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Thermophysical properties of paramagnetic Fe from first principles
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A computationally efficient, yet general, free-energy modeling scheme is developed based on first-principles
calculations. Finite-temperature disorder associated with the fast (electronic and magnetic) degrees of freedom
is directly included in the electronic structure calculations, whereas the vibrational free energy is evaluated by
a proposed model that uses elastic constants to calculate average sound velocity of the quasiharmonic Debye
model. The proposed scheme is tested by calculating the lattice parameter, heat capacity, and single-crystal
elastic constants of α-, γ -, and δ-iron as functions of temperature in the range 1000–1800 K. The calculations
accurately reproduce the well-established experimental data on thermal expansion and heat capacity of γ - and
δ-iron. Electronic and magnetic excitations are shown to account for about 20% of the heat capacity for the
two phases. Nonphonon contributions to thermal expansion are 12% and 10% for α- and δ-Fe and about 30%
for γ -Fe. The elastic properties predicted by the model are in good agreement with those obtained in previous
theoretical treatments of paramagnetic phases of iron, as well as with the bulk moduli derived from isothermal
compressibility measurements [N. Tsujino et al., Earth Planet. Sci. Lett. 375, 244 (2013)]. Less agreement is
found between theoretically calculated and experimentally derived single-crystal elastic constants of γ - and
δ-iron.
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I. INTRODUCTION

Iron and its alloys are widely used as engineering materials
in many branches of industry. One reason is that their physical
and chemical properties can be tuned to the requirements
of a specific application by additional alloying, as well as
by means of thermal, chemical, and mechanical treatment.
This, in turn, is possible because of the multitude of structural
states (and transitions between them) in iron alloys that can
be controlled by changing the composition, temperature, and
pressure. Experimentally, it is known that the low-temperature
body-centered-cubic (bcc) phase of iron, α-Fe, undergoes a
phase transition to the face-centered-cubic (fcc) γ -Fe phase
at 1185 K and, subsequently, γ -Fe transforms to another bcc
phase, δ-Fe, at 1667 K [1]. In addition to these structural
transitions, the magnetic transition in iron is known to have an
impact on metallurgy of iron and its alloys [2,3].

Thermophysical properties of high-temperature phases are
of practical importance in connection with high-temperature
applications of stainless steel and also because the manu-
facturing routes of various grades of steel include thermal
and/or mechanical treatments in the austenitic region. In
particular, elastic properties measure the mechanical stiffness
of a material and determine the velocities of sound waves in it.
Changes in the microstructure or phase composition generally
lead to changes in the wave propagation characteristics (sound
velocity and damping coefficient), which can be exploited for
nondestructive testing and characterization of materials using
ultrasonic methods [4]. To use such methods for characteri-
zation of metals/alloys, one should have a priori knowledge
about the variation of elastic properties with temperature and
composition.
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Despite their importance, experimental data on the elastic
properties of γ - and δ-Fe are very scarce. There is just
one study reporting the whole set of single-crystal elastic
constants of γ -Fe, C11, C12, and C44, at 1428 K, evaluated from
phonon dispersion relations obtained in the neutron-scattering
experiments by Zarestky and Stassis [5]. The situation is
similar for δ-Fe, for which there is only one set of data
available [6]. A temperature dependence of the isothermal
bulk modulus of γ -Fe has been obtained by extrapolating the
data of compressibility measurements by Tsujino et al. using
a high-temperature Birch-Murnaghan equation of state [7].

Where experimental data are lacking due to difficulties of
high-temperature measurements, first-principles calculations
may provide the necessary information. Recent progress in
the elastic property calculations using first-principles methods
is reviewed in Refs. [8,9]. The case of paramagnetic Fe is
complicated because this case requires special treatment of its
finite-temperature paramagnetism [10–13]. Spin-unpolarized
density functional theory calculations, treating paramagnetic
iron as nonmagnetic, are practically useless because they
strongly underestimate the equilibrium volume and overes-
timate elastic constants of γ -Fe (see Table I). As the Table I
also shows, a dynamical mean-field theory (DMFT) treatment
of finite-temperature paramagnetism yields elastic constants
[10] that are quite similar, in terms of agreement with the
experimental elastic constants of α-Fe and γ -Fe, to the results
obtained within the disordered local moment (DLM) model of
the paramagnetic state [15,16].

In this paper, we show how the equilibrium volume, elastic
constants, and other relevant thermophysical properties of α-,
γ -, and δ-Fe can be derived from first principles using a system-
atic approach based on a model of the free energy that includes
electronic, magnetic, and vibrational contributions, taking into
account their quantum nature. Our free-energy model is, in
essence, a quasiharmonic Debye model that has been extended
to systems exhibiting paramagnetic disorder of atomic spin
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TABLE I. Experimental and calculated elastic constants (GPa) of
PM bcc and fcc Fe. The theoretical values correspond to non-spin-
polarized calculations treating γ -Fe as nonmagnetic (NM) and to
finite-temperature treatments of paramagnetism using the dynamical
mean-field theory (DMFT) or the disordered local moment (DLM)
model.

T C44 C ′ C11

α-Fe
Experimenta 1173 99 13 149
Experimentb 1173 118 12 190
Theory,c NM 119 −187 −15
Theory,c DMFT 1252 127 36 230
Theory,d DLM 1200 129 19 157
Theory,e DLM 1200 109 16
This work, DLM 1200 110 20 151

γ -Fe
Experimentf 1428 77 ± 8 16 ± 14 154 ± 14
Experimentb 1573 68 18 171
Theory,c NM 197 73 223
Theory,c DMFT 1460 138 25 210
Theory,d DLM 1400 138 28 127
Theory,e DLM 1400 112 23
This work, DLM 1428 124 24 136

δ-Fe
Experimentb 1743 86 11 158
This work, DLM 1750 98 18 128

aUltrasonic measurements, Ref. [14].
bNeutron scattering, Ref. [6].
cGGA-based calculations, Ref. [10].
dGGA-based calculations, Ref. [15].
eGGA-based calculations, Ref. [16].
fInelastic neutron scattering, Ref. [5].

moments, and it enables us to study thermophysical properties
of high-temperature phases of iron.

