φ̂− + θ̂−)] ≡ 1√

πa
cos

[√
π

2
(φ̂ − φ̂′ + θ̂ − θ̂ ′)

]
, (6.15c)

χ̂0
L := −1√

πa
sin(

√
4π φ̂−,L) ≡ −1√

πa
sin[

√
π (φ̂− + θ̂−)] ≡ −1√

πa
sin

[√
π

2
(φ̂ − φ̂′ + θ̂ − θ̂ ′)

]
, (6.15d)

and

χ̂1
R := 1√

πa
cos(

√
4π φ̂+,R) ≡ 1√

πa
cos[

√
π (φ̂+ − θ̂+)] ≡ 1√

πa
cos

[√
π

2
(φ̂ + φ̂′ − θ̂ − θ̂ ′)

]
, (6.15e)

χ̂2
R := 1√

πa
sin(

√
4π φ̂+,R) ≡ 1√

πa
sin[

√
π (φ̂+ − θ̂+)] ≡ 1√

πa
sin

[√
π

2
(φ̂ + φ̂′ − θ̂ − θ̂ ′)

]
, (6.15f)

224420-18



MODEL OF CHIRAL SPIN LIQUIDS WITH ABELIAN AND . . . PHYSICAL REVIEW B 96, 224420 (2017)

χ̂3
R := 1√

πa
cos(

√
4π φ̂−,R) ≡ 1√

πa
cos[

√
π (φ̂− − θ̂−)] ≡ 1√

πa
cos

[√
π

2
(φ̂ − φ̂′ − θ̂ + θ̂ ′)

]
, (6.15g)

χ̂0
R := 1√

πa
sin(

√
4π φ̂−,R) ≡ 1√

πa
sin[

√
π (φ̂− − θ̂−)] ≡ 1√

πa
sin

[√
π

2
(φ̂ − φ̂′ − θ̂ + θ̂ ′)

]
, (6.15h)

respectively.

After some algebra, we arrive at the Majorana representa-
tion of the ŝu(2)1 ⊕ ŝu(2)1 WZNW model with the conserved
currents ĴL, ĴR, Ĵ

′
L, and Ĵ

′
R perturbed by the intraladder

interaction density (6.10) that is given by

Ĥtuned
ladder :=

∑
μ=0,1, 2, 3

Ĥtuned
ladder,μ (6.16a)

with

Ĥtuned
ladder,μ := i

2
v
(
χ̂

μ

L ∂xχ̂
μ

L − χ̂
μ

R ∂xχ̂
μ

R

)+ i mtuned
μ χ̂

μ

L χ̂
μ

R ,

(6.16b)
where

v ∝ J1 a (6.16c)

and

mtuned
μ =

{
mtuned

s , μ = 0,

mtuned
t , μ = 1, 2, 3.

(6.16d)

The singlet mass mtuned
s and the triplet mass mtuned

t are here
given by

mtuned
s := −1

2πa

(
3gtuned

nn + gεε

)
= −1

2π
(12 J⊥ + JU ), (6.17a)

mtuned
t := 1

2πa

(
gtuned

nn − gεε

)
= 1

2π
(4 J⊥ − JU ), (6.17b)

respectively. Upon tuning the ratio of JU/J⊥ such that the
singlet (triplet) mass mtuned

s (mtuned
t ) vanish, we achieve the

critical point with central charge 1/2 (3/2) in a single ladder
(6.1).

The symmetry under the transformation (6.5) is represented
by the invariance of the Majorana theory defined by Eq. (6.16)
under the transformation

χ̂1
M �→ +χ̂1

M, (6.18a)

χ̂2
M �→ +χ̂2

M, (6.18b)

χ̂3
M �→ +χ̂3

M, (6.18c)

χ̂0
M �→ −χ̂0

M, (6.18d)

for any M = L,R.

The symmetry under the transformation (6.6) is represented
in a trivial way for the Majorana theory defined by Eq. (6.16),
for the transformation (6.6) is represented by the identity

χ̂
μ

M �→ χ̂
μ

M (6.19)

for any μ = 0,1, 2, 3 and M = L,R according to Eq. (6.15).
We follow Ref. [25] to discuss the nature of the phase

transition. According to the sign of the singlet mass and the
triplet mass at the fine-tuned point (6.17), we sketch the phase
diagram in Fig. 9(a). There are nine pairs of the signature of ms
and mt. These nine pairs label four phases, four critical lines,
and one trivial point at the origin. In Fig. 9(b), a refined version
of the phase diagram in Fig. 9(a) is obtained by considering the
difference of the magnitude of the singlet mass and the triplet
mass. As long as |ms| > |mt|, namely, the triplet branch of the
spectrum remain the lowest, the phase is related to the phase
of the bilinear and biquadratic spin-1 chain. We note that the
dashed green line is the mirror image of the blue line around
the JU axis. We also remark that the dashed green line is not
present in Fig. 9(a).

