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We study a frustrated spin—% Ji-Jr-J5-J- Heisenberg antiferromagnet on an A A-stacked bilayer honeycomb
lattice. In each layer we consider nearest-neighbor (NN), next-nearest-neighbor, and next-next-nearest-neighbor
antiferromagnetic (AFM) exchange couplings Ji, J,, and J3, respectively. The two layers are coupled with an
AFM NN exchange coupling Ji- = §J;. The model is studied for arbitrary values of § along the line J; = J, = aJ,
that includes the most highly frustrated point at o = %, where the classical ground state is macroscopically
degenerate. The coupled cluster method is used at high orders of approximation to calculate the magnetic order
parameter and the triplet spin gap. We are thereby able to give an accurate description of the quantum phase
diagram of the model in the «'$ plane in the window 0 < @ < 1,0 < § < 1. This includes two AFM phases with
Néel and striped order, and an intermediate gapped paramagnetic phase that exhibits various forms of valence-bond
crystalline order. We obtain accurate estimations of the two phase boundaries, § = §, (), or equivalently,
a = a(8), withi = 1 (Néel) and 2 (striped). The two boundaries exhibit an “avoided crossing” behavior with
both curves being re-entrant. Thus, in this «§ window, Néel order exists only for values of § in the range
85 () <8 < 8. (@), with 87 (o) = 0 for o < a,(0) ~ 0.46(2) and 8 (&) > 0 for a, (0) < o < a7 ~ 0.49(1),
and striped order similarly exists only for values of § in the range §; () < é < 8. (), with 57 (a) = 0 for
a > a.,(0) &~ 0.600(5) and 55(@) >0 for ., (0) > o > o5 &~ 0.56(1).
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I. INTRODUCTION

Quantum spin-lattice models, in which various types of
interactions between pairs of spins compete to form different
types of order in the system, provide a rich arena in which to
study a wide variety of quantum phase transitions (QPTs) [1,2].
Such competition can occur either with or without magnetic
frustration between the interaction bonds. In the latter case,
the bonds are typically spatially anisotropic. Simple examples
of such systems comprise models containing nearest-neighbor
(NN) exchange interactions between spins s; on lattice sites i
of the Heisenberg type, J;; s; - s;, all with bond strength J;; >
0, and thus all acting to promote antiferromagnetic (AFM)
long-range order (LRO), but where the strengths J;; are not
all equal. The so-called coupled-dimer magnets comprise a
particularly simple, yet important and nontrivial, class of this
type.

Dimerized quantum  Heisenberg antiferromagnets
(HAFMs) are obtained by placing quantum spins, with
spin quantum number s, on a regular d-dimensional lattice
with an even number of spins per unit cell. Each unit cell is
divided into nonoverlapping pairs of spins (dimers). In the
limit where the intradimer exchange constants J;; are much
stronger than all of the corresponding interdimer constants,
the zero-temperature (7 = 0) ground-state (GS) phase of the
system is a simple paramagnetic product of nonmagnetic spin
singlets, which preserves the full spin-rotational invariance.
This state has a nonzero energy gap to the lowest-lying spin
triplet excitation, formed by breaking one of the spin-singlet
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dimers. As the interdimer exchange interactions are turned
on these triplet excitations acquire mobility on the lattice,
resulting in the appearance of a spin-1 bosonic quasiparticle,
viz., the triplon [3]. In principle, of course, such bosons may
undergo Bose-Einstein condensation (BEC) under suitable
conditions and become superfluid. Indeed, such a superfluid
state has been observed experimentally in the magnetic
insulator TICuCl; [4-7], which is a physical realization of
such a coupled-dimer magnet, in which pairs of Cu>* ions are
antiferromagnetically coupled to form a crystalline network
of dimers in a specific pattern. The BEC is induced by placing
the compound in an external magnetic field, which thereby
Zeeman splits the otherwise degenerate three magnetic triplet
substates. At some critical field strength, the lowest lying
triplet state intersects the GS dimer singlet and BEC into
this triplon substate occurs, with the consequent appearance
of the magnetic LRO corresponding to the off-diagonal
LRO that characterizes BEC in the boson-mapped equivalent
system. The whole area of BEC in magnetic insulators [8] has
become one of considerable activity in recent years, at both
the theoretical and experimental levels. The applied magnetic
field here thus acts as a chemical potential that promotes
dimer spin singlets (leaving a hole) to spin triplets (creating a
triplon).

In principle, another way to induce magnetic LRO in a
coupled-dimer magnet, without the application of an external
magnetic field, is to increase the relative strength of the
interdimer couplings J;; with respect to their intradimer
counterparts. For example, for all two-dimensional (2D)
bipartite lattices and with all couplings J;; between NN pairs
only, when all J;; are equal the system will have Néel AFM
magnetic LRO. Thus, if we consider the class of so-called J-J’
models on bipartite lattices, in which the intradimer NN bonds
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all have the same strength J’ > 0 and the interdimer NN bonds
all have the same strength J > 0, there will clearly be same
critical value of the relative strength parameter, (J'/J). > 1,
that marks a QPT between a Néel-ordered AFM GS phase and
a dimerized paramagnetic GS phase. Experimentally, both in
principle and sometimes in practice, such QPTs can be driven
by the application of pressure to the system.

On the 2D square lattice with NN interactions only, J-J’
models with specific arrangements of the J’ bonds that have
been studied include the columnar-dimer, staggered-dimer,
and herringbone-dimer models (and see, e.g., Ref. [9]). The
first two, each with two sites per unit cell, both have the dimer
J’ bonds parallel (say, along the row direction of the square
lattice). Whereas in the columnar arrangement each basic
square plaquette contains either two or no dimer J’ bonds,
in the staggered arrangement each basic square plaquette
contains asingle J’ dimer bond. Finally, the herringbone-dimer
model contains four sites per unit cell with two isolated
(nontouching) dimer J’ bonds perpendicular to one another.
Each basic square plaquette also contains a single J’ dimer
bond. Interestingly, in the limit J’/J — 0, both the staggered-
dimer and herringbone-dimer models become equivalent to
the HAFM on a hexagonal lattice. Thus, both of these models
interpolate between HAFMs on the hexagonal and square 2D
lattices for values of J'/J in the range 0 < J'/J < 1.

So far we have considered coupled-dimer magnets that
include competition between bonds without frustration. The
inclusion of extra bonds can now lead us into the realm of
magnetic frustration, which adds further to the complexity
and inherent interest of these models. For example, increasing
frustration can have the effect of enhancing the repulsive
interactions between triplons. In turn this can then eventually
lead to the stabilization of incompressible phases that break the
translational symmetry of the lattice. If such GS phases of the
system are placed in an external magnetic field, the itinerant
triplons become localized in a crystalline phase.

Such phases have been observed experimentally in the spin-
gap material SrCu,(BO3), [10-12], which is well modeled [13]
by the 2D Shastry-Sutherland model [14]. This is a spin-%
coupled-dimer model on a square lattice, with four sites per
unit cell, in which all NN pairs have an AFM Heisenberg bond
of equal strength J, and the equivalent AFM dimer bonds, all of
equal strength J’, join nonoverlapping diagonal next-nearest-
neighbor (NNN) pairs in an orthogonal pattern. The unit cell
thus contains two orthogonal dimers arranged across NNN
diagonal pairs. Clearly, in the limit J — 0 the model reduces
to a Hamiltonian of decoupled dimers. This dimerized state
then remains the exact GS phase [14] for all values of (J'/J)
above a certain critical value (J'/J),. In the opposite limit,
when J' — 0, the model reduces to the pure spin-% HAFM
(i.e., with NN interactions only) on the square lattice, which
has Néel AFM magnetic LRO. In between, when J' = J, the
model reduces to the pure spin—% HAFM on another of the 11
2D Archimedean lattices, the GS phase of which is also known
to have Néel order [15], which implies (J'/J), > 1. Various
theoretical studies (see, e.g., Refs. [16,17]) yield (J'/J). =
1.48. In the Shastry-Sutherland material SrCu,(BOs),, for
which (J'/J) =~ 1.6, the triplon crystalline phases show up
as a series of magnetization plateaux at unconventional filling
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fractions [11,12] that are stabilized by complex many-body
interactions among the triplons [9,12,18,19]. Indeed, the
magnetization plateaux in SrCu,(BO3), at low magnetization
are now quite well understood in terms of triplon bound states
[20,21].