II. METHODOLOGY

A. Electronic and magnetic free-energy models

In the present model, the free-energy contributions due
to electronic, magnetic, and vibrational disorder at finite
temperatures are taken into account in the following order.
First, the electronic free energy, including the energy and
entropy effects due to excitations of valence electrons from
below to above the Fermi level, is calculated by introducing
the Fermi-Dirac distribution function,

fT (ε) = [e(μ−ε)/kT + 1]−1, (1)

into all the complex energy integrals used in the electronic
structure calculations [17,18] and taking residues at the
Matsubara poles of fT (ε),

εj = μ ± iπ (2j − 1)kT , j = 1,2, . . . Nres, (2)

that are enclosed by the integration contour. Here ε is complex
energy, μ is the Fermi level, k is the Boltzmann constant, and T

is the electronic temperature. The contour extends from below
the valence band to a cutoff energy some 2πNreskT above the
Fermi level. Typically, the number of Matsubara poles Nres

is chosen to be between 4 and 8. An additional integration
over the same energy contour is carried out to evaluate the
electronic entropy,

Sel = −k

∫
{fT ln fT + [1 − fT ] ln[1 − fT ]}n(ε)dε, (3)

where n(ε) is the electron density of states expressed in
terms of the single-particle Green’s function. For brevity, the
dependence of fT on energy is omitted in Eq. (3).

The magnetic free-energy contribution is evaluated within
the DLM model of the paramagnetic state, which is in line
with simplified theoretical interpretations of experimental
data [19,20] and is further corroborated by recent spin-spiral
calculations showing weak dependencies of the Fe magnetic
moment and total energy on the spiral wave vector [21,22].
The electronic structure and energy of a random DLM state are
calculated using the coherent potential approximation (CPA)
[23,24] to represent a pseudobinary alloy consisting of Fe
atoms with spin-up (↑) and spin-down (↓) local moments
distributed randomly on the underlying lattice (alloy analogy)
[25,26]. The entropy due to the magnetic moment disorder
is taken into account in the paramagnetic lattice gas (PLG)
form:

Smag = k ln(m + 1). (4)

Here m is the average magnitude of the local spin moment on an
Fe atom [27]. For metals, m is a continuously varying quantity,
but let us note that for an integer (i.e., truly localized) spin
moment the value m + 1 gives the multiplicity (the number
of possible projections of the moment on the spin axis).
Importantly, for thermodynamic modeling, the PLG form of
magnetic entropy, Eq. (4), is a smoothly varying, convex
function of m, and it correctly vanishes in the nonmagnetic
state with m = 0, whose multiplicity is 1.

A self-consistent treatment of paramagnetic disorder re-
quires that the partial free energy, including the −T Smag term,
should be minimized. Considering an atomic spin moment m

as the imbalance of spin-up and spin-down electron densities
(site projected and integrated over the atomic volume) and
introducing a local spin coordinate framework, we note that
the magnitude m can be varied by additionally splitting
up the on-site one-electron potential with a constant shift
�U↑,↓ = ±�U . Linearizing around the initial value m0, one
gets (m − m0) ≈ C�U for the change in the moment and
(E − E0) ≈ (�U )2/2C for the corresponding change in one-
electron energy. Here C is an effective susceptibility, and E0

is the unperturbed energy. Minimizing the partial free energy
E − T Smag, one gets a closed expression for the potential shift:

�U↑,↓ = ±kT /(|m| + 1). (5)

This temperature-dependent contribution to the one-electron
potential is a mean-field description of the tendency of the
magnitude of a localized magnetic moment to increase with
temperature as a result of transverse spin fluctuations in the
DLM paramagnetic state [27,28]. This tendency stems from
the fact that a larger paramagnetic moment has a greater
multiplicity, thereby producing a higher entropy, Eq. (4).
Figure 1 shows the variation of the Fe magnetic moment as
induced by temperature, calculated as discussed above. The
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FIG. 1. Magnetic moment μB of α-, γ -, and δ-Fe as a function
of temperature.

increase of m is partly due to the thermal expansion (see
Sec. III A).

A note should be added about the usage of the DLM-PLG
model. Strictly speaking, it is applicable to atoms and ions
with well-developed paramagnetic moments in a disordered
state well above the magnetic ordering temperature. For
example, the model should be capable of describing the
anti-Invar type of behavior that is characteristic of γ -Fe. The
model can also describe the situation when an atom in a
metallic host forms a paramagnetic moment by localizing a
valence-band electron (Mott transition). However, the model
should be applied with caution to atoms whose moments
vanish in the DLM calculations as T → 0: if the temperature-
induced moments are not sizable and there is no alternative
(e.g., experimental) evidence of local-moment paramagnetic
behavior in the system, then the treatment of such moments as
localized is unjustified.

Also, the DLM-PLG model partly accounts for longitudinal
spin fluctuations (LSFs), but only as long as the parabolic form
(E − E0) ≈ C(m − m0)2/2 can be considered a good approx-
imation. For systems exhibiting nonlinear E(m) dependencies
(in particular, for Invar alloys) and, in general, for all systems
at very high temperatures, more accurate treatments of LSF
are necessary. LSFs have been the subject of several studies
[16,21,29–35], but it remains to be seen how their results can
be combined with the present model without breaking the good
analytic properties of the thermodynamic functions and at a
reasonable computational cost.

However, the magnetic free-energy contribution is rela-
tively small, and its approximate treatment may be sufficient
for describing the thermophysical properties of paramagnetic
Fe. As will be shown in Sec. III, the vibrational and electronic
free-energy contributions account for more than 85% of
the heat capacity and linear thermal expansion coefficient.
Therefore, considering the purpose of the present study, correct
approximations for the vibrational contribution seem to be
paramount for a successful thermodynamic modeling of iron
phases at elevated temperatures.

