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Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration
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We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland
lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by
experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as
classical spins and set the coupling between the itinerant electrons and local moments as the largest energy
scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of
Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and
magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling
between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this
sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of
their noncollinear ordering.
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I. INTRODUCTION

The interplay between charge and spin degrees of freedom
results in various novel and exotic phases in strongly correlated
electron systems. A paradigmatic model to describe this
interplay is the Kondo lattice model (KLM) or double-
exchange model (DEM), in which localized moments are
coupled to itinerant electrons [1–5]. The mobile electrons
in these systems act as mediators to establish the effective
correlation between localized spins, giving rise to magnetic
behavior. On the other hand, the scattering of these electrons
from localized moments may affect the electronic and transport
properties of these systems. The study becomes more fascinat-
ing when we have geometrical frustration as an extra degree
of freedom. In such metallic frustrated magnets, the localized
spins are arranged on some geometrically frustrated lattice.
These charge-spin coupled systems on frustrated lattices often
exhibit unconventional noncollinear spin textures that are not
observed in their nonfrustrated counterparts and drive novel
and exotic topological properties [6–10]. For noncoplanar spin
configurations, a measure of the noncoplanarity is a nonzero
value of the scalar spin chirality defined on a triangle χ� =
Si · Sj × Sk . A nonzero value of chirality on frustrated lattices
breaks both time-reversal (T ) and parity (P) symmetries and
drives some peculiar transport phenomena such as geometrical
or topological Hall effect (THE) [11–16]. These chiral spin
configurations act as a source of fictitious magnetic field;
when an itinerant electron moves over them in a closed path, it
picks up an extra Berry phase, which results in THE [17–20].
THE has been studied for the ferromagnetic Kondo lattice
model on geometrically frustrated lattices such as triangular
[21–24], kagome [20,25,26], checkerboard [27], pyrochlore
[28,29], and fcc [30] lattices. Chiral spin textures are essential
to realizing these novel transport phenomena. In addition to the
chiral spin textures, some other examples of unconventional
magnetic order include the flux state, in which the spins are
coplanar and arranged in a cyclic pattern on a square plaquette,
and the “all-in, all-out” state on the kagome lattice, which also
supports novel transport phenomena [31–33].

The unconventional spin textures emerging dynamically
from the interplay between competing microscopic inter-

actions on a frustrated lattice can be controlled with the
help of external magnetic field, temperature, and pressure,
which make them a potential candidate for application in
spintronics. In this regard, it is very desirable to study
the nature of these magnetic ordered states and associated
phase transitions in order to stimulate experimental work. In
an accompanying study [34], we have investigated the role
of Dzyaloshinskii-Moriya (DM) interactions on stabilizing
chiral spin textures at half filling, where there exists a
finite gap in the electronic spectrum. We found that for the
insulating state, DM interactions are essential in establishing
the noncoplanar ordering of the local moments. In this work,
we focus on electronic filling factors ne = 1

4 and 3
4 (where

ne = 1
2N

∑
iσ 〈c†iσ ciσ 〉), for which the electronic spectrum is

gapless; that is, the ground state is metallic. We demonstrate
that at these parameter regimes, unconventional noncollinear
spin textures emerge even in the absence of DM interactions.
Our results reveal that while noncoplanar ground states are not
realized in the absence of DM interactions, the noncollinear
flux state is stabilized for a wide range of parameters involved
in the Hamiltonian. We discuss in detail the nature of the
magnetic ground states and associated phase transition as
a function of thermal fluctuations, frustration, and external
magnetic field for both number densities of electrons.

II. MODEL

We consider the Shastry-Sutherland Kondo lattice model
(SS-KLM) in the presence of a longitudinal magnetic field.
The geometry of the Shastry-Sutherland lattice (SSL) along
with the first Brillouin zone (BZ) is depicted in Fig. 1. The
Hamiltonian describing the system under investigation is

Ĥ = −
∑

〈i,j〉,σ
tij (c†iσ cjσ + H.c.) − JK

∑
i

Si · si

︸ ︷︷ ︸
Ĥe

+
∑
〈i,j〉

Jij Si · Sj − hz
∑

i

Sz
i︸ ︷︷ ︸

Ĥc

. (1)
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(a) (b)

FIG. 1. (a) The geometry of SSL, where there are diagonal bonds
on alternate plaquettes in addition to axial bonds along the x and
y axes. (b) First BZ of the SSL lattice with high-symmetry points
indicated.