VII. COUPLED TWO-LEG LADDERS

A. Microscopic lattice model and its continuum limit

We consider the following interladder interaction:

Ĥinterladder := Ĥ� + Ĥ ′
� + Ĥ� + Ĥ ′

�, (7.1a)

where

Ĥ� := Jχ

2

N∑
i=1

n−1∑
m=1

[̂Si,m+1 · (̂Si+1,m ∧ Ŝi,m)

+ Ŝi+1,m · (̂Si,m+1 ∧ Ŝi+1,m+1)] (7.1b)

and

Ĥ� := J∨
N∑

i=1

n−1∑
m=1

(̂Si,m · Ŝi,m+1

+ κ\ Ŝi,m+1 · Ŝi+1,m + κ/ Ŝi,m · Ŝi+1,m+1), (7.1c)

with Ĥ ′
� and Ĥ ′

� deduced from Ĥ� and Ĥ� by the substitution

Ŝi,m → Ŝ
′
i,m. The couplings κ\ and κ/ are dimensionless. (The

choice κ\ = κ/ = 1/2 is shown in Fig. 2.)
The interladder Hamiltonian (7.1) has a global SU(2) ×

SU(2) symmetry that reflects the fact that there is no coupling
between the quantum spin Ŝi,m and the quantum spin Ŝ

′
i ′,m+1

for all i,i ′ = 1, . . . ,N . For the same reason, the interladder
Hamiltonian (7.1) has a global Z2 symmetry under the
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(a) (b)

FIG. 9. (a) Phase diagram of the fine-tuned quantum spin-1/2 ladder (6.9) based on the sign of the singlet mass and the triplet mass (6.17).
(b) A refined version of the phase diagram in Fig. 9(a) is obtained by considering the difference of the magnitude of the singlet mass and the
triplet mass. As long as |ms| > |mt|, namely, the triplet branch of the spectrum remains the lowest, the phase is related to the phase of the
bilinear and biquadratic spin-1 chain.

transformation [recall Eq. (6.5)]

Ŝi,m �→ Ŝ
′
i,m, Ŝ

′
i,m �→ Ŝi,m, (7.2)

for i = 1, . . . ,N and m = 1, . . . ,n.
If PBC are imposed on the indices i, the interladder

Hamiltonian (7.1) is then invariant under all lattice translations
generated by the transformation [recall Eq. (6.6)]

Ŝi,m �→ Ŝi+1,m, Ŝ
′
i,m �→ Ŝ

′
i+1,m, (7.3)

i = 1, . . . ,N and m = 1, . . . ,n.
Finally, the interladder Hamiltonian (7.1) is invariant under

reversal of time, a global antiunitary transformation under
which

Ŝi,m → −Ŝi,m, Ŝ
′
i ′,m′ → −Ŝ

′
i ′,m′ , (7.4a)

for all i,i ′ = 1, . . . ,N and m,m′ = 1, . . . ,n, combined with the
transformation

Jχ �→ −Jχ . (7.4b)

Any fixed nonvanishing Jχ breaks time-reversal symmetry.
The naive continuum limit of Ĥinterladder defined by Eq. (7.1)

was derived in Ref. [19] (see also Ref. [29]). All the bare values
of the coupling constants entering Eq. (7.1) that are relevant
from the point of view of a one-loop renormalization group
analysis at the WZNW critical point vanish at the fined-tuned
point

κ\ = κ/ = 1/2, (7.5)

and the leading-order contribution is simply the current-current
interaction

Ĥ�,�(x)

:=
n−1∑
m=1

3∑
a=1

{
λ
[
Ĵ a

L,m(x) Ĵ a
R,m+1(x) + Ĵ ′a

L,m(x) Ĵ ′a
R,m+1(x)

]
+ λ̃

[
Ĵ a

R,m(x) Ĵ a
L,m+1(x) + Ĵ ′a

R,m(x) Ĵ ′a
L,m+1(x)

]}
(7.6a)

with

λ = 2a[(Jχ/π ) + 2J∨], λ̃ = 2a[−(Jχ/π ) + 2J∨]. (7.6b)

Here, Ĵ a
M,m(x) ∈ ŝu(2)k=1 and Ĵ ′a

M,m(x) ∈ ŝu(2)k′=1 with
M = L,R, i.e., their equal-time commutators are those of the
affine Lie algebras ŝu(2)k=1 and ŝu(2)k′=1, respectively.

The global SU(2) × SU(2) symmetry of the interladder
Hamiltonian (7.1) is manifest in that there is no coupling
between the currents Ĵ a

M,m(x) and Ĵ ′a
M,m+1(x). They are related

to the original quantum spin 1/2 by adding the label m on both
sides of Eqs. (6.7b)–(6.7d) for the unprimed fields, say.

The global Z2 symmetry under

Ĵ a
M,m(x) �→ Ĵ ′a

M,m(x), Ĵ ′a
M,m(x) �→ Ĵ a

M,m(x) (7.7)

is also manifest.
If PBC are imposed with respect to x, the symmetry of

the interladder Hamiltonian (7.1) under all lattice translations
generated by the transformation (7.3) is then also manifest in
the continuum Hamiltonian density (7.6), since the currents
Ĵ a

M,m(x) and Ĵ ′a
M,m(x) are unchanged by the transformation

(7.3), unlike the staggered fields on the right-hand sides of
Eqs. (6.7b)–(6.7d) for the unprimed fields, say.