B. Debye model and computational procedure

The effect of lattice vibrations, which is the primary
cause of thermal expansion, is evaluated in this work using
the quasiharmonic Debye model with a single parameter
(Debye temperature) that is both volume- and temperature-
dependent. The dependencies have been calculated from the
finite-temperature equation of state that already includes
the electronic and magnetic free-energy contributions. This
treatment is consistent with the general coarse-graining ap-
proach where the dynamics corresponding to slow degrees of
freedom (atomic motions, in this case) are described using the
potential-energy surface obtained as a partial free energy by
equilibrating the system with respect to the fast degrees of
freedom (electronic and magnetic). However, this treatment is
not self-consistent, as it does not take into account the effect
of atomic displacements on the electronic structure. Feedback
from the atomic displacements into the electronic structure
may play a crucial role in cases of dynamically unstable
phases such as β-Ti, and it can be taken into account using
several different schemes at a considerable computational cost
[13,26,36]. As paramagnetic phases of Fe are dynamically
stable in the DLM-PLG treatment, their vibrational free
energies are expected to be accurately described by the
quasiharmonic Debye model.

Technical details of the present calculations, based on den-
sity functional theory [37], were as follows. The total energies
were calculated within the generalized gradient approximation
[38] (GGA) using the exact muffin-tin orbital (EMTO) method
[39–41] and the full-charge-density formalism [41,42]. Self-
consistent EMTO-CPA calculations were performed using an
orbital momentum cutoff of lmax = 3 for partial waves and a
33 × 33 × 33 Monkhorst-Pack grid of special k points [43] for
the Brillouin zone integration.

The electronic structure calculations for a set of temper-
atures in the range from 1000 to 1800 K for bcc and fcc
Fe yielded the the partial “electronic” Helmholtz free energy
Fel(V,T ) containing the electronic and magnetic contributions.
From the so-obtained equation of state, for every considered
value of temperature T and volume V , the vibrational energy
ED(V,T ) and entropy SD(V,T ) were evaluated as follows:

ED(V,T ) = 9
8	D + 3kT D(	D/T ), (6)

SD(V,T ) = k[4D(	D/T ) − 3 ln(1 − e−	D/T )], (7)

where D(x) = (3/x3)
∫ x

0 dt[t3/(et − 1)] is the Debye func-
tion. The Debye temperature 	D(V,T ) was determined in
the framework of the Debye model through the mean sound
velocity vm(V,T ), namely,

	D = h̄

k

(
6π2

V

)1/3

vm(V,T ). (8)

The mean sound velocity was calculated by averaging the three
acoustic branches over directions in the crystal lattice, viz.,

vm(V,T ) =
(

1

3

3∑
i=1

∫



1

v3
i

d


4π

)− 1
3

, (9)

where d
 is an increment of the solid angle about the center
of the Brillouin zone and vi are longitudinal and transverse
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sound velocities. It is desirable to find some approximations
for the equation above in order to simplify the calculations.
For example, for isotropic crystals [44] this relation simplifies
to

vm =
(

1

3

[
2

v3
s

+ 1

v3
l

])− 1
3

, (10)

where vs and vl are transverse (shear) and longitudinal
sound velocities, respectively. Considering an empirical linear
relationship between longitudinal and shear sound velocities
with the square root of the bulk modulus, Moruzzi, Janak,
and Schwarz [45] suggested a formula to evaluate the Debye
temperature; their formalism is hereafter referred to as MJS.
While the MJS formalism has been quite successful in
predicting the thermophysical properties of several metals, our
calculations show that the MJS formalism works quite well
for γ -Fe but strongly overestimates the main thermophysical
properties of δ-Fe.

Another common practice is to use homogenization theories
employing Voight, Reuss, or Hill (VRH) averages to relate the
single-crystal elastic constants to mean sound velocities; for
an example see Ref. [33]. Our test calculations for α-, γ -,
and δ-iron show that experimental thermophysical properties
of γ -Fe can be reproduced using the VRH average, while
the lattice expansion and other thermal properties of δ-Fe are
underestimated.

One possible reason for the high sensitivity of thermal
properties of δ-Fe to the Debye model formulation of MJS
is the very high value of the Zener anisotropy constant (A =
C44/C ′) for δ-Fe [6]. In cases of strong elastic anisotropy, the
usage of Eq. (10) is rather questionable because in such cases
some directions of sound propagation will be much softer
than others, so the assumption that all directions of sound
propagation are similar cannot be justified. One can also add
to the above the fact that, at high temperatures, vibrational
modes with short wavelengths (and high frequencies) are
more populated than at low temperatures and therefore play
an increasingly important role.

Following this rationale, our approach is to find an effective
sound velocity that would represent the contributions of
high-frequency modes, as well as low-frequency modes, to
the vibrational free energy. Examining Eq. (9), one can see
that the softest vibrational mode, the lowest shear mode, is
dominant in the determination of this integral. Dominance of
the softest mode is more pronounced at high temperatures since
in such a situation one has softening of all elastic moduli due
to temperature. To work around this issue, we have introduced
a modified theory to calculate the effective sound velocity as
follows. For each direction in an irreducible wedge of the
Brillouin zone (BZ), we have calculated the three acoustic
sound velocities. Once the velocities of the three acoustic
branches are known, the projection of the velocity of each
branch on one of the principal axes can be calculated. Since
the cubic phases are the focus of our study, three principal
axes in this study are three mutually perpendicular axes.
This procedure is repeated for all directions confined to the
irreducible part of the BZ. As soon as the projections of
velocities are known, for each principal axis an average is
obtained. As a result, vm can be simply obtained from the
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FIG. 2. Debye temperature 	D (K) as a function of Wigner-Seitz
radius w (bohrs) calculated using different methods. For the bcc
phase, 	D is calculated at a constant temperature of 1700 K, and for
the fcc phase it is calculated at 1400 K.

three averages on the principal axes. Having calculated the
averages on each axis, one can view the result as a direction
and interpret it as a resultant effective direction (RED).