The first two terms make up the electronic part of the Hamilto-
nian Ĥe, where we have a tight-binding term for the itinerant
electron and an on-site Kondo-like interaction between the spin
of the itinerant electron si = c

†
i,ασ αβci,β (where σ αβ are the

vector elements of the usual Pauli matrices) and localized spin
Si . Here 〈i,j 〉 denotes the bonds on the SSL, where nearest
neighbors (NN) are axial bonds and next-nearest neighbors
(NNN) are diagonal bonds on the alternate plaquettes and tij
describes the hopping matrix of itinerant electrons on these
SSL bonds. We treat the localized spins Si as classical vectors
of unit length, so the sign of JK becomes irrelevant in the
current model since eigenstates that correspond to different
signs of JK are related by a global gauge transformation
[35,36]. The third term in Eq. (1) represents antiferromagnetic
Heisenberg interaction between the localized spins. The last
term in the Hamiltonian (1) is the Zeeman term for the localized
spins due to an external (longitudinal) magnetic field. We
consider the strong JK coupling limit; in that case, the spin
direction of the itinerant electron is completely determined
by the localized moment. So we consider the effect of an
external magnetic field on only the localized moments. From
here onwards, we represent the interactions on the axial bonds
as unprimed parameters, while primed parameters are used for
diagonals bonds. We choose t = 1 as the energy unit.

III. METHOD AND OBSERVABLES

The above model can be explored for thermodynamic
properties using an unbiased Monte Carlo (MC) method
[21,37–42]. We have already discussed this approach in the
first paper of this series; here we present a brief outline for
completeness. The slow dynamics of localized moments can
be decoupled from the fast dynamics of itinerant electrons
by treating them as static classical fields on each site.
Replacing the itinerant electron spin in terms of raising
and lowering operators of itinerant electrons, the electronic
part of the Hamiltonian Ĥe becomes quadratic in fermionic
operators. The one-electron basis can be used to express this
Hamiltonian as a 2N × 2N matrix for a particular arrangement
of classical localized spins. The full partition function in the
grand-canonical ensemble can be represented in terms of two
traces: Trc over the classical localized moments {xr} and
Trf over fermionic degrees of freedom. The eigenvalues of

the Hamiltonian matrix Ĥe for a fixed configuration of the
localized spins can be used to calculate the trace Trf . The
partition function then can be written as

Z = Trc exp[−Seff({xr}) − β(Ĥc)], (2)

where Seff({xr}) = ∑
ν F(y) is the effective action and F(y) =

− ln{1 + exp[−β(y − μ)]}. The number density of itinerant
electrons is adjusted through the chemical potential μ, and β =
1/kBT represents the inverse temperature. To calculate Trc a
classical MC method is used to sample the spin configuration
space.

The eigenvalues and eigenfunctions of Ĥe({xr}) are used
to calculate the thermodynamic quantities related to itinerant
electrons, while the quantities associated with the localized
spins are calculated with the thermal averages of spin con-
figurations. We select a random configuration of localized
spin {xr} and calculate the Boltzmann action Seff({xr}) for
this configuration. Next, the random updates performed for
this spin configuration are accepted or rejected based on the
Metropolis algorithm. We use the static spin structure factor to
distinguish between different magnetic orders of the localized
spins,

S(q) = 1

N

∑
i,j

〈Si · Sj 〉 exp[iq · rij ], (3)

where 〈·〉 represents the thermal average over the grand-
canonical ensemble and rij is the position vector from site
i to j. We calculate the uniform magnetization per site,

m =
√√√√〈(∑

i Si

N

)2
〉
, (4)

as well as staggered magnetization per site,

mstagg =
√√√√〈(∑

i(−1)iSi

N

)2
〉
, (5)

to describe the evolution under varying magnetic field and
frustration in electronic itinerancy, respectively.