Remarkably, the continuum Hamiltonian density (7.6) has
acquired an emergent symmetry, namely it is invariant under
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the m-resolved transformations

n̂m �→ σm n̂m, n̂′
m �→ σm n̂′

m, (7.8a)

ε̂m �→ σm ε̂m, ε̂′
m �→ σm ε̂′

m, (7.8b)

where σm = ±1 for m = 1, . . . ,n, unlike the microscopic
interladder Hamiltonian (7.1) for which the lattice translation
(7.3) must act simultaneously on all ladder for it to leave the
microscopic interladder Hamiltonian (7.1) invariant.

Reversal of time is explicitly broken by any nonvanishing
λ 	= λ̃. Observe that the bare value of λ̃ vanishes if

Jχ

π
= 2J∨. (7.9)

Upon the fine tuning (7.9), the current-current interaction
(7.6a) simplifies to

Ĥinterladder(x) :=
n−1∑
m=1

3∑
a=1

λ
[
Ĵ a

L,m(x)Ĵ a
R,m+1(x)

+ Ĵ ′a
L,m(x)Ĵ ′a

R,m+1(x)
]
. (7.10)

The interaction Ĥinterladder(x) is represented by the directed arcs
in Fig. 4(a). The arrow on the arcs indicates that this choice
of current-current interaction completely breaks time-reversal
symmetry.

To summarize, we are considering a set of n ladders labeled
by the index m = 1, . . . ,n. We are assigning the coordinate
x ∈ R along the direction of the leg to each ladder. The
ladders are all parallel and equally spaced along a direction
y perpendicular to the x axis. The Hamiltonian for this set of
ladders is approximated by

Ĥ :=
∫ Lx

0
dx

[
n∑

m=1

ĤWZNW,m(x) +
n∑

m=1

Ĥintraladder,m(x)

+
n−1∑
m=1

Ĥinterladder,m(x)

]
. (7.11a)

The Hamiltonian density ĤWZNW,m(x) encodes the conformal-
field theory in two-dimensional space time with the affine Lie
algebra ŝu(2)1 ⊕ ŝu(2)1. It describes a ladder at a quantum
critical point with central charge cm = 2 where m = 1, . . . ,n.
The intraladder interaction is [cf. Eq. (6.10)]

Ĥintraladder,m(x) := gtuned
nn n̂m(x) · n̂′

m(x) + gεε ε̂m(x) ε̂ ′
m(x).

(7.11b)

The couplings gtuned
nn and gεε are dimensionless. They are

related to the microscopic data of the spin-1/2 ladder depicted
in Fig. 2 by Eq. (6.10b). The interladder interaction is [c.f.
Eq. (7.10)]

Ĥinterladder,m(x) :=
3∑

a=1

λ
[
Ĵ a

L,m(x)Ĵ a
R,m+1(x)

+ Ĵ ′a
L,m(x)Ĵ ′a

R,m+1(x)
]
, (7.11c)

where Ĵ a
M,m(x) ∈ ŝu(2)k=1 and Ĵ ′a

M,m(x) ∈ ŝu(2)k′=1 with M =
L,R, i.e., their equal-time commutators are those of the affine
Lie algebras ŝu(2)k=1 and ŝu(2)k′=1, respectively. The coupling

λ is dimensionless. It is related to the microscopic data of
the spin-1/2 ladder depicted in Fig. 2 by Eq. (7.6b). The
symmetries of Hamiltonian (7.11) are the following. The
local symmetry with the affine Lie algebra ŝu(2)1 ⊕ ŝu(2)1

associated to ĤWZNW(x) is reduced to the global SU(2) ×
SU(2) symmetry by the interladder interaction densities, owing
to its invariance under the interchange of unprimed and primed
fields.

There is a global Z2 symmetry under the interchange of
unprimed and primed fields. If PBC are imposed, there is an
emergent m-resolved Z2 symmetry under the transformation

n̂m �→ σm n̂m, n̂′
m �→ σm n̂′

m, (7.12a)

ε̂m �→ σm ε̂m, ε̂′
m �→ σm ε̂′

m, (7.12b)

ĴM,m �→ ĴM,m, Ĵ
′
M,m �→ Ĵ

′
M,m, (7.12c)

where σm = ±1 for m = 1, . . . ,n and M = L,R.