Since both BEC and crystalline phases of triplons can occur
in frustrated coupled-dimer magnets subjected to an external
magnetic field, it is natural to wonder whether such systems
might also exhibit the magnetic equivalent of supersolidity,
in which a stable GS phase exhibits simultaneously both the
diagonal LRO typical of a solid and the off-diagonal LRO
typical of a superfluid. Such field-induced spin supersolidity
has particularly been investigated for various frustrated spin—%
models on a square-lattice bilayer [8,22-27].

Such bilayer models provide other examples of coupled-
dimer magnets. The simplest such bilayer models comprise
two layers stacked directly on top of one another and with
only NN bonds, where the intralayer bonds all have equal
strength J; and the interlayer (dimer) bonds all have equal
strength Ji*. Such models on the square lattice, where the
bonds compete without frustration, have been studied fairly
extensively [28-32]. As the ratio JIJ- /J1 is increased beyond
a critical value (JlL /J1)e a QPT occurs from a Néel-ordered
GS phase to a paramagnetic GS phase that is approximately
the product of interlayer dimer valence bonds between NN
pairs coupled by J IJ- bonds. As we have already noted above,
the 7 =0 GS phase diagram becomes appreciably richer
in the additional presence of frustrating bonds of either the
intralayer or interlayer type. Such frustrated square-lattice
bilayer models have been much studied in recent years, using
a variety of theoretical techniques, both in the absence [33,34]
and presence [8,25-27,35,36] of an external magnetic field.

In the last several years attention has also been paid
to analogous honeycomb-lattice bilayer models, both in the
staggered Bernal AB stacking (see, e.g., Ref. [37]) relevant
to bilayer graphene and in the AA stacking (see, e.g.,
Refs. [32,38-44]) where the two layers are stacked directly
on top of one another. Since the AA stacking yields the
simpler form of coupled-dimer magnets, we restrict attention
here to this form of honeycomb bilayer. After the unfrustrated
J]-JIJ- honeycomb bilayer was studied [32], various authors
have studied the effects of both intralayer frustration [38—41]
and interlayer frustration [42—44] on the system, by including
NNN interactions between spins within the layers or between
the layers, respectively. In the latter case the model has been
studied both in the absence [42] and presence [43,44] of an
external magnetic field.

There has also been experimental interest in frustrated
stacked honeycomb-lattice bilayer HAFMs. For example, the
Mn** sites in the bismuth manganese oxynitrate material
BizMny01,NO;3 [45,46] form a frustrated spin—% A A-stacked
bilayer honeycomb lattice. By replacing the Mn*" ions in
this material with V#* ions it might also be possible to
realize experimentally a spin—% HAFM on the AA-stacked
honeycomb bilayer. Ultracold atoms trapped in optical lattices
formed by a periodic potential, which is created by standing
waves formed from a suitable array of lasers, are now also
regularly being used to simulate quantum magnets in a
controllable manner [47]. For example, in the present context,
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FIG. 1. The J;-J,-J3-Ji- model on the honeycomb bilayer lattice, showing (a) the two layers A (red) and B (blue), the nearest-neighbor
bonds (J; = —; JlL = - - -), and the four sites (14,24,15,25) of the unit cell; (b) the intralayer bonds (J; =—; h =---; /3 = —- — - — )on
each monolayer; (c) the triangular Bravais lattice vectors a and b, and the monolayer Néel state; and (d) one of the three equivalent monolayer
striped states. Sites (1,4, 25) and (24, 1) on the two monolayer triangular sublattices are shown by filled and empty circles respectively.

by interfering three coplanar laser beams propagating at
relative angles of £120° one may form a honeycomb lattice
[48]. Even more excitingly, concrete proposals have also been
given to form optical lattices representing honeycomb-lattice
bilayers in both AA and AB stacking [49,50], using five
lasers.

The present study has as one of its goals to investigate the
effects of intralayer frustration on a particularly interesting
AA-stacked bilayer honeycomb-lattice version of a spin-%
coupled-dimer HAFM that, to our knowledge, has not been
studied before. In each layer the spins interact via NN,
NNN, and next-next-nearest-neighbor (NNNN) couplings, all
of isotropic Heisenberg type, and with respective exchange
constants Jy, J, and J3. When all couplings are AFM in
nature (i.e., J; > 0; i = 1,2,3), the classical version of the
model (i.e., the limit s — o0) exhibits three phases, viz., two
collinear AFM phases and a spiral (or helical) phase [51,52].
These meet at a classical triple point located at J3 = J, =
%Jl. The line J3 = J, & aJ)) is thus of special interest and
represents the line of maximal frustration in some sense, which
includes the transition point o = % where the classical GS
phase is macroscopically degenerate. This Ji-J>-J3 model
on the honeycomb lattice has therefore been extensively
studied for the case s = %, where the effects of quantum
fluctuations are expected to be greatest, especially for the
case J3 = J, (and see, e.g., Refs. [53—-56] and references cited
therein).

The plan of the rest of the paper is as follows. In Sec. II
we describe the model in more detail, including the known
results for the case of vanishing interlayer coupling (§ = 0).
To include the interlayer coupling, we will use the same
theoretical formalism, i.e., the coupled cluster method (CCM),
that has been used previously with great success for the
corresponding monolayer case. We will thus briefly review
the main elements of the CCM in Sec. III before presenting
our results for the phase boundaries in the «§ plane of the
two quasiclassical collinear AFM GS phases in Sec. IV. We
conclude with a discussion and summary in Sec. V.

II. THE MODEL

The J 1—J2—J3—J1L model on the bilayer honeycomb lattice
is described by the Hamiltonian

H = ZS,',D[ 'Sj,a‘l‘-]z Z Sio * Sk,a
(

i,j)e ((i,k)),a
+ A5 Z Siw S+ JlJ_Zsi,A -8B, (1)
(((.0)),a i

where the index o = A, B labels the two layers. Each site i
on each of the two honeycomb layers carries a spin-s particle
denoted by the usual SU(2) spin operators s; , = (s, ,si}: a,sif o)
with sia =s(s + 1), and where for present purposes we

restrict attention to the case s = % In Eq. (1) the sums
over (i,j), ({i,k)), and (((i,/))) run respectively over all NN,
NNN, and NNNN intralayer bonds on each honeycomb-lattice
monolayer, counting each Heisenberg bond once and once only
in each sum. The last sum in Eq. (1) describes the interlayer
Heisenberg bonds between NN pairs of spins across the two
vertically stacked layers. The pattern of bonds is shown in
Figs. 1(a) and 1(b). In the present paper we will be interested
in the case when all four bonds are AFM in nature (i.e.,
Ji >0,i =1,2,3,and JIJ- > (). We will also restrict attention,
as discussed in Sec. I, to the particularly interesting case when
J3 = J,. Since we may regard the exchange coupling constant
Ji as simply setting the overall energy scale, the relevant
parameters are thus (J3/J; =)J»/J; = «, and J{/J; = 8.