IV. RESULTS AND DISCUSSION

We perform simulations on lattice sizes L = 8–18, where
L is the length of the lattice along one axis. The results for
L = 8 are obtained by diagonalizing the full Hamiltonian
to calculate the Boltzmann factor as it is faster for small
lattice sizes. But for lattice size L > 8, we use the traveling
cluster approximation (TCA) [43–46]; in this method, a cluster
of 6 × 6 sites is moved sequentially over the whole lattice,
and the Boltzmann factor is calculated by just diagonalizing
this cluster Hamiltonian. Once the system is equilibrated, the
physical observables are calculated by diagonalizing the full
Hamiltonian. To approach equilibration efficiently, we use a
simulated annealing method. At the beginning, we select a
random configuration of the localized spins at a relatively
high temperature T = 0.1 and equilibrate the system. Next,
we use the final configuration of this temperature to perform
the equilibration at T = 0.08. This process is repeated with a
temperature step �T = 0.02 when T > 0.01 and �T = 0.002
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FIG. 2. The magnitude of the peak in spin structure factor at
q = (0,π ) plotted as a function of temperature T at (a) ne � 1/4 and
(b) ne � 3/4 for 12 × 12 and 16 × 16 lattice sizes. The parame-
ters used are t ′/t = 0.25, J/t = 0.1, J ′/t = 0.025, hz/t = 0, and
JK/t = 8.0. Insets show the temperature dependence when T <

0.01.

when T < 0.01, finally calculating the thermal averages of the
physical observables at T = 0.005. Measurements are made
after every 1000 steps of an MC run of 50 000 steps in total after
discarding 60 000 MC steps for thermalization. We divide the
data into 50 different bins to calculate the average values and
errors from the standard deviation. Moreover, the MC results
are obtained using periodic boundary conditions.

A. Role of temperature

Throughout this work, we choose the limit of strong
Kondo coupling between itinerant electrons and localized
spins (JK = 8.0) following the experimental observations
in relevant metallic magnets. We start our discussion by
considering the thermal transition of the magnetic ground
state. Figure 2(a) shows the temperature dependence of the
magnitude of the peak in the spin structure factor at q = (0,π )
as a function of temperature at ne � 1/4 (here we introduce
the � sign because we are working in the grand-canonical
ensemble and electron densities are controlled by the values
of μ that give number densities fluctuating within the error
bars close to the required one). Initially, the magnitude of
the peak at q = (0,π ) remains constant and vanishingly small
with decreasing temperature, but around T � 0.05 there is
a sharp increase in the magnitude of the peak indicating a
first-order magnetic phase transition. Insight into the nature
of the magnetic ordering after the phase transition can be

Γ Μ Κ Γ
−15

−10

−5

0

5

10

15

E
(k

)

(b)

Y

FIG. 3. (a) The momentum dependence of the static spin structure
factor exhibiting two sharp and equal-magnitude peaks at q = (0,π )
and (π,0), indicating a noncollinear flux state. The results are obtained
using parameters t ′/t = 0.25, J/t = 0.1, J ′/t = 0.025, hz/t = 0,
JK/t = 8.0, and T/t = 0.005 for a 12 × 12 lattice at ne � 1/4.
(b) Electronic energy bands for a tight-binding model including
double-exchange interaction with 2q order stabilized at q = (0,π ) and
(π,0). The values of the interaction parameters used are t ′/t = 0.25
and JK/t = 8.0.

gained from a plot of the static spin structure factor S(q)
as a function of the momentum [see Fig. 3(a)]. It consists
of two sharp and equal-magnitude peaks at q = (0,π ) and
(π,0). The dual peaks at (0,π ) and (π,0) are a signature of a
noncollinear flux state in similar models [47,48]. The in-plane
components of the local moments are arranged in a flux pattern.
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The noncollinear magnetic ordering breaks the continuous
symmetry much like how a FM state breaks O(3) even when
the Hamiltonian does not contain a symmetry-breaking term.
For noncollinear magnetic orderings such as the flux state
the order parameter degeneracy manifold is O(3), i.e., a triad
of unit vectors. So the flux-pattern does not need to be in
the xy plane of the lattice. All the interesting results depend
only on relative orientations of NN and NNN spins. Even if
one considers an ordered state that is globally rotated with
respect to the specific flux state, the same physics is obtained.
Quenching the thermal fluctuations drives the system from a
paramagnetic state with vanishingly small magnetization (due
to finite-size effects) to a noncollinear magnetic state marked
by a 2q order in the spin structure factor. In the ordered
state, the local moments are oriented with their transverse
components forming a flux pattern around the squares with
no diagonal, with alternate clockwise and counterclockwise
circulation around neighboring plaquettes. This flux state is
stabilized due to the competition between antiferromagnetic
(AFM) superexchange interaction and the double-exchange
interaction (which favors the FM ordering at this filling factor)
in the presence of geometrical frustration. The competition
between these interactions on geometrically frustrated lattices
is related to subdominant interactions such as the antiferroic
biquadratic interaction pointed out in previous studies [49].