B. Majorana representation

Since ŝo(4)1 = ŝu(2)1 ⊕ ŝu(2)1, we can employ four Ma-
jorana fields χ̂

μ

M,m(x) (μ = 0,1, 2, 3) with M = L,R obeying
the equal-time anticommutators{

χ̂
μ

M,m(x),χ̂μ′
M′,m′ (x ′)

} = δMM′ δmm′ δμμ′ δ(x − x ′) (7.13)

to describe the ŝu(2)1 ⊕ ŝu(2)1 WZNW model for two decou-
pled chains making up a single ladder through the Hamiltonian
density

ĤWZNW,m =
3∑

μ=0

i

2
v
(
χ̂

μ

L,m∂xχ̂
μ

L,m − χ̂
μ

R,m∂xχ̂
μ

R,m

)
. (7.14)

Here, v is the Fermi velocity. Furthermore, the ŝu(2)k=1

currents Ĵ a
M,m(x) and the ŝu(2)k′=1 currents Ĵ ′a

M,m(x) with
M = L,R, a = 1, 2, 3, and m = 1, . . . ,n can be represented
by the bonding linear combination

K̂a
M,m(x) = Ĵ a

M,m(x) + Ĵ ′a
M,m(x) = − i

2
εabcχ̂ b

M,m(x)χ̂ c
M,m(x),

(7.15a)

and the antibonding linear combination

Îa
M,m(x) = Ĵ a

M,m(x) − Ĵ ′a
M,m(x) = − iχ̂0

M,m(x)χ̂ a
M,m(x),

(7.15b)

respectively. One verifies that K̂a
M,m(x) and Îa

M,m(x) generate
a closed ŝu(2)1 ⊕ ŝu(2)1 algebra. For later use, we invert
Eq. (7.15) to obtain

Ĵ a
M,m(x) = 1

2

(
K̂a

M,m(x) + Îa
M,m(x)

)
= −1

2

( i

2
εabc χ̂ b

M,m(x) χ̂ c
M,m(x) + iχ̂0

M,m(x) χ̂ a
M,m(x)

)
,

(7.16a)

Ĵ ′a
M,m(x) = 1

2

(
K̂a

M,m(x) − Îa
M,m(x)

)
= −1

2

( i

2
εabc χ̂ b

M,m(x) χ̂ c
M,m(x) − iχ̂0

M,m(x) χ̂ a
M,m(x)

)
.

(7.16b)
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There follows several important consequences from Eq. (7.16).
First, χ̂0

M,m(x) transforms under the global diagonal SU(2)
symmetry of the WZNW Hamiltonian ĤWZNW(x) as the
singlet (trivial) representation, while the triplet χ̂ a

M,m(x) with
a = 1, 2, 3 transforms under the same SU(2) as the adjoint
representation.

Second, reversal of time that is defined by exchanging
left- and right-moving labels together with sign reversal of
Ĵ a

M,m(x) is represented by complex conjugation in the Fock
space spanned by the Majorana fields together with exchanging
left- and right-moving labels.

Third, the symmetry under

Ĵ a
M,m(x) �→ Ĵ ′a

M,m(x) Ĵ ′a
M,m(x) �→ Ĵ a

M,m(x) (7.17)

of the WZNW Hamiltonian ĤWZNW(x) is represented by

χ̂0
M,m(x) �→ −χ̂0

M,m(x) χ̂ a
M,m(x) �→ +χ̂ a

M,m(x) (7.18)

in the Majorana representation.
Fourth, the relation between the currents and the Majorana

fields is one to many since the local gauge transformation

χ̂
μ

M,m(x) �→ σM,m(x) χ̂
μ

M,m(x) (7.19)

where σM,m(x) = ±1 leaves the right-hand side of Eq. (7.16)
unchanged.

Given the Majorana representation of the ŝu(2)1 ⊕ ŝu(2)1
currents entering the interladder interaction (7.15), we can
rewrite the interladder current-current interactions (7.11c) in
terms of 4n Majorana fields. More specifically, we calculate the
interladder interactions (7.11c) by making use of Eq. (7.16).
For any m = 1, . . . ,n − 1 and for any a = 1, 2, 3, we start
from the interladder interaction (7.11c),

(
Ĵ a

L,m Ĵ a
R,m+1 + Ĵ ′a

L,m Ĵ ′a
R,m+1

) = 1
2

(
K̂a

L,m K̂a
R,m+1 + Îa

L,m Îa
R,m+1

)
.

(7.20)

This bilinear form in the currents can be rewritten as a quartic
form in terms of the Majorana fields. Thus the interladder
interactions (7.11c) can be written as

Ĥinterladder,m = λ

4

⎡⎣( 3∑
a=1

χ̂ a
L,m χ̂ a

R,m+1

)2

+ 2
(
χ̂0

L,m χ̂0
R,m+1

)( 3∑
a=1

χ̂ a
L,m χ̂ a

R,m+1

)
+ const

]
(7.21a)

= λ

4

⎛⎝ 3∑
μ=0

χ̂
μ

L,m χ̂
μ

R,m+1

⎞⎠2

+ const′. (7.21b)

We make three observations.

First, Eq. (7.21a) does not follow if we assume that the
coupling λ breaks the SU(2) symmetry through a dependence
on the index a = 1, 2, 3.