By calculating the single-crystal elastic constants from
partial free energies, as will be discussed in Sec. III C, for
a range of volumes and temperatures, one can obtain vm from
the above procedure as a function of volume and temperature.
Figure 2 shows the variation of the Debye temperature 	D

calculated using the RED approximation, MJS formalism, and
Voigt average as a function of the Wigner-Seitz radius w at
a fixed temperature. One can see that the values obtained
from the RED lie somewhere in between those obtained
using the Voigt average and MJS formalism. For the fcc
structure, differences between different approximations are
rather large at a lower Wigner-Seitz radius, while for the bcc
structure, different methods give similar results. Surprisingly,
the large difference between the three different estimates of
	D for the fcc structure, especially at lower volumes, do not
affect the properties at high temperature as much as might be
expected from Fig. 2. The opposite is true for the bcc structure,
where more similar estimates of 	D translate into more
differing results for the properties. This is an example of the
nontriviality of high-temperature modeling of thermophysical
properties. Figure 3 shows the variation of 	D as a function
of temperature calculated for α-, γ -, and δ-Fe at a fixed
Wigner-Seitz radius. The trend observed in Fig. 2 is seen here
again for the different methods to estimate 	D . The main
observation of Fig. 3 is that 	D is almost independent of
temperature for all three phases: the value of 	D changes by
0.8 K in whole temperature range for the bcc phases and by the
same amount for the fcc phase within the temperature range
of its stability.

Having calculated 	D as a function of volume and
temperature, the vibrational energy ED(V,T ) and entropy
SD(V,T ) contributions can be evaluated according to Eqs. (6)
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FIG. 3. Debye temperature 	D (K) computed using different
methods for α-, γ -, and δ-Fe as a function of temperature. For the
bcc phase, 	D is calculated at a fixed Wigner-Seitz radius of 2.725
bohrs, and for the fcc phase it is calculated at 2.675 bohrs.

and (7). The total free energy

F (V,T ) = Fel(V,T ) + ED(V,T ) − T SD(V,T ),

including these contributions, is then calculated and fitted as
a function of volume and temperature. Basic thermophysical
properties such as the equilibrium volume V0(T ) and lattice
parameter a(T ), thermal expansion coefficient (TEC), isother-
mal bulk modulus BT , and isobaric heat capacity CP (T ) can
be calculated using the corresponding derivatives of the free
energy.

III. RESULTS AND DISCUSSION

A. Thermal expansion

The calculated Wigner-Seitz radii w, representing the
equilibrium volumes V0 = 4πw3/3 of the three phases of
Fe, are plotted as functions of temperature in Fig. 4. The
calculations systematically underestimate the experimental
data (also shown in Fig. 4), on average by about 0.3%,
1.3%, and 0.2% for α-, γ -, and δ-Fe, respectively. Although
the agreement between the modified theory and experiment
appears now to be good for α- and δ-Fe, the discrepancy for
γ -Fe is still appreciable. This discrepancy is expected and may
be traced back to a common problem of semilocal density
functionals to underestimate the equilibrium volume of iron
[47]. At the same time, the calculated slopes of temperature
dependencies are similar to the experimental observations.

In Table II the calculated linear TECs are compared with
the experimental values [46]. In the modified theory the TEC
is slightly overestimated for α-Fe and underestimated for
γ -Fe. The agreement is seemingly good for δ-Fe. It also
follows from the results shown in Table II that the contribution
of electronic and magnetic excitations to TEC for α- and
δ-Fe is about 12% and 10% of the total values, respectively,
while these nonphonon excitations contribute about 30% to
the lattice expansion for γ -Fe. It can therefore be concluded
that while phonons are the primary cause of lattice expansion,
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w
(b

oh
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)

Ref. [46]
Calc.
Fitted

FIG. 4. Wigner-Seitz radius w (bohrs) of α-, γ -, and δ-Fe
as a function of temperature. Experimental data (open circles)
are taken from lattice parameter measurements of Ref. [46] and
their linear regression (dashed lines) for α-Fe, w(T ) = 2.65433 +
4.05835 × 10−5 T; γ -Fe, w(T ) = 2.61754 + 6.34387 × 10−5 T; and
δ-Fe, w(T ) = 2.62790 + 6.02238 × 10−5 T. Solid limes with solid
symbols show the calculated temperature dependencies of the
Wigner-Seitz radius for α-, γ -, and δ-Fe, from left to right.

their role in the thermal expansion of α- and δ-Fe is more
substantial than in that of γ -Fe. We would like to add to the
above discussion that a possible overestimation of the linear
TEC for α-Fe could be due to the fact that at intermediate and
low temperatures, statistically, the higher-frequency modes
are not as highly populated as at high temperature and the
RED approximation may not be as suitable as the other two
higher-temperature phases.

B. Heat capacity

The calculated isobaric (P = 0) heat capacity and its
contributions due to the vibrational and electronic degrees

TABLE II. Calculated and experimental linear TEC of paramag-
netic bcc and fcc phases of Fe. All data are in units of 10−6 K−1

and have been averaged over the temperature range of stability of the
corresponding paramagnetic phase.

This work Theorya Experimentb

α-Fe
Total 19.5 16.5 14.8
El.+mag.c 2.3

γ -Fe
Total 19.1 27.2 23.3
El.+mag.c 5.5

δ-Fe
Total 23.8 22.1
El.+mag.c 2.3

aDLM-based Debye model, Ref. [33].
bLattice parameter measurements, Ref. [46].
cExpansion due to electronic and magnetic excitations.
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FIG. 5. Calculated heat capacity CP and its contributions as func-
tions of temperature. Experimental points are taken from Ref. [48]
to represent the results of a critical assessment of a large number of
experimental data.

of freedom are shown in Fig. 5. Due to the difficulties with
experiments at elevated temperatures, raw experimental data
for γ -Fe and δ-Fe show large scatter. Desai [48] critically
assessed a large number of experimental data and suggested
a set of recommended values which are plotted in Fig. 5. The
agreement between the calculated and assessed experimental
data is very good for γ -Fe and is rather good for δ-Fe.
The calculations slightly underestimate the slope of the heat
capacity at the high-temperature end for both phases of γ

and δ. The underestimation for δ-Fe is greater, and it can be
related to other contributions that become significant at high
temperatures. There is a substantial difference between the
calculated and experimental heat capacities of paramagnetic
α-Fe. The reason for the substantial underestimation of the heat
capacity for α-Fe is the absence of magnetic short-range order
contributions in our CPA treatment of DLM paramagnetism,
while these contributions are quite sizable just above the
magnetic phase transition temperature TC ∼ 1043 K in α-Fe.
The greatest contribution to the heat capacity comes from
lattice vibrations (harmonic and anharmonic terms together).
The smallest contribution comes from magnetic disorder and
is related to the increasing magnitude of spin fluctuations
with temperature [27]. In the considered temperature range
the contribution of nonphonon degrees of freedom (electronic
and magnetic) to the total heat capacity is about 19%.