The honeycomb lattice itself is non-Bravais. It has a two-site
unit cell, with two triangular sublattices 1 and 2, and triangular
Bravais lattice vectors a and b, as shown in Fig. 1(c). In terms of
unit vectors X and Z that define the xz plane of the monolayers,
we have a = +/3d% and b = Jd(—+/3% + 32), where d is the
NN spacing on the hexagonal lattice. Sites on sublattice 1 are at
positions R; = ma + nb, where m,n € 7Z. Each unit cell i at
position vector R; on each layer comprises two sites, one at
R; on sublattice 1 and the other at R; + dZ on sublattice 2.
In Fig. 1(a), we also show the corresponding four sites of the
A A-stacked bilayer unit cell.
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In position space the Wigner-Seitz cell for the monolayer
is simply the parallelogram formed by the trigonal Bravais
lattice vectors a and b. Equivalently, it may be chosen to be
one of the primitive real-space hexagons of the lattice with
side length d, centered on a point of sixfold symmetry. In that
case, in reciprocal space the first Brillouin zone is then itself
also a hexagon, but which is now rotated by 90° with respect
to the real-space Wigner-Seitz hexagon, and with side length
471 /(3+/3d). Tts first three corners are thus at positions K =
47 /(33/3d)%, K® = 27/(3v/3d)% + 27 /(3d)z, and K® =
-2/ (Sﬁd)ﬁ + 27 /(3d)Z. The remaining three corners are
at positions K03 = —K®; i =1,2,3.

Let us first briefly review the situation for the model under
consideration when § = 0 (i.e., for the monolayer). Along
the line J3 = J, = aJ; in the classical case there is a direct
transition between the two collinear AFM phases at o] = %
These are the Néel phase shown in Fig. 1(c), which is the GS
phase for o < «, and the striped phase shown in Fig. 1(d),
which is the GS phase for o > «. Whereas the Néel phase
on the honeycomb-lattice monolayer has all three NN pairs of
spins antiparallel to one another at each site, the striped phase
has only one NN pair antiparallel and the other two parallel
to one another. Equivalently, the striped phase is composed of
parallel ferromagnetic zigzag (or sawtooth) chains along one of
the three equivalent honeycomb directions, with neighboring
chains coupled antiferromagnetically. The striped state shown
in Fig. 1(d) thus has two other equivalent states rotated with
respect to it by £120° in the lattice plane.

As usual, the classical phases may generically be described
by an ordering wave vector Q, together with a parameter 6 that
measures the angle between the two spins in each monolayer
unit cell i at position vector R;. The classical spins, of length
s, are thus written as

Si,p = s[cos(Q - Ri +0,)%; +sin(Q - R; +6,)Z],  (2)

where the index p labels the two sites in the unit cell, and X, and
Zs are two orthogonal unit vectors that define the plane of the
spins. The angles 6, may be chosen with no loss of generality
so that 8; = 0 for spins on triangular sublattice 1 and 6, = 6
for spins on triangular sublattice 2. In this description of the
classical phases, the Néel phase shown in Fig. 1(c) has wave
vector Q = 0 and 6 = x. Similarly, the striped phase shown in
Fig. 1(d) has wave vector Q = M® and # = 7, where M® =
27 /(3d)z is the vector of the midpoint of the edge joining the
corners of the hexagonal first Brillouin zone at positions K®
and K®. The two other inequivalent striped states are hence
described by the wave vectors of the remaining inequivalent
midpoints of the other two edges of the first Brillouin zone,
and in each case now with 8 = 0. Thus, the other two striped
states have wave vectors Q = MY = 7 /(/3d)% + 7/(3d)?
(that is the midpoint of the edge joining corners K and K@),
and Q = M® = —x/(v/3d)% + 7 /(3d)2 (that is the midpoint
of the edge joining corners K® and K®).

Let us now compare this classical result for the monolayer
(6 = 0) version of our model with the corresponding case when
s = % In the spin—% case the classical transition point is split
into two quantum critical points (QCPs) ata,, < o and ct, >
o, with a magnetically disordered paramagnetic GS phase
in the intermediate region [53,54]. Lowest-order spin-wave
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theory, for example, provides the estimates [53] o, ~ 0.29 and
a., ~ 0.55. By contrast, the more powerful, and potentially
more accurate, method of Schwinger-boson mean-field theory
(SBMFT) yields the estimates [53] o, ~ 0.41 and o, ~
0.6. SBMFT also predicts a quantum disordered phase in
the intermediate regime o, <« < «.,, where a gap opens
up in the bosonic dispersion and the spin-spin correlation
function displays traces of Néel short-range order. These
results are broadly confirmed by high-order CCM calculations
[54], which yield the values «., ~ 0.47 and o, ~ 0.60.
Furthermore, CCM calculations of the plaquette valence-bond
crystalline (PVBC) susceptibility [54] provide strong evidence
for the intermediate paramagnetic phase to be a gapped state
with PVBC order over the entire region.

Of special interest for the spin-% monolayer, the QPT at
o, between the Néel phase (that is the stable GS phase for
a < a.,) and the paramagnetic phase (that is the stable GS
phase for «., < o < @) appears to be continuous, while
that at o, appears to be of first-order type [54]. Since the
Néel and intermediate phases break different symmetries,
the QPT at o, is thus favored to be described by the
scenario of deconfined quantum criticality [57]. In view of
this rich scenario it seems of considerable interest to study
the comparable spin—% J 1—Jz—J3—J1L model on the A A-stacked
honeycomb bilayer, where we now include AFM interlayer NN
bonds of strength Ji* > 0. Once again we will study the model
here along the line J;3 = J, = oJ; with J]L = §J;. Specific
goals will be to study how the QCPs «, and ., now depend on
the interlayer coupling parameter §. To that end we will use the
same theoretical technique, viz., the coupled cluster method
(CCM), as has been used previously to describe accurately the
corresponding monolayer case (6 = 0) [54].

Let us now turn to the corresponding case of the
Ji-J-J5-Ji- model (with J; = J), on the AA-stacked
honeycomb-lattice bilayer, which we aim to study here
for the spin-% case. At the classical (s — o0) level the
inclusion of an NN interlayer coupling with strength J;* > 0
introduces no extra frustration, and its effect is essentially
trivial. Simply the NN interlayer pairs of spins antialign,
with each monolayer having the same Néel order for o < o
or striped order for o > o as in the absence of interlayer
pairing. By contrast, as we have discussed in detail in Sec. I,
the spin—% case is expected to be of greater interest and
subtlety, due to the expected formation of NN interlayer
spin-singlet dimers in the large-§ limit, where the GS phase
will thus be a valence-bond crystalline (VBC) phase formed
from interlayer dimers. This interlayer dimer VBC (IDVBC)
phase will be gapped, by contrast to the gapless nature of the
quasiclassical Néel and striped phases with magnetic LRO,
where the magnon excitations are massless Goldstone modes.
In the complete IDVBC phase (i.e., in the limit § — 00), the
lowest-lying excited state is a spin-1 state formed by breaking a
single NN interlayer dimer from a spin-singlet to a spin-triplet
state. Thus, we expect the scaled triplet spin gap to be given,
in the limiting case, by

A
— —— 4. 3)
Ji -

As we have noted above, the phase diagram of the model

along the line 6 = 0 (i.e., for the monolayer) is already a rich
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one, with two QCPs in the range 0 < « < 1 of the frustration
parameter, with one being continuous (and hence probably
of a deconfined quantum critical nature) and the other being
of first-order type. Clearly, the enlargement of the model by
the addition of the extra parameter § can only increase our
understanding of the quantum phase diagram, even for the
case of the monolayer. In particular, the two QCPs for the
limiting case § = 0 now become quantum critical lines (or
quantum phase boundary lines) in the o4 plane. As a foretaste
of our overall results, one of our most important findings is
that these two phase boundary lines display a marked “avoided
crossing” behavior, with both curves consequently exhibiting a
distinct re-entrant nature. This finding by itself clearly throws
new light on the phase diagram of the monolayer (6 = 0), as
discussed more fully in Secs. IV and V.

In order to examine the effect of interlayer coupling on the
QCPs «a¢, and «,, of the spin—% honeycomb-lattice monolayer
we will therefore present in Sec. IV results for both the
magnetic order parameter (i.e., the average local on-site GS
magnetization) M and the triplet spin gap A, for each of the
Néel and striped quasiclassical phases, as functions of both
parameters « and §. We utilize both perfectly ordered states as
model wave functions, on top of which we include quantum
fluctuations in a fully systematic formalism (viz., the CCM),
as we first demonstrate in Sec. III. In particular we show
how the CCM can be implemented in very high orders in a
well-defined and fully systematic approximation hierarchy, to
yield sequences of approximants for both M and A. We show
further how these sequences can then also be extrapolated,
in a controlled and stable manner, to the limit where the
corresponding wave functions are exact in principle. These
extrapolations are the only approximations made. In Sec. IV
we will show explicitly how the results for both M and A yield
accurate and consistent estimates of the phase boundaries,
o, (8) and o, (8), of the Néel and striped GS phases.