Second, Eq. (7.21b) displays an explicit global

O(4) = Z2 × SO(4) = Z2 × SO(3) × SO(3) (7.22)

symmetry. This symmetry is broken down to the diagonal
subgroup

SO(3) ⊂ SO(4) = SO(3) × SO(3) (7.23)

if Heisenberg interactions between the quantum spin Ŝi,m

and the quantum spin Ŝ
′
i ′,m+1 are added to the interaction

(7.11). Indeed, one verifies that such microscopic perturbations
generate SO(3,1)-symmetric perturbations of the form

(
3∑

a=1

χa
L,m χa

R,m+1 − χ0
L,m χ0

R,m+1

)2

(7.24)

and SO(3)-symmetric perturbations of the form

3∑
a,b,c=1

εabcχa
L,mχ

b
R,m+1

(
χc

L,m χ0
R,m+1 + χ0

L,m χc
R,m+1

)
(7.25)

to the Gross-Neveu-like interaction (7.21b).
Third, the interladder interactions (7.21a) resembles the

interactions considered in the paper of Fidkowski and Kitaev
[30] (see also Ref. [31]) in the context of the stability of the
topological classification of free fermions when perturbed by
interactions.

On the other hand, the intraladder interaction (7.11b) is a
mere quadratic form when expressed in terms of the Majoranas
[cf. Eq. (6.16)],

Ĥintraladder,m = i ms χ̂0
L,m χ̂0

R,m +
3∑

a=1

i mt χ̂
a
L,m χ̂ a

R,m. (7.26)

Here, ms,mt ∈ R are the bare masses of the Majorana fields.
In short, the lattice model presented in Fig. 2 provides

a microscopic realization of the Majorana field theory (2.1)
with vμ ≡ v for μ = 0,1, 2, 3, m0 ≡ ms, and ma ≡ mt for a =
1, 2, 3. Upon the fine tuning (6.9), (7.5), (7.9), and ms = 0 from
Eq. (6.17a), there only remains three independent couplings
out of the seven couplings from the microscopic lattice model.
We choose these three independent microscopic couplings to
be J1, J∨, and J⊥. They condition the values of the velocity
v, triplet mass mt, and the coupling constant λ for the current-
current interaction through

v ∝ a J1, mt ∝ J⊥, λ ∝ a J∨. (7.27)

To realize a topologically ordered phase, we need to choose
J∨ > 0, while the signature of J⊥ is arbitrary (see Fig. 3).

To summarize, the Majorana representation of Hamiltonian
(7.11) obeying periodic boundary conditions with respect to
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the coordinates x ∈ [0,Lx] and m = 1, . . . ,n is given by

Ĥ =
n∑

m=1

(
ĤWZNW,m + Ĥintraladder,m + Ĥinterladder,m

)
, (7.28a)

ĤWZNW,m =
3∑

μ=0

i

2
v
(
χ̂

μ

L,m∂xχ̂
μ

L,m − χ̂
μ

R,m∂xχ̂
μ

R,m

)
, (7.28b)

Ĥintraladder,m = i ms χ̂0
L,m χ̂0

R,m +
3∑

a=1

i mt χ̂
a
L,m χ̂ a

R,m, (7.28c)

Ĥinterladder,m = λ

4

⎛⎝ 3∑
μ=0

χ̂
μ

L,m χ̂
μ

R,m+1

⎞⎠2

+ const′. (7.28d)

C. Abelian bosonization

It is instructive to use Abelian bosonization to trade the Majorana representation in Eq. (7.28) for a bosonic one. With the help
of the conventions from Secs. VI B and VI C together with some trigonometric identities, one finds

Ĥ =
n∑

m=1

(
Ĥupper

leg,m + Ĥlower
leg,m + Ĥintraladder,m + Ĥinterladder,m

)
, (7.29a)

Ĥupper
leg,m = v

2

[
�̂2

m + (∂xφ̂m

)2]
, Ĥlower

leg,m = v

2

[
�̂′2

m + (∂xφ̂
′
m

)2]
, (7.29b)

Ĥintraladder,m = − mt

πa
cos[

√
2π (φ̂m + φ̂′

m)] − mt + ms

2πa
cos[

√
2π (φ̂m − φ̂′

m)] + mt − ms

2πa
cos[

√
2π (θ̂m − θ̂ ′

m)], (7.29c)

Ĥinterladder,m = −λ

4

(
1

πa

)2
(∑

±
cos

{√
π

2
[φ̂m + θ̂m + φ̂m+1 − θ̂m+1 ± (unprimed → primed)]

})2

, (7.29d)

where it is understood that the trigonometric functions of the
bosonic fields must be normal ordered.

The symmetry under the transformation (7.2) becomes the
invariance of the bosonic theory defined by Eq. (7.29) under
the global transformation

θ̂m �→ θ̂ ′
m, φ̂m �→ φ̂′

m, θ̂ ′
m �→ θ̂m, φ̂′

m �→ φ̂m, (7.30)

for m = 1, · · · ,n.
The symmetry under the transformation (7.3) becomes the

invariance of the bosonic theory defined by Eq. (7.29) under
the emergent m-resolved transformation

φ̂m �→ φ̂m + σ stag
m

√
π

2
, θ̂m �→ θ̂m + σ stag

m

√
π

2
,

φ̂′
m �→ φ̂′

m + σ stag
m

√
π

2
, θ̂ ′

m �→ θ̂ ′
m + σ stag

m

√
π

2
,

(7.31)

where σ
stag
m = 0,1 for m = 1, . . . ,n, for the arguments of the

two cosines on the right-hand side of Eq. (7.29d) change at
most by 2π under any one of these transformations.