C. Elastic properties

To calculate the three cubic elastic constants as functions
of temperature, one needs two independent elastic mod-
uli in addition to the temperature-dependent bulk modulus
B = (C11 + 2C12)/3. A common choice is to calculate two
shear moduli C ′ = (C11 − C12)/2 and C44 by homogeneously
shearing the lattice at a fixed (equilibrium) volume [49].
The so-called tetragonal shear constant C ′ is calculated by
imposing a volume-conserving orthorhombic strain for which
the strain tensor ε is expressed in terms of a small displacement

parameter x as follows:

ε11 = −ε22 = x, ε33 = x2

1 − x2
. (11)

The resulting energy difference is an even function of the
parameter x:

�F (x) = �F (−x) = 2V0C
′x2 + O[x4]. (12)

Similarly, using a volume-conserving monoclinic strain, the
C44 modulus can be calculated. The strain tensor in this
case is

ε12 = ε21 = x

2
, ε33 = x2

4 − x2
, (13)

and, once again, the corresponding energy difference is an
even function of x:

�F (x) = �F (−x) = V0C44x
2/2 + O[x4]. (14)

A series of calculations was performed to consider the
volume-conserving lattice distortions (11) and (13) at the
calculated equilibrium volume V0(T ) corresponding to a
given temperature T . The maximum strain xmax of 0.06
(dimensionless) was divided into several steps to calculate
the partial free energy Fel(x) at the given T and V0(T ). The
shear elastic constants C44(T ) and C ′(T ) were then calculated
from the slope of the partial free energy as a function of the
strain squared x2 according to Eqs. (12) and (14).

The elastic constants calculated in this work for paramag-
netic bcc and fcc Fe for several temperatures are compared
in Table I with the corresponding experimental data of
Refs. [5,6,14] and the results of previous theoretical investiga-
tions [10,15,16]. The values obtained in this work are similar to
the results of other calculations treating paramagnetic Fe. For
α-Fe, our results seem to be slightly closer to the experimental
data, especially for C11 reported in Ref. [14]. For γ -Fe, the
calculated C ′ is in good agreement with the experimental data
of Refs. [5,6], but C11 is underestimated in comparison with
the data from Ref. [6].

It seems to be a general trend for theoretical calculations
to overestimate C44 of the γ phase. It should also be added
that while C44 and C ′ of Ref. [6] are in the same range as the
experimental data of Refs. [5,14] for α- and γ -Fe, C11 reported
in Ref. [6] is higher than in the two other experiments.

Our results for the δ phase are also in good agreement with
the only available experimental data for this phase [6]. At vari-
ance with the previous studies, the present model incorporates
the effect of lattice vibrations (in the quasiharmonic Debye
model) on the elastic properties.

Figure 6 compares the calculated temperature dependencies
of two shear moduli, C44 and C ′, and isothermal bulk modulus
BT with available experimental data for α-, γ -, and δ-Fe.
Similar to the experimental BT obtained in Refs. [7,14], the
calculated elastic moduli exhibit a normal softening behavior
with increasing temperature. C44 decreases almost linearly in
the whole temperature range, in agreement with experimental
observation. The calculated values of shear moduli C44 and C ′
are higher than experimental values [5,6,14], while the bulk
modulus comes out lower. The maximum difference between
the calculated and experimental moduli is about 30%, which
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FIG. 6. Calculated temperature dependence of elastic moduli
of α-, γ -, and δ-Fe in comparison with experimental data of
Refs. [5–7,14]. Blue, red, and green lines represent the variation of
BT , C44, and C ′, respectively.

may be called reasonable considering the experimental uncer-
tainties and the fact that the experimental elastic constants of
Ref. [5] might not be fully isothermal. Indeed, the experimental
bulk modulus of Ref. [5] is considerably higher than the
isothermal bulk modulus values obtained in high-pressure
measurements of Ref. [7] and in our calculations.

It is also noteworthy that our BT values are in perfect
agreement with the isothermal bulk modulus values measured
in Ref. [7] in the whole considered temperature range. As
explained in the previous section, a high value of C11 obtained
in Ref. [6] causes the corresponding bulk modulus to be higher
than in other experiments on paramagnetic phases of iron.

IV. CONCLUSIONS

Thermophysical properties of α-, γ -, and δ-Fe at elevated
temperatures have been studied using first-principles-based
thermodynamic modeling of complex thermal disorder involv-
ing electronic, magnetic, and vibrational degrees of freedom.
Partial free energy, containing contributions due to the faster
degrees of freedom (electronic and magnetic), is evaluated
first and then used as the input to model the free-energy
contributions from the slower (vibrational) degrees of freedom.

To model the free energy due to vibrational disorder, the
quasiharmonic Debye model was employed. To effectively
include the contributions from the low- and high-frequency
modes in the free energy, we have introduced an averaging
technique, the resultant effective direction, that allows one to
reliably evaluate the Debye temperature in cases of strong
elastic anisotropy.

Good agreement is found between the model predictions
for the lattice constant and available experimental data. The
calculated lattice constants of α-, γ -, and δ-Fe have been found
to be 0.3%, 1.3%, and 0.2% lower than the corresponding
experimental values. The difference between the calculated
linear TEC and experimental data is 32%, 18%, and 8% for
α-, γ -, and δ-Fe, respectively.