III. THE COUPLED CLUSTER METHOD

The CCM [58-69] is one of the very few size-extensive
and size-consistent techniques of quantum many-body theory.
It thereby provides results in the N — oo limit (where N is
the number of particles, i.e., lattice spins in our case) from
the outset, at all levels of approximation. Hence, no finite-
size scaling is ever required. Particularly apposite to the CCM
also is the fact that both the Goldstone linked-cluster theorem
and the very important Hellmann-Feynman theorem are also
preserved at every level of approximate implementation of
the formalism. The latter plays a large part in ensuring that
the method yields accurate, self-consistent, and robust results
for a variety of physical parameters for a given system. The
method has been applied very widely, yielding results of great
(and often unsurpassed) accuracy to systems as diverse as
finite nuclei [58], the electron gas (or jellium) [59,60], atoms
and molecules of interest in quantum chemistry [64], and a
broad spectrum of spin-lattice problems of interest in quantum
magnetism [15,41,68-94].

To initiate the CCM in practice one needs to choose a
suitable model (or reference) state to act as a generalized
vacuum state. The quantum correlations present in the exact
GS or excited-state (ES) wave function of the system are then
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systematically incorporated on top of the model state in a
hierarchical scheme that becomes exact in some limit, which
is usually unattainable at particular levels of computational
implementation. Appropriate conditions for a state to be a
suitable CCM model state have been discussed extensively in
the literature [61,63,66—69]. For spin-lattice models, however,
all (quasi)classical states with perfect magnetic LRO are
suitable CCM model states. Hence, we use here both the Néel
and striped states shown in Figs. 1(c) and 1(d) respectively,
for each honeycomb-lattice monolayer, in each case with NN
interlayer spins on the A A-stacked bilayer aligned antiparallel
to each other, as our two choices for CCM model state. We
will present independent sets of results in Sec. IV based on
both model states taken separately.

We shall only briefly review here some of the principal
features and most important elements of the CCM, and refer
the reader to Refs. [41,58-69] for a fuller description. It is
very convenient to be able to treat each lattice spin in each
model state as being equivalent to one another. A simple way
to do so is to perform a separate passive rotation of each
such spin so that they all point in the same direction, say
downward (i.e., along the local negative z; axis), in its own
local spin-coordinate frame. Accordingly, after such a choice
of local spin-coordinate frames has been made, each model
state takes the universal form |®) =| ||| --- |). Naturally,
the Hamiltonian also needs to be rewritten appropriately for
each such choice.

For a completely general quantum many-body system,
its exact GS energy eigenket |W), where H|WV) = E|WV), is
expressed in the exponentiated form,

W) =ef|l®); S=) S Q)
170

that is a hallmark of the CCM. Its GS energy eigenbra
counterpart (W[, where (W|H = E(W|, is correspondingly
expressed in the CCM parametrization,

(B = (@8e; S=1+> 8C; . 5)
170

where C; = (C;)" and Cj = 1, the identity operator. The set
index I here represents a multiparticle configuration, such that
the set of states {C;’|<I>)} completely spans the many-body
Hilbert space. The model state |®) and the complete set of
mutually commuting, multiconfigurational creation operators
{C;r} must be chosen so that the former is a fiducial vector
(or generalized vacuum state) with regard to the latter, in the
sense that they obey the conditions

(d>|Cf=0=C1_|<I>), VI #£0, (6)
as well as
[Cf,C}r] =0, VI J. @)

The model state | ®) is chosen to be normalized, (®|P) = 1,
and the CCM parametrization of Eq. (4) ensures that the exact
GS wave function |W) obeys the intermediate normalization
condition, (®|¥) = 1. Similarly, the CCM parametrization
of Eq. (5) for (¥| ensures the automatic fulfillment of the
normalization condition (¥|W) = 1. In practice, it is also
convenient to orthonormalize the set of states {C ;” |®)}, i.e., so
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that they obey the relations
(®IC; CI®) =81y, VI,J#0, ®)

where §; ; is a suitably generalized Kronecker symbol.

We note that Hermiticity clearly ensures that the destruction
correlation operator S may formally be expressed in terms of
its creation counterpart S via the relation

(®leS'eS
(@leS'es|@)
A key feature of the CCM is that the constraint of Eq. (9)
is not imposed explicitly. Rather, the operator S is formally
decomposed independently of S, as in Eq. (5). Naturally, in
the exact limit, when all multiconfigurational clusters specified
by the complete set {/} are retained, Eq. (9) would be exactly
fulfilled. In practice, when approximations are made to restrict
the set {/} to some manageable subset, Eq. (9) may only
be approximately fulfilled. This manifest loss of Hermiticity,
however, is more than compensated by the gain that the
Hellmann-Feynman theorem is itself exactly fulfilled by the
CCM parametrizations of Egs. (4) and (5), even when the sums
over the multiconfigurational indices {/} are restricted.

Turning now to the specific case of a quantum spin-lattice
system, in the local spin-coordinate frames discussed above,
where the CCM model state takes the universal form |®) =
[$4 4 -+ 1), the operator Cf can now also be chosen to have
the universal form of a product of single-spin raising operators,
s; = s} +is]. Thus, the set index I now takes the form of a
set of site indices,

I =k ko, ... ky;

(@IS = ©))

n=12,...,2sN}, (10)

in which no given site index k; may appear more than 2s
times. Correspondingly, the operator C; creates a multispin
configuration cluster,

+ +

C;rzs,j]skz,...,sk”; n=172,...,2sN. (11)

Clearly, all GS quantities may now be expressed wholly
in terms of the CCM correlation coefficients {S;,S;}. For
example, the GS magnetic order parameter, which is simply
the average local onsite magnetization, takes the form

1o s

M= —N(q>|sze*5s;e5|q>> , (12)

k=1
where 57 is expressed in the local rotated spin axes described
above. Thus, all that remains for the GS calculations is to

calculate the coefficients {S;,S;}.
Formally, this is done by minimizing the GS energy

expectation functional,

H = H[S;,S]1 = (®|Se SHeS | D), (13)

with respect to al~1 coefficients {S; ,SrovI # 0}. Extremization
with respect to Sy, using Eq. (5), trivially yields the relations

(®|C;e SHeS|®) =0, VI#0, (14)

which are a coupled set of nonlinear equations for the
coefficients {S;}. Similarly, use of Eq. (4) and extremization
of H with respect to S; yield the relations

(®|S(eSHeS — E)C/|®) =0, VYI#0, (15

PHYSICAL REVIEW B 96, 224416 (2017)

where we have also used the simple relation [S ,C;“] =0,
which follows from the explicit CCM parametrization of
Eq. (4) together with Eq. (7). Equation (15) is just a set of
linear equations for the coefficients {S;}, once the coeffi-
cients {S;} are input, having first been obtained by solving
Eq. (14).

An ES energy eigenket |W,), where H|V,) = E,|V,) is
similarly expressed in the CCM formalism in terms of a linear
excitation operator, X¢, as

W) = X5|D);  X° =) XC}, (16)
1£0
as the analog of Eq. (4) for the GS counterpart. Using the
obvious commutativity relation, [X¢,S] = 0, which follows
from Egs. (4), (7), and (16), it is easy to combine the GS and
ES Schrodinger equations to yield the equation

e ’[H.X°1e’| @) = AX‘|®), a7
where A, is the excitation energy,
A.=E,—E. (18)

By taking the inner product of Eq. (17) with (®|C; and making
use of Eq. (8), one may readily derive the set of equations

(®IC; (e 5He’S — E)X°|D) = AXf, YI#0. (19)

Once the operator (e~ He® — E) has been input into Eq. (19)
from the solution to Eq. (14), Eq. (19) is simply a set of
generalized linear eigenvalue equations for the ES ket-state
CCM correlation coefficients {X[} and the excitation energy
(eigenvalue) A,.