Evidently, Ĥintraladder,m and Ĥintraladder,m+1 do not commute
with Ĥinterladder,m. Moreover, it is far from obvious that the
limit λ = 0 is nothing but a noninteracting theory of Majorana
fields.

However, the bosonic representation (7.29) becomes ad-
vantageous in the limit ms = mt = 0 for which the intraladder

interaction vanish, as we now explain. In this limit, we are
left with the interladder interaction only. The interladder
interaction density consists of squaring the sum over two
cosines that are given by

cos[
√

2π (�̂m,m+1 + �̂′
m,m+1)] (7.32a)

and

cos[
√

2π (�̂m,m+1 − �̂′
m,m+1)], (7.32b)

respectively, where

�̂m,m+1 := 1√
4

(φ̂m + θ̂m + φ̂m+1 − θ̂m+1), (7.32c)

and

�̂′
m,m+1 := 1√

4
(φ̂′

m + θ̂ ′
m + φ̂′

m+1 − θ̂ ′
m+1). (7.32d)

Now, the linear combination [recall Eq. (6.15)]

φ̂L,m := φ̂m + θ̂m (φ̂′
L,m := φ̂′

m + θ̂ ′
m) (7.33)

defines a left-moving bosonic field on the upper (lower) leg of
ladder m, while the linear combination [recall Eq. (6.15)]

φ̂R,m+1 := φ̂m+1 − θ̂m+1 (φ̂′
L,m+1 := φ̂′

m+1 − θ̂ ′
m+1) (7.34)

defines a right-moving bosonic field on the upper (lower) leg of
ladder m + 1. It follows that, at equal times, φ̂L,m must commute
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with φ̂R,m+1, φ̂′
L,m must commute with φ̂′

R,m+1, �̂m,m+1 must
commute with �̂m+1,m+2, �̂′

m,m+1 must commute with �̂′
m+1,m+2,

the cosine (7.32a) must commute with the cosine (7.32b), and

Ĥinterladder,m = −λ

4

(
1

πa

)2

{cos[
√

2π (�̂m,m+1 + �̂′
m,m+1)]

+ cos[
√

2π (�̂m,m+1 − �̂′
m,m+1)]}2 (7.35)

must commute with Ĥinterladder,m′ for allm,m′ = 1, . . . ,n. Hence,
the set of operators {Ĥinterladder,m} labeled by m = 1, . . . ,n can
be simultaneously diagonalized by choosing the eigenfields

�m,m+1(x) ± �′
m,m+1(x) (7.36a)

of

�̂m,m+1(x) ± �̂′
m,m+1(x) (7.36b)

to be either

�m,m+1(x) ± �′
m,m+1(x) = 0 +

√
2π n±

m,m+1, n±
m,m+1 ∈ Z,

(7.36c)

or

�m,m+1(x) ± �′
m,m+1(x) =

√
π

2
+

√
2π n±

m,m+1, n±
m,m+1 ∈ Z.

(7.36d)

Any eigenvalue from the family (7.36c) is to be interpreted
as the positive expectation value

〈GS; +|
3∑

μ=0

iχ̂μ

L,m χ̂
μ

R,m+1|GS; +〉 ≡ +C > 0 (7.37a)

in the ground state |GS; +〉. Any eigenvalue from the family
(7.36d) is to be interpreted as the negative expectation value

〈GS; −|
3∑

μ=0

iχ̂μ

L,m χ̂
μ

R,m+1|GS; −〉 ≡ −C < 0 (7.37b)

in the ground state |GS; −〉. Any nonvanishing value of
C > 0 breaks spontaneously the M- and m-resolved symmetry
under the transformation (2.6) of Hamiltonian (7.28) in the
limit ms = mt = 0 [any nonvanishing value of C > 0 also
breaks spontaneously the m-resolved symmetry under the
transformation (2.3) of Hamiltonian (7.28) for any one of ms
or mt nonvanishing].

Classical static m-resolved solitons are time-independent
eigenfields (7.36a) that (i) interpolate between any pair from
the classical minima enumerated in Eqs. (7.36c) and (7.36d)
as x interpolates from x = −∞ to x = +∞ (ii) and whose
energy density is of compact support with respect to x ∈ R.

Following Refs. [20,32], we identify among all such
solitons four types of m-resolved elementary solitons. A type-I
m-resolved soliton corresponds to both �m,m+1 + �′

m,m+1 and

�m,m+1 − �′
m,m+1 increasing monotonically in their values by

the amount
√

π/2 between x = −∞ to x = +∞. A type-II
m-resolved soliton corresponds to both �m,m+1 + �′

m,m+1 and
�m,m+1 − �′

m,m+1 decreasing monotonically in their values by
the amount

√
π/2 between x = −∞ to x = +∞. A type-II m-

resolved soliton can be thought of as an m-resolved anti-soliton
of type I. A type-III m-resolved soliton corresponds to �m,m+1 +
�′

m,m+1 (�m,m+1 − �′
m,m+1) increasing (decreasing) monoton-

ically in value by the amount
√

π/2 between x = −∞ to
x = +∞. A type-IV soliton corresponds to �m,m+1 + �′

m,m+1
(�m,m+1 − �′

m,m+1) decreasing (increasing) monotonically in
values by the amount

√
π/2 between x = −∞ to x = +∞. A

type-IV m-resolved soliton can be thought of as and m-resolved
antisoliton of type III. Upon quantization, Witten has shown in
Ref. [20] that we may associate these four types of elementary
solitons to pointlike many-body excitations that form a four-
dimensional irreducible representation of a Clifford algebra
with four generators.