According to our calculations, nonphonon contributions to
thermal expansion make up about 12% and 10% of the total
TEC value for α- and δ-Fe and 30% for γ -Fe. As for heat
capacity, our results are in good agreement with experimental
data assessed by Desai [48], where there are about 5% and
10% differences for the γ and δ phases, respectively. The
present model does not include the effects on magnetic short-
range order in paramagnetic α-Fe, and therefore, it does not
reproduce the tail of the heat capacity peak above the Curie
temperature.

The calculated elastic moduli exhibit a decreasing trend
with the increase of temperature. The maximum difference
between the calculated elastic moduli and available experi-
mental data is about 30%, which is similar to the results of
previous theoretical studies.

The free-energy modeling scheme developed in this work
is rather general and computationally very efficient. It can be
applied to derive the thermophysical properties of other 3d

transition metals and their alloys.

ACKNOWLEDGMENTS

Fruitful discussions with B. Hutchinson and R. Sandström
are acknowledged. This work was performed within the
VINNEX center Hero-m financed by the Swedish Govern-
mental Agency for Innovation Systems (VINNOVA), Swedish
industry, and the KTH Royal Institute of Technology. P.A.K.
gratefully acknowledges the financial support of the Ministry
of Education and Science of the Russian Federation in the
framework of the Increase Competitiveness Program of NUST
“MISiS” (Grant No. K3-2017-034). Computer resources for
this study were provided by the Swedish National Infrastruc-
ture for Computing (SNIC, Project No. 2015/16-50) at the
National Supercomputer Center (NSC), Linköping, and PDC
Center for High Performance Computing, Stockholm.

[1] Q. Chen and B. Sundman, J. Phase Equilib. 22, 631 (2001).
[2] C. Zener, JOM 7, 619 (1955).
[3] F. Körmann, A. Breidi, S. L. Dudarev, N. Dupin, G. Ghosh, T.

Hickel, P. Korzhavyi, J. A. Muñoz, and I. Ohnuma, Phys. Status
Solidi B 251, 53 (2014).

[4] D. Artymowicz, B. Hutchinson, and M. Nogues, Mater. Sci.
Technol. 18, 1142 (2013).

[5] J. Zarestky and C. Stassis, Phys. Rev. B 35, 4500
(1987).

[6] J. Neuhaus, M. Leitner, K. Nicolaus, W. Petry, B. Hennion, and
A. Hiess, Phys. Rev. B 89, 184302 (2014).

[7] N. Tsujino, Y. Nishihara, Y. Nakajima, E. Takahashi, K.
Funakoshi, and Y. Higo, Earth Planet. Sci. Lett. 375, 244
(2013).

224406-7

https://doi.org/10.1007/s11669-001-0027-9
https://doi.org/10.1007/s11669-001-0027-9
https://doi.org/10.1007/s11669-001-0027-9
https://doi.org/10.1007/s11669-001-0027-9
https://doi.org/10.1007/BF03377550
https://doi.org/10.1007/BF03377550
https://doi.org/10.1007/BF03377550
https://doi.org/10.1007/BF03377550
https://doi.org/10.1002/pssb.201350136
https://doi.org/10.1002/pssb.201350136
https://doi.org/10.1002/pssb.201350136
https://doi.org/10.1002/pssb.201350136
https://doi.org/10.1179/026708302225006061
https://doi.org/10.1179/026708302225006061
https://doi.org/10.1179/026708302225006061
https://doi.org/10.1179/026708302225006061
https://doi.org/10.1103/PhysRevB.35.4500
https://doi.org/10.1103/PhysRevB.35.4500
https://doi.org/10.1103/PhysRevB.35.4500
https://doi.org/10.1103/PhysRevB.35.4500
https://doi.org/10.1103/PhysRevB.89.184302
https://doi.org/10.1103/PhysRevB.89.184302
https://doi.org/10.1103/PhysRevB.89.184302
https://doi.org/10.1103/PhysRevB.89.184302
https://doi.org/10.1016/j.epsl.2013.05.040
https://doi.org/10.1016/j.epsl.2013.05.040
https://doi.org/10.1016/j.epsl.2013.05.040
https://doi.org/10.1016/j.epsl.2013.05.040


HOSSEIN EHTESHAMI AND PAVEL A. KORZHAVYI PHYSICAL REVIEW B 96, 224406 (2017)

[8] T. Hammerschmidt, I. A. Abrikosov, D. Alfè, S. G. Fries, L.
Höglund, M. H. G. Jacobs, J. Koßmann, X.-G. Lu, and G. Paul,
Phys. Status Solidi B 251, 81 (2014).

[9] R. Sandström and P. Korzhavyi, Can. Metall. Q. 53, 282 (2014).
[10] I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. Vollhardt,

Phys. Rev. B 85, 020401(R) (2012).
[11] F. Körmann, A. Dick, B. Grabowski, T. Hickel, and J.

Neugebauer, Phys. Rev. B 85, 125104 (2012).
[12] A. V. Ruban and V. I. Razumovskiy, Phys. Rev. B 85, 174407

(2012); A. V. Ruban, V. I. Razumovskiy, and F. Körmann, ibid.
89, 179901(E) (2014).

[13] I. A. Abrikosov, A. V. Ponomareva, P. Steneteg, S. A.
Barannikova, and B. Alling, Curr. Opin. Solid State Mater. Sci.
20, 85 (2016).

[14] D. J. Dever, J. Appl. Phys. 43, 3293 (1972).
[15] H. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B 84,

140411(R) (2011).
[16] Z. Dong, W. Li, S. Schönecker, S. Lu, D. Chen, and L. Vitos,

Phys. Rev. B 92, 224420 (2015).
[17] K. Wildberger, P. Lang, R. Zeller, and P. H. Dederichs, Phys.