Everything so far has been formally exact, and we turn
now to where approximations may be needed for computa-
tional implementation of the CCM formalism. One possible
source of approximation could involve the evaluation of the
exponentiated operators e*5 that lie at the heart of the CCM
parametrizations of Egs. (4), (5), and (16). However, we
note that in each of Egs. (14), (15), and (19) that need to
be solved for the CCM correlation coefficients {S;}, {51},
and {X7}, these appear only in the combination e SHeS of
a similarity transform of the system Hamiltonian. We have
described in detail elsewhere (and see, e.g., Refs. [69,90,93]
and references cited therein) how the otherwise infinite-order
nested commutator expansion

[ee]

1
) S _
e "He’ = E n'[H’S]n’ (20)

n=0 "

where [H,S],, the n-fold nested commutator, is defined
iteratively as

[H,S], = [H,S]n-1,S1; [H,Slo=H, 2y

actually terminates exactly in the present case at the term
with n = 2. Similarly, all GS expectation values, such as the
magnetic order parameter M of Eq. (12), may be evaluated
without any truncations of the similarity transform e~5sfe5.
Hence, the sole approximation made is in the choices of
which subsets of multispin-flip configurations {/} to retain
in the expansions of correlation coefficients for both the
GS wave functions, as in Egs. (4), (5), and the ES wave
function considered, as in Eq. (16). In the present case we
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restrict attention to the lowest-lying spin-triplet excitation, so
that A, now becomes equal to the spin-triplet gap, which
we denote by A. For both the GS and ES calculations
we employ the well-known lattice animal-based subsystem
(LSUBR) truncation hierarchy, which has been much studied
and utilized for a wide variety of spin-lattice problems in the
past (and see, e.g., Refs. [15,41,54,56,68,69,93] and references
cited therein).

At the LSUBn level of approximation one retains all
multispin-flip configurations / in the CCM correlation opera-
tors S, S, and X¢ defined in Egs. (4), (5), and (16), respectively,
which are restrained to all distinct locales on the lattice that
contain no more than n contiguous sites. A cluster of sites is
said to be contiguous (or to form a lattice animal or polyomino)
when each site of the cluster is NN to at least one other,
taking into account the geometrical definition of NN sites
employed. For the GS calculation we restrict the multispin-flip
configurations at each LSUB#n level to have s§ =0, where
s5 = Z,[(V:l s¢, defined in the global spin axes (i.e., before
the local rotations discussed above have been performed).
Similarly, for the ES calculation of the triplet spin gap A,
we restrict the comparable configurations to have s%. = 1. In
both cases, we utilize the space- and point-group symmetries
of the Hamiltonian and the CCM model state |®) being
employed to reduce the number of fundamentally distinct
configurations to a minimum, N s(n). Since the number Ny (1)
increases rapidly as a function of the truncation index n, it
soon becomes necessary to use supercomputing resources and
massive parallelization, together with custom-made computer-
algebraic packages, to enumerate the independent cluster
configurations retained and to derive the corresponding CCM
equations at a given LSUBnr level, and then finally to solve
them [68,95]. For the present bilayer model, we are thereby
able to perform both the GS and ES calculations reported
in Sec. IV at LSUB#n levels of approximation with n < 10.
For the GS calculation, we have N (10) =70 118(175223)
using the bilayer Néel (striped) states described previously as
CCM model states. For the corresponding ES calculation of A,
we have N (10) = 121103 (320476) using the bilayer Néel
(striped) states as CCM model states. Both numbers are larger
for the striped state than the Néel state since the former has
fewer symmetries than the latter. We note that for this model
the geometric definition of contiguous sites for the LSUBn
configurations simply corresponds to NN pairs connected by
Ji or Ji- bonds.

Finally, to obtain estimates for our results in the formally ex-
actlimit,n — oo, we need to extrapolate the raw LSUB# data.
Such extrapolations thereby comprise the sole approximation
that we make. While exact extrapolation rules are not known,
much practical experience from applications of the LSUB#n
hierarchy to many different spin-lattice models has shown the
widespread accuracy of the consistent use of rather simple
schemes for the relevant physical parameters. In this respect,
the magnetic order parameter M is of special interest, since two
different schemes have been employed for differing situations.

Thus, for unfrustrated spin systems or for ones with only
small amounts of frustration, an appropriate extrapolation
scheme is found to be [15,41,55,73-76,79-82,84,86,87]

M(n) =m0—|—m1n71 —i—mzn*z, (22)

PHYSICAL REVIEW B 96, 224416 (2017)

from fits to which we obtain the extrapolated LSUBoo value
mq for M. By contrast, a more appropriate scheme for systems
that exhibit a GS order-disorder QPT, or for phases whose
order parameter M is zero or small, is [15,41,54-56,77,78,84—
87,92-94]

M) = po + pin~? 4+ pon™*, (23)

which yields the respective LSUBoo extrapolant i for M.
For the triplet spin gap A an extrapolation scheme with
leading power of n~!, like that in Eq. (22) for M, has been
found to give a very good fit to the LSUB#n approximants
A(n) for both of the above cases of unfrustrated (or slightly
frustrated) and highly frustrated systems [41,74,88-90,93,94],

A(n) =do+din~" +don~2, (24)

from fits to which we obtain the extrapolated LSUB oo estimate
d() for A.

Clearly, for each of the fits of Eqs. (22)—(24), it is best
to use four or more fitting points (i.e., different n values of
the LSUB# sequence) to obtain robust and the most reliable
results. Furthermore, the LSUB2 result is expected a priori to
be too close to mean-field theory and too far from the exact
n — oo limit to be used in each fit, if it can be avoided. For
this reason, our preferred sets of LSUB#n approximants for the
fits are those with n = {4,6,8,10} in the present case where it
is computationally infeasible to calculate results for n > 10.

We also note, however, that a (4m — 2)/4m staggering
effect, where m € Z™ is a positive integer, has been observed
[86,87,93] in LSUB#n sequences of CCM results for various
physical parameters on frustrated honeycomb-lattice mono-
layers. Such staggering implies that the two subsequences
with n = 4m — 2 and with n = 4m need to be extrapolated
separately from one another. In some cases corresponding
adjacent pairs of curves from each subsequence (e.g., those
with n = 2 and n = 4, or with n = 6 and n = 8) even cross
one another as some coupling parameter is varied. Such
staggering has been possibly attributed [93] to the fact that
the honeycomb lattice comprises two interlocking triangular
Bravais lattices, on each of which a more well-known (2m —
1)/2m (i.e., odd/even) staggering effect is commonly seen,
exactly analogous to the same effect that is well understood
in perturbation theory. Indeed, this is precisely the reason
why LSUB# results with odd values of the truncation index
n are not included in our CCM extrapolations here. In view
of these prior observations on frustrated honeycomb-lattice
monolayers, we shall also compare our results in Sec. IV
between extrapolations based on the preferred sequences with
n = {4,6,8,10} and those based on n = {2,6,10}. The latter
sequence is suboptimal in the two aspects that it both includes
the LSUB2 result and is based on only three fitting points to
extract three parameters. Nevertheless, it avoids mixing results
from the two staggered subsequences.