Solitons of type I–IV interpolate between any pair with
one classical minima from the family (7.36c) and the other
classical minima from the family (7.36d) as x interpolates from
x = −∞ to x = +∞. Such solitons should be distinguished
from those solitons that interpolate between any pair with
both classical minima from either one of the two families
(7.36c) and (7.36d) as x interpolates from x = −∞ to x =
+∞. The former solitons are associated with the spontaneous
breaking of the chiral symmetry. The solitons associated with
two classical minima of either one of the families (7.36c)
or (7.36d) differing by δn+

m,m+1 = ±1 while δn−
m,m+1 = 0 are

associated with the spontaneous breaking of the symmetry
(7.31).

We close this discussion by deriving the sine-Gordon
representation (4.4) of Hamiltonian (7.29) in the limit of
vanishing intraladder interaction. The sine-Gordon Hamilto-
nian (4.4) follows from expanding the squared bracket on
the right-hand side of Eq. (7.35). There are four products
of normal-ordered cosine interactions in this expansion. Two
of them involve squaring the same normal-ordered cosine
operator. This exercise requires combining point splitting with
the operator product expansion and results in a renormalization
of the kinetic contributions (7.29b). The remaining two
products of normal-ordered cosine interactions involve distinct
commuting operators for which we can use the decomposition
rule for the multiplication of two cosines into the addition of
two cosines. The sine-Gordon Hamiltonian (4.4) follows with
the identifications

ϕ̂s :=
√

8π

β
�̂m,m+1, ϕ̂c :=

√
8π

β
�̂′

m,m+1. (7.38a)

D. Spontaneous symmetry breaking

We have shown that Hamiltonian (7.29) commutes with any
one of the 2n + 1 transformations

φ̂m �→ φ̂m + 2σm

√
π

2
, θ̂m �→ θ̂m, φ̂′

m �→ φ̂′
m, θ̂ ′

m �→ θ̂ ′
m, Majorana redundancy (7.39a)

φ̂m �→ φ̂′
m θ̂m �→ θ̂ ′

m, φ̂′
m �→ φ̂m, θ̂ ′

m �→ θ̂m, Ŝi,m ↔ Ŝ
′
i,m (7.39b)
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φ̂m �→ φ̂m + σm

√
π

2
, θ̂m �→ θ̂m + σm

√
π

2
, φ̂′

m �→ φ̂′
m + σm

√
π

2
, θ̂ ′

m �→ θ̂ ′
m + σm

√
π

2
, Ŝ

(′)
i,m �→ Ŝ

(′)
i+1,m (7.39c)

with σm = 0,1 for m = 1, . . . ,n. All these transformations
commute pairwise and their action on the trigonometric func-
tions entering Hamiltonian (7.29) is involutive. Consequently,
all many-body energy eigenstates of Hamiltonian (7.29) are
22n-fold degenerate with the decomposition

22n = 2n−1 × 2 × 2n, (7.40)

whereby the factor 2n−1 arises from the Majorana redundancy
as was deduced after Eq. (5.13), the factor 2 arises from the
global symmetry under the exchange of unprimed and primed
fields in all ladders, and the factor 2n arises from the reversal in
sign of all the staggered fields in an arbitrarily chosen ladder.
The degeneracy 2n−1 was shown to be broken spontaneously
at and only at zero temperature through the breaking of the
chiral symmetry encoded by the order parameter (2.7) in the
Majorana representation. The remaining degeneracy 2 × 2n

remains unbroken all the way to and at zero temperature, as
is evident from the fact that the chiral order parameter for
the Majorana fermions is invariant under the transformations
(7.39b) and (7.39c). In particular, the degeneracy 2n is invisible
to the Majorana fields. Hence the topological degeneracy
in the phase diagram from Fig. 3 coexists with the 22n

degeneracy associated with the symmetries (7.39a), (7.39b),
and (7.39c). Whereas the degeneracy 2n−1 associated to the
symmetry (7.39a) originates from the redundancy of the
m-resolved Majorana representation of the conserved chiral
currents (7.15) and, as such, is intrinsic to the Majorana
representation and invisible to any probe from the Fock space
generated by the spin-1/2, the degeneracy 2 × 2n associated
with the symmetries (7.39b) and (7.39c) is specific to any
microscopic Hamiltonian with the global symmetry (7.2) and
a ladder-resolved extension of the global symmetry (7.3). In
other words, the degeneracy 2n resulting from the m-resolved
symmetry under the transformation (7.39c) is not intrinsic to
the microscopic interladder interaction (7.1), but emerges from
neglecting perturbations to the interladder Hamiltonian (7.11c)
[see also Eqs. (7.28d) or (7.29d)] that we now discuss.