Next, we consider the ne � 3/4 case. We have illustrated the
results obtained from MC calculations for the magnitude of the
peak in the spin structure factor at q = (0,π ) while varying T

in Fig. 2(b). A magnetic phase transition similar to the case for
ne � 1/4 is also observed here. The ground state at the lower
temperature is a noncollinear flux state similar to the previous
case. This similarity between the results for both cases can be
ascribed to the symmetry of the band structure at one-quarter
and three-quarter filling of itinerant electrons. In Fig. 3(b) the
electronic energy bands along symmetric points in the BZ are
shown for a tight-binding model with a double-exchange term.
The two values of q used are that of a flux state: (0,π ) and
(π,0). It is clear that the bands are symmetric for one-quarter
and three-quarter filling of the electron density.

B. Role of frustration

1. Frustration in electron hopping: t ′/ t

In an accompanying paper, we have investigated the effects
of Dzyaloshinskii-Moriya interactions on the emergence and
stability of noncoplanar configurations of the local moments.
In particular, we discovered that a novel canted flux state is
stabilized over an extended range of parameters (exchange
interactions, magnetic field) in the presence of DM interac-
tions. In this work, we explore the role of frustration on the
magnetic properties of the current model. Both t ′ and J ′ induce
frustration: the former in electron hopping and the latter in
exchange interactions between local moments. Since t ′ and
J ′ are determined by the overlap of different orbitals across
the diagonal bonds, their ratio can, in principle, be different
for different materials. In this section, we choose to vary t ′,
keeping J ′ constant. With varying t ′, the nature of electron
hopping changes from being unfrustrated at t ′ = 0 to being
highly frustrated at t ′ � t , whereas the degree of frustration
in the direct exchange between the local moments remains
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FIG. 4. The staggered magnetization per site while varying the
frustration parameter t ′/t for (a) ne � 1/4 and (c) ne � 3/4. The
frustration parameter t ′/t dependence of the magnitude of peaks in
the spin structure factor at q = (π,0) and (π,π ) for (b) ne � 1/4 and
(d) ne � 3/4. Shown are the results for 12 × 12 and 16 × 16 lattice
sizes while keeping the values of other parameters set to J/t = 0.1,
J ′/t = 0.025, hz/t = 0, JK/t = 8.0; and T/t = 0.005.

unaltered. We start with ne � 1/4; Figs. 4(a) and 4(b) show
the results of MC calculations for staggered magnetization
and the magnitude of the peak in S(q) at q = (π,0) and
(π,π ), respectively, while varying the hopping integral on
the diagonal bonds t ′. At t ′/t = 0.0, the ground state has
almost zero staggered magnetization, and the static spin
structure factor exhibits two sharp and equal-magnitude peaks
at (0,π ) and (π,0). Actually, this is the same flux state that
we encountered in the last section. The in-plane components
of the local moments are arranged in a pattern similar to a
coplanar flux state.

The flux pattern consists of columnar AFM arrangements
of the in-plane components with simultaneous (0,π ) and (π,0)
ordering. With increasing t ′/t , the staggered magnetization
remains constant at a value consistent with a noncollinear flux
state up to t ′/t ≈ 0.8, where there is a discontinuous transition
to a state with a large value of staggered magnetization. There
is a substantial increase in the magnitude of the peak in the
static structure factor S(q) at (π,π ), indicating AFM ordering
of the localized moments. The weight of S(q) is negligible
for the flux ordering wave vectors (0,π ) and (π ,0) which
specifies the breaking of in-plane flux ordering. Actually, this
is a discontinuous spin-flop transition to a pure AFM state. The
in-plane components are seen to evolve from a flux pattern at
small t ′/t to staggered AFM order at large values of t ′/t .