Rev. B 52, 11502 (1995).
[18] N. D. Mermin, Phys. Rev. 137, A1441 (1965).
[19] R. J. Weiss and K. J. Tauer, Phys. Rev. 102, 1490 (1956).
[20] G. Grimvall, Phys. Rev. B 39, 12300 (1989).
[21] S. Shallcross, A. E. Kissavos, V. Meded, and A. V. Ruban, Phys.

Rev. B 72, 104437 (2005).
[22] S. V. Okatov, Y. N. Gornostyrev, A. I. Lichtenstein, and M. I.

Katsnelson, Phys. Rev. B 84, 214422 (2011).
[23] P. Soven, Phys. Rev. 156, 809 (1967).
[24] B. L. Gyorffy, Phys. Rev. B 5, 2382 (1972).
[25] B. L. Gyorffy, A. J. Pindor, J. B. Staunton, G. M. Stocks, and

H. Winter, J. Phys. F 15, 1337 (1985).
[26] H. Ebert, S. Mankovsky, K. Chadova, S. Polesya, J. Minár, and

D. Ködderitzsch, Phys. Rev. B 91, 165132 (2015).
[27] L. Vitos, P. A. Korzhavyi, and B. Johansson, Phys. Rev. Lett.

96, 117210 (2006).
[28] V. I. Razumovskiy, A. V. Ruban, and P. A. Korzhavyi, Phys.

Rev. Lett. 107, 205504 (2011).

[29] N. M. Rosengaard and B. Johansson, Phys. Rev. B 55, 14975
(1997).

[30] A. V. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, Phys.
Rev. B 75, 054402 (2007).

[31] A. V. Ruban, A. B. Belonoshko, and N. V. Skorodumova, Phys.
Rev. B 87, 014405 (2013).

[32] A. V. Ruban and M. Dehghani, Phys. Rev. B 94, 104111 (2016).
[33] Z. Dong, W. Li, D. Chen, S. Schönecker, M. Long, and L. Vitos,

Phys. Rev. B 95, 054426 (2017).
[34] F. Pan, J. Chico, A. Delin, A. Bergman, and L. Bergqvist, Phys.

Rev. B 95, 184432 (2017).
[35] P.-W. Ma, S. L. Dudarev, and J. S. Wróbel, Phys. Rev. B 96,

094418 (2017).
[36] O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak, Phys.

Rev. B 87, 104111 (2013).
[37] P. Hohenberg and W. Kohn, Phys. Rev. B 136, B864 (1967).
[38] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[39] L. Vitos, H. L. Skriver, B. Johansson, and J. Kollar, Comput.

Mater. Sci. 18, 24 (2000).
[40] L. Vitos, Phys. Rev. B 64, 014107 (2001).
[41] L. Vitos, I. A. Abrikosov, and B. Johansson, Phys. Rev. Lett. 87,

156401 (2001).
[42] L. Vitos, Computational Quantum Mechanics for Materials

Engineers (Springer, London, 2007).
[43] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[44] O. L. Anderson, in Physical Acoustics, edited by W. P. Manson

(Academic Press, New York, 1965), Vol. IIIB, pp. 43–95.
[45] V. L. Moruzzi, J. F. Janak, and K. Schwarz, Phys. Rev. B 37,

790 (1988).
[46] Z. S. Basinski, W. Hume-Rothery, and A. L. Sutton, Proc. R.

Soc. London, Ser. A 229, 459 (1955).
[47] P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104 (2009).
[48] P. D. Desai, J. Phys. Chem. Ref. Data 15, 967 (1986).
[49] M. J. Mehl, B. M. Klein, and D. A. Papaconstantopoulous, in

Intermetallic Compounds: Principles and Practice, edited by
J. H. Westbrook and R. L. Fleischer (Wiley, London, 1994),
pp. 195–210.