IV. RESULTS

We first show in Fig. 2 our CCM results for the GS
magnetic order parameter M of Eq. (12) in the Néel phase, as a
function of the scaled interlayer exchange coupling constant,
§ = Ji+/Jy, for three particular representative values of the
intralayer frustration parameter, « = J,/J;. In each case we
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FIG. 2. CCM results for the GS magnetic order parameter M vs the scaled interlayer exchange coupling constant, § = J;-/J;, for the
spin-% Ji-Jp-J3-J ll model on the bilayer honeycomb lattice (with J; = J, and J; > 0), for three selected values of the intralayer frustration
parameter, « = J,/J;: (a) « = 0, (b) @ = 0.2, and (c¢) & = 0.45. Results based on the Néel state as CCM model state are shown in LSUBn
approximations with n = 2,4,6,8,10, together with two corresponding LSUBoo(i) extrapolated results using Eq. (23) and the respective data
sets n = {2,6,10} fori = 1 and n = {4,6,8,10} for i = 2. In Fig. 2(a) we also show, for comparison, an LSUBoo(2a) extrapolation based on

Eq. (22) and the data set n = {4,6,8,10}.

show the “raw” LSUBn data with n = 2,4,6,8,10, based on
the Néel state of Fig. 1(c) as the CCM model state, together
with various LSUBoo extrapolations. We note in particular that
the two extrapolations based on the scheme of Eq. (23), but
using the two respective LSUB#n data sets with n = {2,6,10}
and n = {4,6,8,10} give results in very close agreement with
one another for all three values of « shown and for most values
of §. Generally, the only exception, where there is some slight
sensitivity to the extrapolation input data, is the joint region of
the highest values of intralayer frustration (near to where Néel
order disappears) and the lowest values of interlayer AFM
coupling, as seen in Fig. 2(c), for example.

It is interesting to note that in each case the effect of
turning on the interlayer coupling is first to enhance the
stability of the Néel order, up to some particular value of
8, which depends on the intralayer frustration parameter o.
Increasing § beyond this value then leads to a decrease in the
Néel order parameter M, out to some critical value 8. (@) at
which M — 0. Furthermore, we note that Néel order persists
in the honeycomb-lattice monolayer (§ = 0) for all values
of the frustration parameter in the range a < a,,(0). In this
range, we find an upper critical value §_ (a) of the scaled
interlayer exchange coupling constant, such that Néel order
persists over the range 0 <§ < 4§ (). Very interestingly,
however, as may be seen from Fig. 2(c), for example, for
higher values of « in the range o, (0) < o < oy, we find a
re-entrant type of behavior in which Néel order now exists
only over the range 8; (@) <6 < 8; (a), with 8:1 (a) > 0. The
corresponding upper and lower critical values coincide when
o = oy, at which point we thus have §7(ay) = 4. (ay).
Finally, Néel order is absent for o > &, for all values
of §.

The extrapolation scheme of Eq. (23), used for the
LSUBoo(1) and LSUBoo(2) results shown in each of
Figs. 2(a), 2(b), and 2(c), is certainly valid for all these cases
when the frustration is appreciable, especially for systems
close to a QCP as here, at which the magnetic order parameter

vanishes. However, for unfrustrated systems or ones that are
only slightly unfrustrated, the scheme of Eq. (22) provides
a better fit to the LSUBn input data. Accordingly, we also
show in Fig. 2(a) alone the LSUBoo(2a) extrapolation based
on Eq. (22) and the input data set n = {4,6,8,10}. This
extrapolation is then valid for this case of zero intralayer
frustration (¢ = 0) only for a small range of values of the
scaled interlayer coupling, § < 0.2, say.

In particular, the LSUBoo(2a) curve gives a value M =
0.2741(1) for the unfrustrated honeycomb-lattice monolayer
(i.e., with « = 0 = §), where the quoted error is simply the
least-squares error associated with the fit. The corresponding
result using Eq. (22) and the input data set n = {2,6,10} is
M = 0.2761. There is clearly a small sensitivity associated
with the LSUBn input data set used of about 1% or so. In
this case (¢ = 0 = §) alone, where “minus-sign problems”
are absent, we may compare our CCM results with recent
values obtained from two different quantum Monte Carlo
(QMC) simulations, which yielded the corresponding respec-
tive values M = 0.2681(8) [96] and M = 0.26882(3) [97].
The agreement with our own CCM estimates is very good, and
we expect a corresponding accuracy (i.e., of the order of 2%)
for all the results that we present. Indeed, for the monolayer
case, where we are also able to perform LSUB# calculations
with n = 12, our corresponding extrapolated value, based on
the data set n = {8,10,12}, again with only three fitting points,
for example, is M = 0.2715, in even better agreement (1%)
with the QMC result.

In Fig. 3, we show corresponding results for the GS
magnetic order parameter M of Eq. (12) in the striped phase
to those shown in Fig. 2 for the Néel phase. Again, we show
results for M(§) for three particular representative values of
the intralayer frustration parameter «. In each case, we show
the same “raw” LSUB#n data with n = 2,4,6,8,10, but now
based on the striped state of Fig. 1(d) as the CCM model
state. We also display in Fig. 3 the same LSUBoo(1) and
LSUBoo(2) extrapolations as those shown in Fig. 2, both of
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FIG. 3. CCM results for the GS magnetic order parameter M vs the scaled interlayer exchange coupling constant, § = Ji-/J;, for the
spin-% Ji-J2-J3-Ji- model on the bilayer honeycomb lattice (with J; = J> and J; > 0), for three selected values of the intralayer frustration
parameter, « = J,/J;: (a) @ = 1.0, (b) @ = 0.8, and (c) @ = 0.56. Results based on the striped state as CCM model state are shown in LSUB#n
approximations with n = 2,4,6,8,10, together with two corresponding LSUBoo(7) extrapolated results using Eq. (23) and the respective data

setsn = {2,6,10} fori = 1 and n = {4,6,8,10} fori = 2.

which are based on the appropriate scheme of Eq. (23), but
with the two respective LSUB# input data sets n = {2,6,10}
and n = {4,6,8,10}.

Again, we note that the two extrapolations are in remarkable
agreement with each other in every case, despite the (4m —
2)/4m staggering that has been discussed in Sec. III and
which is now clearly visible in each of Figs. 3(a), 3(b), and
3(c), where it manifests itself most vividly as actual crossings
of corresponding adjacent pairs of curves (viz., LSUB2 and
LSUB4, corresponding to m = 1, and LSUB6 and LSUBS,
corresponding to m = 2). Presumably, the very close agree-
ment between the LSUBoo(1) and LSUBoo(2) extrapolations,
the former of which takes the staggering into account and the
latter of which does not, is related to the fact that the crossings
occur only for unphysical values of §, far beyond the associated
QCP at which the (extrapolated) striped order parameter has
vanished.

Figure 3 exhibits a re-entrant behavior very similar to that
seen in Fig. 2, and discussed above, for the Néel phase. Thus,
striped order is present in the honeycomb-lattice monolayer
(6 = 0) for all values of the intralayer frustration parameter in
the range o > o, (0). In this range we observe from Fig. 3 that
as the AFM bilayer coupling is turned on, striped order persists
overtherange 0 < § < §_ () of the scaled interlayer exchange
coupling. However, now for somewhat lower values of « in
the range oy < a < a,,(0), we again observe a re-entrant
behavior in which striped order reappears over the range
§o(@) <8 < 8. (@), with 83 () > 0. Similar to the Néel case,
these respective upper and lower critical values for the striped
phase coalesce when o = o, such that 5;(055) = 8;(01;).
Striped order is then absent for all values of § for @ < a;.