On the other hand, the evolution of the magnetic ground
state with changing t ′/t for ne � 3/4 is markedly different, as
seen in Figs. 4(c) and 4(d). The nature of the magnetic ground
state is similar to that for ne � 1/4, viz., the coplanar flux state
at small t ′/t and the collinear AFM state at large t ′/t , but the
transition between the two is not a direct one. Instead, there is
an extended range of intermediate values of t ′/t for which the
ground state exhibits neither flux nor staggered AFM ordering.
The values of the static structure factor is vanishingly small
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FIG. 5. (a) The static spin structure plotted against the momentum
vectors and (b) the real spin configuration of localized spins obtained
from MC calculations for the 12 × 12 lattice at ne � 3/4, t ′/t = 0.9,
J/t = 0.1, J ′/t = 0.025, hz/t = 0, JK/t = 8.0, and T/t = 0.005.
The color bar represents the magnitude of out-of-plane components
of localized spins.

at q = (π,π ),(0,π ), and (π,0). We observed sharp peaks in
S(q) at q = (±2π/3, ± π ) and (±π/3,0) but weak peaks at
(±π/3, ± π ) and (π,π ) [the magnitude of S(q) at these weak
peaks is an order of magnitude smaller than those for the sharp
peaks] and even weaker satellites around q = (±π/3,0) and
(0,0), pointing towards a very weak long-range ordering [see
Fig. 5(a)]. A snapshot of the real-space configuration [shown
in Fig. 5(b)] of the local moments also does not exhibit any
obvious pattern of the spin orientations. The complete nature
of the magnetic ordering in this intriguing state and the reason
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FIG. 6. The magnetization per site as a function of the frustration
parameter J/t for (a) ne � 1/4 and (c) ne � 3/4. The frustration
parameter dependence J/t of the magnitude in the spin static structure
factor at q = (π,0) and (0,0) for (b) ne � 1/4 and (d) ne � 3/4,
respectively. The results are shown for 12 × 12 and 16 × 16 lattice
sizes while keeping the values of other parameters set to J ′/t =
0.025, t ′/t = 0.25, hz/t = 0, JK/t = 8.0, and T/t = 0.005.

for the anisotropy in the results for the two filling factors is
currently being investigated.

2. Frustration in exchange coupling: J ′/ t

In this section, we fix the value of t ′/t and vary the ratio of
J/J ′. As mentioned earlier, this will vary the degree of frustra-
tion in the exchange coupling between the localized spins. We
start with analyzing the results for ne � 1/4. Figures 6(a) and
6(b) show the evolution of uniform magnetization per site and
magnitude of the peaks in S(q) at (0,0) and (π,0), respectively,
as a function of J/t , keeping J ′/t constant. For a very small
exchange interaction between NN localized spins the ground
state is FM, as indicated by large uniform magnetization and a
large value of the peak at q = (0,0). In the limit of strong JK

the double-exchange mechanism stabilizes the FM ordering
as there is a large kinetic energy gain if the spins on two
sites are parallel. Around J/t � 0.02, there is a transition to
a magnetic state for which the uniform magnetization drops
to vanishingly small values and peaks in the structure factor
appear at (0,π ) and (π,0). This is the same noncollinear
flux state that we observed earlier with two equal magnitude
peaks at q = (0,π ) and (π,0) in S(q). This state is stabilized
over a wide range of J/t . Further increasing the exchange
interaction results in a ground state where the magnitude of
the peak at (π,0) decreases and peaks in S(q) at (±π/3,π ) and
(±2π/3,π ) appear [as shown in Fig. 7(a)]. This indicates that
large frustration in exchange coupling breaks the flux pattern
between the localized spins. A snapshot of the real-space
configuration shows incommensurate magnetic ordering that
consists of three unit-cell-wide stripes stacked parallel to the
y axis. Each stripe consists of antiferromagnetically ordered
local moments, with a domain wall between adjacent stripes
[see Fig. 7(b)].
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FIG. 7. (a) The static spin structure plotted as a function of q
vectors and (b) a snapshot of the real-space configuration of localized
spins obtained from MC calculations for an 18 × 18 lattice at ne �
1/4, J/t = 0.19, J ′/t = 0.025, t ′/t = 0.25, hz/t = 0, JK/t = 8.0,
and T/t = 0.005. The color bar represents the magnitude of out-of-
plane components of localized spins.