224406-8

https://doi.org/10.1002/pssb.201350156
https://doi.org/10.1002/pssb.201350156
https://doi.org/10.1002/pssb.201350156
https://doi.org/10.1002/pssb.201350156
https://doi.org/10.1179/1879139514Y.0000000138
https://doi.org/10.1179/1879139514Y.0000000138
https://doi.org/10.1179/1879139514Y.0000000138
https://doi.org/10.1179/1879139514Y.0000000138
https://doi.org/10.1103/PhysRevB.85.020401
https://doi.org/10.1103/PhysRevB.85.020401
https://doi.org/10.1103/PhysRevB.85.020401
https://doi.org/10.1103/PhysRevB.85.020401
https://doi.org/10.1103/PhysRevB.85.125104
https://doi.org/10.1103/PhysRevB.85.125104
https://doi.org/10.1103/PhysRevB.85.125104
https://doi.org/10.1103/PhysRevB.85.125104
https://doi.org/10.1103/PhysRevB.85.174407
https://doi.org/10.1103/PhysRevB.85.174407
https://doi.org/10.1103/PhysRevB.85.174407
https://doi.org/10.1103/PhysRevB.85.174407
https://doi.org/10.1103/PhysRevB.89.179901
https://doi.org/10.1103/PhysRevB.89.179901
https://doi.org/10.1103/PhysRevB.89.179901
https://doi.org/10.1103/PhysRevB.89.179901
https://doi.org/10.1016/j.cossms.2015.07.003
https://doi.org/10.1016/j.cossms.2015.07.003
https://doi.org/10.1016/j.cossms.2015.07.003
https://doi.org/10.1016/j.cossms.2015.07.003
https://doi.org/10.1063/1.1661710
https://doi.org/10.1063/1.1661710
https://doi.org/10.1063/1.1661710
https://doi.org/10.1063/1.1661710
https://doi.org/10.1103/PhysRevB.84.140411
https://doi.org/10.1103/PhysRevB.84.140411
https://doi.org/10.1103/PhysRevB.84.140411
https://doi.org/10.1103/PhysRevB.84.140411
https://doi.org/10.1103/PhysRevB.92.224420
https://doi.org/10.1103/PhysRevB.92.224420
https://doi.org/10.1103/PhysRevB.92.224420
https://doi.org/10.1103/PhysRevB.92.224420
https://doi.org/10.1103/PhysRevB.52.11502
https://doi.org/10.1103/PhysRevB.52.11502
https://doi.org/10.1103/PhysRevB.52.11502
https://doi.org/10.1103/PhysRevB.52.11502
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1103/PhysRev.102.1490
https://doi.org/10.1103/PhysRev.102.1490
https://doi.org/10.1103/PhysRev.102.1490
https://doi.org/10.1103/PhysRev.102.1490
https://doi.org/10.1103/PhysRevB.39.12300
https://doi.org/10.1103/PhysRevB.39.12300
https://doi.org/10.1103/PhysRevB.39.12300
https://doi.org/10.1103/PhysRevB.39.12300
https://doi.org/10.1103/PhysRevB.72.104437
https://doi.org/10.1103/PhysRevB.72.104437
https://doi.org/10.1103/PhysRevB.72.104437
https://doi.org/10.1103/PhysRevB.72.104437
https://doi.org/10.1103/PhysRevB.84.214422
https://doi.org/10.1103/PhysRevB.84.214422
https://doi.org/10.1103/PhysRevB.84.214422
https://doi.org/10.1103/PhysRevB.84.214422
https://doi.org/10.1103/PhysRev.156.809
https://doi.org/10.1103/PhysRev.156.809
https://doi.org/10.1103/PhysRev.156.809
https://doi.org/10.1103/PhysRev.156.809
https://doi.org/10.1103/PhysRevB.5.2382
https://doi.org/10.1103/PhysRevB.5.2382
https://doi.org/10.1103/PhysRevB.5.2382
https://doi.org/10.1103/PhysRevB.5.2382
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1103/PhysRevB.91.165132
https://doi.org/10.1103/PhysRevB.91.165132
https://doi.org/10.1103/PhysRevB.91.165132
https://doi.org/10.1103/PhysRevB.91.165132
https://doi.org/10.1103/PhysRevLett.96.117210
https://doi.org/10.1103/PhysRevLett.96.117210
https://doi.org/10.1103/PhysRevLett.96.117210
https://doi.org/10.1103/PhysRevLett.96.117210
https://doi.org/10.1103/PhysRevLett.107.205504
https://doi.org/10.1103/PhysRevLett.107.205504
https://doi.org/10.1103/PhysRevLett.107.205504
https://doi.org/10.1103/PhysRevLett.107.205504
https://doi.org/10.1103/PhysRevB.55.14975
https://doi.org/10.1103/PhysRevB.55.14975
https://doi.org/10.1103/PhysRevB.55.14975
https://doi.org/10.1103/PhysRevB.55.14975
https://doi.org/10.1103/PhysRevB.75.054402
https://doi.org/10.1103/PhysRevB.75.054402
https://doi.org/10.1103/PhysRevB.75.054402
https://doi.org/10.1103/PhysRevB.75.054402
https://doi.org/10.1103/PhysRevB.87.014405
https://doi.org/10.1103/PhysRevB.87.014405
https://doi.org/10.1103/PhysRevB.87.014405
https://doi.org/10.1103/PhysRevB.87.014405
https://doi.org/10.1103/PhysRevB.94.104111
https://doi.org/10.1103/PhysRevB.94.104111
https://doi.org/10.1103/PhysRevB.94.104111
https://doi.org/10.1103/PhysRevB.94.104111
https://doi.org/10.1103/PhysRevB.95.054426
https://doi.org/10.1103/PhysRevB.95.054426
https://doi.org/10.1103/PhysRevB.95.054426
https://doi.org/10.1103/PhysRevB.95.054426
https://doi.org/10.1103/PhysRevB.95.184432
https://doi.org/10.1103/PhysRevB.95.184432
https://doi.org/10.1103/PhysRevB.95.184432
https://doi.org/10.1103/PhysRevB.95.184432
https://doi.org/10.1103/PhysRevB.96.094418
https://doi.org/10.1103/PhysRevB.96.094418
https://doi.org/10.1103/PhysRevB.96.094418
https://doi.org/10.1103/PhysRevB.96.094418
https://doi.org/10.1103/PhysRevB.87.104111
https://doi.org/10.1103/PhysRevB.87.104111
https://doi.org/10.1103/PhysRevB.87.104111
https://doi.org/10.1103/PhysRevB.87.104111
https://doi.org/10.1103/PhysRevB.136.B864
https://doi.org/10.1103/PhysRevB.136.B864
https://doi.org/10.1103/PhysRevB.136.B864
https://doi.org/10.1103/PhysRevB.136.B864
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1016/S0927-0256(99)00098-1
https://doi.org/10.1016/S0927-0256(99)00098-1
https://doi.org/10.1016/S0927-0256(99)00098-1
https://doi.org/10.1016/S0927-0256(99)00098-1
https://doi.org/10.1103/PhysRevB.64.014107
https://doi.org/10.1103/PhysRevB.64.014107
https://doi.org/10.1103/PhysRevB.64.014107
https://doi.org/10.1103/PhysRevB.64.014107
https://doi.org/10.1103/PhysRevLett.87.156401
https://doi.org/10.1103/PhysRevLett.87.156401
https://doi.org/10.1103/PhysRevLett.87.156401
https://doi.org/10.1103/PhysRevLett.87.156401
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.37.790
https://doi.org/10.1103/PhysRevB.37.790
https://doi.org/10.1103/PhysRevB.37.790
https://doi.org/10.1103/PhysRevB.37.790
https://doi.org/10.1098/rspa.1955.0102
https://doi.org/10.1098/rspa.1955.0102
https://doi.org/10.1098/rspa.1955.0102
https://doi.org/10.1098/rspa.1955.0102
https://doi.org/10.1103/PhysRevB.79.085104
https://doi.org/10.1103/PhysRevB.79.085104
https://doi.org/10.1103/PhysRevB.79.085104
https://doi.org/10.1103/PhysRevB.79.085104
https://doi.org/10.1063/1.555761
https://doi.org/10.1063/1.555761
https://doi.org/10.1063/1.555761
https://doi.org/10.1063/1.555761