The re-entrant behavior for both the Néel and striped
phases is also demonstrated more graphically in Fig. 4.
Here we show sequences of extrapolated results for the

striped

15 2 2.5
]
(b)

FIG. 4. CCM results for the GS magnetic order parameter M vs the scaled interlayer exchange coupling constant, § = Ji-/J;, for the
spin-% Ji1-Jo-J3-Ji- model on the bilayer honeycomb lattice (with J; = J, and J; > 0), for a variety of values of the intralayer frustration
parameter, o« = J,/J;, using (a) the Néel state and (b) the striped state as the CCM model state. In each case we show extrapolated results,
obtained from using Eq. (23) with the corresponding LSUB# data sets n = {2,6,10}.
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FIG. 5. CCM results for the triplet spin gap A (in units of J;) vs the scaled interlayer exchange coupling constant, § = J;-/J;, for the
spin-% Ji-J2-J3-Ji- model on the bilayer honeycomb lattice (with J; = J, and J; > 0), for three selected values of the intralayer frustration
parameter, ¢ = J,/J;: (a) « = 0, (b) @ = 0.2, and (c¢) & = 0.45. Results based on the Néel state as CCM model state are shown in LSUB#n
approximations with n = 2,4,6,8, 10, together with two corresponding LSUBoo(7) extrapolated results using Eq. (24) and the respective data

setsn = {2,6,10} fori = 1 and n = {4,6,8,10} fori = 2.

magnetic order parameter of both phases as functions of
8, for a variety of values of o in both cases. All of the
extrapolations shown are based on the scheme of Eq. (23),
used with the corresponding LSUB#n input data sets with
n = {2,6,10}. With this particular extrapolation, the two QCPs
for the monolayers are o, (0) ~ 0.379 and «,,(0) ~ 0.595.
These may be compared, for example, with the corresponding
results [53], «.(0) ~ 0.41 and «(0) ~ 0.6, from using a
rotationally invariant version of Schwinger boson mean-field
theory, which has proven itself to be a fairly accurate
technique for taking quantum fluctuations into account. By
contrast, lowest-order (or linear) spin-wave theory gives the
less accurate results [53], a.,(0) = 0.29 and «,(0) ~ 0.55.
Our own corresponding CCM results for «f and o5 are
a; ~ 0.487 and o5 ~ 0.556, again based on the extrapolation
scheme of Eq. (23) used with the LSUB# input data set with
n = {2,6,10}.

We turn now to our respective results for the triplet spin
gap A. We first show in Fig. 5 results based on the Néel state
as our CCM model state as a function of the scaled interlayer
exchange coupling constant, § = J;-/J;, for the same three
representative values of the intralayer frustration parameter,
a = Jp/Ji, as were shown in Fig. 2 for the GS magnetic order
parameter M. We note that the two sets of extrapolations, now
both based on Eq. (24) but using the two LSUB# input data
sets with n = {2,6,10} and n = {4,6,8,10}, are in excellent
agreement with one another. Both give results for A that are
zero, within very small numerical errors, when Néel order
is present, as expected, i.e., for § < 8; (a). Furthermore, the
values obtained for §_ («) are in good agreement with the
independent values obtained from Fig. 2 for where the GS
magnetic order parameter M vanishes. It is clear too that
in each case the nonmagnetic phase that opens up after the
melting of Néel order is gapped, consistent with it having a
VBC character.

Our corresponding CCM results for the triplet spin gap
A based on the striped state as the model state are shown
in Fig. 6. Once again we display results as a function of §,

now for the same three representative values of « as were
shown in Fig. 3 for the magnetic order parameter M. In this
case the extrapolated LSUBoo(1) results, based on the input
LSUBn data set n = {2,6,10}, give results that A is zero,
within extremely small numerical errors, for all three values
of o shown, over essentially the same ranges of values of
8, viz., 0 < 6 < 8;(05) for a > «,(0) and 8; <dé< 8;2(01)
for ay < a < a,(0), for which the striped magnetic order
parameter M is positive in Fig. 3. By contrast, for the striped
state, the LSUBoo(2) extrapolation, based on the input LSUBn
data set with n = {4,6,8,10}, is definitely not as accurate or
reliable as the LSUBoo(1) extrapolation in this respect. This
is surely due now to the (4m — 2)/4m staggering effect that
is clearly visible in the LSUB#n sequences of results shown in
Figs. 6(a)-6(c).

By way of further elucidation of the extrapolation of
sequences of approximants that display a staggering as in
Fig. 6, itis instructive to consider an analogous situation in nth-
order perturbation theory (PT), for which exact extrapolation
laws can be derived for various physical quantities. However,
as is very well known, the even (n = 2m, where m € Z%)
and odd (n = 2m — 1) sequences of PT approximants involve
an additional staggering effect, exactly as is also seen in
corresponding CCM LSUB#r approximants. In both cases the
even and odd sequences obey an extrapolation scheme of the
same sort (i.e., with the same leading exponent), but one should
not mix even and odd terms together in a single approximation
scheme, unless the staggering is incorporated somehow, since
the coefficients are not identical for both sequences. The
explicit inclusion of the staggering is always very difficult to
achieve in a robust manner, and hence in practice one always
extrapolates only the even-order terms or the odd-order terms,
as mentioned in Sec. III. For honeycomb-lattice models of
the sort considered here, it has been observed previously,
as discussed above, that there is an additional staggering
in the even-order sequence of LSUB#n terms between those
with n = 4m and those with n = 4m — 2. This staggering can
clearly be seen by visual inspection of the LSUB#n curves
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FIG. 6. CCM results for the triplet spin gap A (in units of J;) vs the scaled interlayer exchange coupling constant, § = J;-/J;, for the
spin—% Jl—Jz—J3—J,l model on the bilayer honeycomb lattice (with J3 = J, and J; > 0), for three selected values of the intralayer frustration
parameter, @ = J,/J;: (a) o = 1.0, (b) « = 0.8, and (c) @ = 0.56. Results based on the striped state as CCM model state are shown in LSUBn
approximations with n = 2,4,6,8,10, together with two corresponding LSUBoo(i) extrapolated results using Eq. (24) and the respective data

setsn = {2,6,10} fori = 1 and n = {4,6,8,10} fori = 2.

shown in Fig. 6. Once again, both subsequences still separately
obey Eq. (24). If we do, however, despite the staggering, mix
terms from the latter two subsequences, as in our LSUBoo(2)
extrapolation scheme, we get a poorer fit, leading, for example,
to the observed negative values for the spin gap in Fig. 6. Such
an obviously incorrect result is simply due to the staggering
effect not having been incorporated.

We note, with regard to our CCM spin gap results, that
the LSUB# curves in both Figs. 5 and 6 clearly show a linear
increase with § for large values of this parameter. This is
precisely as expected for an IDVBC phase, as expressed by
Eq. (3). We note too that for true quantum critical behavior
we expect the spin gap A to vanish (for a fixed value of
the frustration parameter o, say) at some critical value §, of
the interlayer coupling as A — k|8 — 8.|° as § — &, with a
critical exponent ¢ and with k a constant. Our LSUBn curves
shown in Figs. 5 and 6, both for the “raw” curves with n finite
and the extrapolated values with n — oo, are clearly more
consistent with a value ¢ > 1 (i.e., so that A vanishes with a
zero slope, rather than the infinite slope expected for ¢ < 1) at
both critical points ., () and 8., ().

While the phase boundaries obtained from our CCM results
for M and A for both quasiclassical magnetic phases are thus
clearly in excellent agreement with each other, those obtained
from M are surely more accurate. This is simply due to the
respective shapes of the curves for M and A as functions of
the parameters « and §. Thus, the (extrapolated) curves for A,
which are zero (within numerical errors) in the magnetically
ordered phase, generally depart from zero (to indicate a gapped
state) with zero slope. Thus, the estimates for the QCPs from
the results for A have much larger associated errors than those
obtained from the vanishing of the order parameter M, since
the slope of the curve for M as a function of the corresponding
coupling constant is generally nonzero at the points where
M — 0.

Thus, finally, in Fig. 7 we show our best estimate forthe 7 =
0 phase diagram of the model in the «§ plane. For reasons given
above, the phase boundaries are determined from LSUBoo(1)

points at which the magnetic order parameter M vanishes.
These points are determined from extrapolating our LSUBn
results for both quasiclassical AFM phases with Eq. (23),
and using the data sets with n = {2,6,10}, which overcome
any errors associated with the (4m — 2)/4m staggering effects
discussed above, as input. Points on the two (i.e., Néel and

2.5 T T T :
.4_
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paramagnet
15 4 .
X
© &
1 P4 1
X
0s ;2* striped
%
0 % .
0 0.2 0.4 0.6 0.8 1
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FIG. 7. T = 0 phase diagram of the spin-% Ji-Jr-J5-Ji- model
on the A A-stacked bilayer honeycomb lattice with J; > 0, J3 = J, =
aJy > 0, Jit = 8J; > 0. The leftmost (sky blue) and the rightmost
(sea green) regions are the quasiclassical AFM phases with Néel and
striped order respectively, while the central (gray) region is a gapped
paramagnetic phase. The red cross (x) and the green plus (4-) symbols
are points at which the extrapolated GS magnetic order parameter M
vanishes for the two respective quasiclassical phases. They represent
the respective values o, (6), a.,(8) and and 5; (o), 8;2 («) [and also
55 @), 87 () for values of « in the range «.,(0) <o <o and
ay < a < o(0), respectively]. In each case the Néel and the striped
states are used as CCM model states, and Eq. (23) is used for the
extrapolations with the respective LSUBn data sets n = {2,6,10}
used as input. (See also Sec. V for a discussion of any possible errors
in the phase diagram.)