E. Competing instabilities

The ATO and NATO phases of the effective low-energy
theory encoded by Hamiltonian (2.1) compete with the ordered
phases that are stabilized by the longer-range interaction
densities of the forms

[̂nm(x) + σ n̂′
m(x)] · [̂nm+r(x) + σ ′ n̂′

m+r(x)], (7.41a)

[̂εm(x) + σ ε̂′
m(x)][̂εm+r(x) + σ ′ ε̂′

m+r(x)], (7.41b)

[̂nm(x) + σ n̂′
m(x)] · ∂x [̂nm+r(x) + σ ′ n̂′

m+r(x)], (7.41c)

[̂εm(x) + σ ε̂′
m(x)] · ∂x [̂εm+r(x) + σ ′ ε̂′

m+r(x)], (7.41d)

where σ,σ ′ = ±1 and |r| > 1. (Here we recall that, by design,
all the bare couplings vanish for r = 1.)

One consequence of these interaction densities is that
they can remove the emergent m-resolved symmetry under
the transformation (7.12) [(7.39c)]. The fate (confinement

versus deconfinement) of the solitons associated with the
spontaneous breaking of the symmetry (7.12) [(7.39c)] in the
presence of such symmetry-breaking interactions is left for
future work. The perturbative renormalization group allows to
assess the potency of the competing interaction densities (7.41)
relative to the interladder interaction density (7.11c) [see also
Eqs. (7.28d) or (7.29d)].

On the one hand, the interactions densities (7.41c) and
(7.41d) are marginal perturbations of the critical theory
(7.28b). As such, they can be safely ignored provided their
coupling constants are smaller than the couplings of the leading
current-current interactions.

On the other hand, the interaction densities (7.41a) and
(7.41b) are relevant perturbations of the critical theory (7.28b).
As such, they present certain difficulties. For the spin-1/2 lat-
tice Hamiltonian that we have chosen, their coupling constants
are of the order of ∼J 2

∨/J1, but cannot be reliably determined
otherwise. The problem is that at small microscopic bare
couplings χ � J1 and J∨ � J1, the spectral gap M of the
effectively one-dimensional Hamiltonian (2.5) that originates
from the marginal current-current interaction is exponentially
small in the effective coupling λ of Hamiltonian (2.5). Hence,
to make M larger than ∼J 2

∨/J1, we have to go in the region of
intermediate to strong bare couplings λ/J1, with λ defined in
Eq. (7.6b). Our methods do not allow to establish whether the
required parameter regime exists or whether it can be reached
for some modification of the lattice Hamiltonian. We take
heart from the fact that the required regime of large energy gap
M ∼ J1 exists in the frustrated quantum spin 1/2 zigzag ladder
with a three-spin interaction that was studied by Frahm and
Rödenbeck in Ref. [33]. They demonstrated that, under certain
conditions corresponding to our λ = 0 in Eq. (7.11c), their
ladder is integrable with a spectrum that is partially gapped
with a gap of order of the leading exchange interaction, J1 in
our setting. In this case, the mass M exceeds the energy scale
for the characteristic energy scales associated to the relevant
interactions from Eq. (7.41), in which case their neglect in the
effective Hamiltonian (2.1) would be a posteriori consistent.
Ultimately, however, only numerical calculations can establish
that the Majorana field theory (2.1) captures the low-energy
physics of the microscopic spin 1/2 lattice model.

VIII. SUMMARY

In this paper, we put an emphasis on finding a field theory,
which would lead to non-Abelian topological order. We used
the methods of quantum-field theory to solve a fermionic
model with a topologically nontrivial ground state. We also
presented a candidate lattice spin model whose low-energy
sector is described by this fermionic theory, namely, a model
of quantum spin S = 1/2 ladders coupled by a three-spin
interaction. We found that the bulk spectrum of the fermionic
model is gapped and that there are robust chiral gapless modes
on the boundaries. There are two topologically nontrivial
phases. In one of them the boundary modes are described
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by a single species of gapless Majorana fermions. This phase
realizes a non-Abelian topological order (NATO). In the other
phase, the boundary modes are four gapless modes. This
phase realizes an Abelian topological order (ATO). In both
cases, the bulk excitations are gapped. We found that their
spectrum consists of two types of particles. Particles of one
type are Majoranas. They propagate in two-dimensional space.
Particles of the other type are fractionalized solitons, which
remain confined to individual ladders. Since the Majoranas
are bound states of these particles, their spectrum is situated
below the soliton-antisoliton continuum.

Since spin operators are bosonic, single Majoranas cannot
be observed by measuring spin-spin correlation functions.
However, their presence can be ascertained by measurements
of thermal transport, which are sensitive to their statistics.

The presence of the solitons is a sign of the extensive
ground-state degeneracy in the fermionic sector of the theory.
This degeneracy is associated with the existence of an order

parameter that is not local in the original spin variables. Hence
any operator that is local in the spins has no access to this
degeneracy.
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