For ne � 3/4, the results are qualitatively the same as
shown in Figs. 6(c) and 6(d), with the only difference being
that the transition is shifted a bit to J/t � 0.03. The ground
state evolves from a FM state at very small values of J/t to
a flux state in the intermediate regime to a state with peaks in
the structure factor at (±π/3,π ) and (±2π/3,π ) at very large
values of J/t .

C. Role of magnetic field

Finally, we investigate the role of an external magnetic
field in the current model at both one-quarter and three-quarter
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FIG. 8. The magnetic field dependence of magnetization per site
for (a) ne � 1/4 and (c) ne � 3/4. The magnitude of the peaks in
the static spin structure factor at q = (π,0) and (0,0) plotted while
varying the strength of an external magnetic field for (b) ne � 1/4 and
(d) ne � 3/4. The results are shown for 12 × 12 and 16 × 16 lattice
sizes while keeping the values of other parameters set to t ′/t = 0.25,
J/t = 0.1, J ′/t = 0.025, JK/t = 8.0, and T/t = 0.005.

fillings of electrons. Applying an external field is the simplest
and most direct way of controlling the magnetic character of a
system. Our goal is to explore the tunability of different mag-
netic states by applying a static, uniform, longitudinal external
field. The canonical (purely magnetic) Shastry-Sutherland
model exhibits a sequence of unique magnetization plateaus
in an applied magnetic field. However, the strong coupling
between local moments and itinerant electrons suppresses the
magnetization plateaus completely in the present SS-KLM.
For ne � 1/4 the magnetic field dependence of uniform
magnetization and the magnitude of the peaks in S(q) at (0,0)
and (π,0) is shown in Figs. 8(a) and 8(b), respectively. At
hz = 0.0, the magnetic ground state is a flux state, which we
have already discussed in detail. The uniform magnetization
is zero at zero field because the direct exchange between the
local moments is AFM in nature. The magnetization m/ms

increases monotonically up to hz = 0.20, where there is an
abrupt jump in its value from ≈0.4 to ≈0.95, marking a
field-driven discontinuous transition. The transition marks the
breaking of the flux pattern of the in-plane components of
the local moments. This is confirmed by the behavior of the
static structure factor at (0,0) and (π,0). At the transition,
the peak at (π,0) is completely suppressed, whereas the (0,0)
peak (proportional to the square of the uniform magnetization)
exhibits a discontinuous increase in its value. With further
increase in magnetic field, the system approaches full polar-
ization asymptotically. Once again, the field dependence of the
magnetic ground state is qualitatively similar for ne � 3/4,
confirming the particle-hole symmetry of the system.

V. SUMMARY

To summarize we have studied in detail the magnetic prop-
erties of the SS-KLM at filling factors of itinerant electrons
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ne = 1/4 and 3/4 at which the ground state is metallic. We
have found that a noncollinear flux state is stabilized over a
large range of parameters at both densities. Interestingly, in
contrast to insulating ground states, a Dzyaloshinskii-Moriya
interaction is not essential for stabilizing noncollinear spin
textures. The noncollinearity of the magnetic ground state
can be suppressed via a discontinuous phase transition by
external fields such as temperature, by a static, uniform
longitudinal magnetic field, and by increasing the magnitude
of frustration in electronic and exchange coupling components
of the Hamiltonian. In fact, tuning the strength of diagonal
hopping (which is responsible for frustration in the electronic
component) drives the magnetic ground state from a flux phase
at small frustration to a pure AFM state at large frustration. For

three-quarter filling of itinerant electrons the transition from
flux to AFM ground state is not direct and is accompanied
by an intermediate state. We plan to investigate this intriguing
state in the near future. On the other hand, the ground state for
small exchange coupling is FM and changes to a flux state at
intermediate values to a state with incommensurate magnetic
ordering at large values of exchange coupling.
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