224416-11



R. F. BISHOP AND P. H. Y. LI

striped) phase boundaries are shown both at fixed values of
« and fixed values of §. The former [indicated by green plus
(+4) symbols] are obtained from curves such as those shown in
Fig. 4. They thereby represent the corresponding points 3; (o)
[and also 5;(05) for fixed « in the range ., (0) < o < o]
for the Néel phase, and 8; () [and also 8; (a) for fixed « in
the range a; < a < o,(0)] for the striped phase. The latter
[indicated by red cross (x) symbols] are similarly obtained
from corresponding extrapolated curves for M as a function of
« for various fixed values of §. They are hence the respective
points ., (§) for the Néel phase and ., (§) for the striped phase.

One can clearly see from Fig. 7 that on both phase
boundaries the two sets of critical points, obtained from the
completely independent results at fixed values of « and fixed
values of §, agree extremely well with one another. This is
definite evidence for both the consistency and high accuracy
of the extrapolation procedure that we have adopted.

Perhaps the most striking aspect of the 7 =0 phase
diagram is the marked “avoided crossing” behavior of the two
re-entrant phase boundaries. We note that the major portions
of the upper parts of both boundaries (i.e., for 0 < o < 0.4 for
the Néel case and o 2 0.6 for the striped case) are quite well
approximated as straight lines. Thus, if these (approximate)
straight lines were then to be extended, they would cross, and
the Néel line would intersect the § = 0 axis at a value rather
close to the monolayer striped QCP at c, (0), while the striped
line would intersect the § = 0 axis at a value close to the
monolayer Néel QCP at o, (0).

V. DISCUSSION AND SUMMARY

We have studied a frustrated spin—% J1—J2—J3—J]L Heisen-
berg antiferromagnet on an AA-stacked honeycomb lattice
in the case when J; >0, si=J/h =aJ; >0, and Jj =
8J1 > 0. In particular, we have used the CCM implemented
to very high order of approximation to give an accurate
description of its 7 = 0 quantum phase diagram in the window
0<a<1,0<6§< 1ofthe ad plane. This window includes
two quasiclassical phases with AFM magnetic order (viz., the
Néel and striped phases), plus an intermediate paramagnetic
phase that exhibits VBC order of various types.

Within the studied window there are thus two phase
boundaries, § = 6., () [or, equivalently, o = o, (8)], along
which Néel order melts, and § = §.,() [or, equivalently,
a = a,(8)], along which striped order melts. We have seen
that these two boundaries exhibit a distinct “avoided crossing”
type of behavior, with both displaying a consequent re-entrant
property. In the @8 window under study we found that Néel
order thus exists only for values of J in the range 4. (&) < § <
8. (). Furthermore, we found that, whereas 6., (o) = 0 in the
window for values of & in the range o < «,(0), 3., (o) > 0
for values of « in the respective range o (0) < a < oy,
where - (a7) = 8. (ay). Similarly, we also found that in the
same window striped order exists only for values of § in the
range . (a) < 8 < 8., (o). Comparable to the Néel phase, we
also observed for the striped phase that, whereas 3. (o) = 0
in the window under study for values of « in the range
o > 0, (0), 85 () > 0 for values of « in the corresponding
range o; < o < a,(0), where 8:2(01;) = 8;(01;). Our best
estimates for the extremal points of the two quasiclassical
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phases are found to be af = 0.49(1) on the Néel phase
boundary and o5 = 0.56(1) on the striped phase boundary,
where the errors are estimated from a sensitivity analysis of our
extrapolation procedure for the magnetic order parameter M.

Comparable errors are expected along most of the two
phase boundaries in Fig. 7. The most sensitive region,
however, which is the only exception, is that close to the
8 = 0 axis for the Néel boundary, as we have already noted
above. For example, we have obtained the extrapolated value
a.,(0) ~ 0.379 based on Eq. (23) when used with the LSUB#n
input data set n = {2,6,10}. By contrast, in an earlier CCM
analysis of the spin-% Ji1-J>-J3 honeycomb monolayer with
J3 = Jp = aJ; [54], corresponding extrapolated values were
obtained of «, (0) ~ 0.466 when based on the LSUBn input
data set n = {6,8,10,12} and o, (0) ~ 0.448 when based
on the corresponding set n = {6,8,10}. This sensitivity is
surely associated with the fact that the QPT at «, (0) for the
monolayer, from the Néel phase to the plaquette VBC (PVBC)
phase, appears to be of continuous, deconfined type [54]. A
sensitivity analysis yields our best estimate for this monolayer
QCP to be at ., (0) = 0.46(2). Interestingly, this value is now
even closer to the point where one would estimate the striped
boundary curve to intersect the § = 0 axis if its crossing with
the Néel boundary curve would not be avoided.

By contrast, the QPT at «,,(0) for the monolayer, from
the PVBC phase to be striped phase, appears to be of first-
order type [54], and our CCM estimates for it are accordingly
much less sensitive to the extrapolation LSUB# input data set.
Compared with our own value here of «.,(0) ~ 0.595 from
using the LSUBn setn = {2,6,10}, an earlier CCM analysis of
the spin-% J1-J>-J3 honeycomb-lattice monolayer with J3 =
Jo = aJy [54] gave the corresponding value o, (0) ~ 0.601
based on both sets n = {6,8,10,12} and n = {6,8,10}. Our
best overall estimate is o, (0) = 0.600(5).

It is perhaps worthwhile to end by pointing out why we
can assert with confidence that our extrapolation procedure is
indeed robust, since this is the sole approximation in all CCM
calculations. First, the method has now been used in well over
100 different papers for a wide variety of frustrated quantum
magnets (and see, e.g., Refs. [15,41,54-56,68-94] and refer-
ences cited therein), where the same extrapolation schemes
as used here have been utilized, and in virtually all of which
the results obtained have been shown to be either the best or
among the best available. Second, in all of the many cases in the
literature cited, where it has been possible to compare results
obtained from different LSUB# input sets, it has been shown
that the obtained extrapolants for all physical parameters agree
with one another, typically to ~1% or better. Third, the same is
true here in the limited cases where we can test it. For example,
for the limiting case § = 0 of the monolayer, where LSUBn
calculations can additionally be done for the case n = 12, the
fits to all parameters stay unchanged to the same level. Lastly,
in all the limited (i.e., unfrustrated) cases where comparison
can be made with the essentially exact results of large-scale
QMC calculations (as cited here for the case « = 0 = §), the
extrapolated CCM values for all physical parameters typically
agree with the extrapolated QMC values (i.e., after finite-size
scaling to the N — oo limit), again to ~1% (or better). The
real point here is that the present honeycomb bilayer model is
particularly challenging due to the unavoidable (4m — 2)/4m
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staggering effects discussed. While it is therefore true that we
are thereby forced to use only a few (3 or 4) points in our fits,
we can nevertheless be confident of their robustness for the
reasons cited.

In conclusion, we have found that the CCM, when imple-
mented to high orders of LSUB#n approximation and the results
suitably extrapolated to the (exact) n — oo limit, is capable of
giving very accurate descriptions of the T = 0 quantum phase
boundaries of this frustrated A A-stacked honeycomb bilayer
model. In the light of this it would clearly also be of interest to

PHYSICAL REVIEW B 96, 224416 (2017)

use the method to study comparable bilayer models with the
staggered Bernal A B stacking.
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