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Ultrafast optical Faraday effect in transparent solids
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We predict a strong-field ultrafast optical Faraday effect in which a circularly polarized ultrashort optical
pulse induces transient chirality in an achiral transparent dielectric. This effect is attractive for time-resolved
measurements because it gives access to the noninstantaneity of the nonlinear medium response, and also
because it represents a relaxation of time-reversal symmetry by all-optical means. We propose probing the
induced transient chirality with a weak linearly polarized ultraviolet pulse that is shorter than the near-infrared
pump pulse. The predicted effects are ultrafast: the induced chirality vanishes for probe delays exceeding the
duration of the near-infrared pulse. This opens up possibilities for applications in ultrafast circular-polarization
modulators and analyzers.
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I. INTRODUCTION

In an optically inactive (achiral) isotropic medium, a weak
linearly polarized light pulse preserves its polarization state
as it propagates. However, even in such media, nonlinear
interaction with a strong circularly polarized laser beam may
rotate the polarization plane of the probe pulse, which is known
as the optical Faraday effect [1–3]. Similarly to the Faraday
effect, and in contrast to optical activity in chiral media,
the rotation angle, �θ , changes its sign if the propagation
direction of the probe pulse is reversed. That is, the circularly
polarized strong field relaxes the time-reversal (T ) symmetry.
If such a field also induces nonlinear absorption, it may
change the ellipticity of the propagated probe pulse. This
class of phenomena was first discovered in atomic vapors
[4–6]. In those measurements, the frequencies of pump and
probe pulses were tuned to atomic transitions, which enhanced
the nonlinear interaction and, at the same time, rendered
it nonparametric. Light-induced ellipticity and polarization
rotation were investigated for solids in the parametric and
nonparametric cases, where the medium was transparent to
either both laser pulses [3,7] or just the pump pulse [8,9]. To
the best of our knowledge, the optical Faraday effect has never
been investigated with femtosecond pulses. Searching for new
approaches to ultrafast manipulation of light with light, we
question how the transfer of angular momentum from a pump
pulse to a transparent achiral solid and then to a probe pulse
occurs on an attosecond time scale.

The nonlinear effects that we study become particularly
significant for intense few-cycle laser pulses. Such pulses
enable nondestructive measurements [10] at peak intensities
up to ∼1014 W/cm2, which opens up two opportunities:
First, nonlinear light-matter interaction can be investigated
using micrometer-thin samples [11], where the propagation
effects play a minor role. Second, nonperturbative nonlinear
phenomena become accessible to time-resolved measure-
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ments. Examples of such processes include the Franz-Keldysh
effect [12–14], interband tunneling [15], and high-harmonic
generation [16].

In the following, we consider pump-probe measurements
in which a circularly polarized few-cycle infrared (IR)
pump pulse impinges at normal incidence on a uniaxial
centrosymmetric crystal (sapphire) along the optical axis. In
this geometry, the linear optical properties of the crystal are
effectively isotropic. The induced optical Faraday effect is
probed by a linearly polarized ultraviolet (UV) pulse that is
significantly shorter than the pump pulse, but not necessarily
shorter than its optical cycle. The probe pulse is assumed to
be sufficiently weak to neglect all nonlinear processes that
involve more than one UV photon. For practical reasons, it
may be beneficial to use a noncollinear geometry to spatially
separate the propagated probe pulse from UV light that the
pump pulse may generate without assistance from the probe
pulse. Even in this case, the angle may be chosen small enough
to neglect it while modeling propagation in a micrometer-thin
sample.

II. MODEL

We simulate electron dynamics in three spatial dimensions,
working in the basis of stationary Bloch states in the velocity
gauge. Within the dipole approximation, equations that de-
scribe electron dynamics at different crystal momenta k are
decoupled from each other:

ih̄
d

dt
|ψj k〉 =

(
Ĥ 0

k + e

me

A(t) · p̂k

)
|ψj k〉. (1)

Here, the electric field F(t) acting on electrons enters Eq. (1)
via A(t) = − ∫ t

−∞ F(t ′) dt ′, e > 0 is elementary charge, and
me is electron mass. We constructed the unperturbed Hamilto-
nian H 0

k from 36 valence bands (VBs) and 160 conduction
bands (CBs) obtained in density-functional-theory calcula-
tions, which we performed for Al2O3 using WIEN2K [17].
The large number of bands is characteristic of velocity-gauge
calculations [18,19], and the momentum matrix elements, p̂k,
were likewise obtained from WIEN2K. We used the modified
Becke-Johnson exchange-correlation potential, which yields
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a band gap of Eg = 8.8 eV, in agreement with experimental
observations [20].

At the beginning of a simulation, ρ̂k = ∑Nv

j |ψj k〉〈ψj k|
represents a state in which all valence bands are incoherently
occupied while the conduction-band states are empty. We
calculate the polarization response, P(t), by solving Eq. (1),
evaluating the electric current density, J(t), and integrating
it with respect to time: P(t) = ∫ t

−∞ J(t ′) dt ′. A particular
Cartesian component, � ∈ {x,y,z}, of the current density is
evaluated as

J�(t) = − 2e

me

(
eN�

Vcell
A�(t) +

∫
BZ

d3k

(2π )3
Tr [ρ̂k(t)p̂�,k]

)
, (2)

where Vcell is the unit-cell volume, and

N� = 2

me

∑
i∈CB

∑
j∈VB

|p�,ij |2
Ei − Ej

(3)

is the effective number of electrons per unit cell [21]. Since
numerical calculations always use a truncated set of bands,
the Thomas-Reiche-Kuhn sum rule is not exactly satisfied,
which leads to problems such as the divergence of the linear
polarization response in the low-frequency limit [22]. Using
the effective number of electrons in (2), we compensate for the
violation of this sum rule, and we reduce the number of bands
required for numerical convergence [23].

We define the electric fields of the pulses via

FP(t) = Re[f P(t)e−iωPt uP] = −d AP/dt, (4)

AP(t) = FPω
−1
P e−2 ln(2)t2/T 2

P Re
[
ie−iωPt uP

]
. (5)

Here, P ∈ {IR,UV}, FP is the amplitude of the electric field,
TP is the full width at half-maximum of the pulse intensity,
and the central pulse frequency is related to its central
wavelength via ωP = 2πc/λP, c being the vacuum speed of
light. For the circularly polarized IR pump pulse, we used
λIR = 750 nm, uIR = (1,i,0), and TIR = 5 fs. For the linearly
polarized UV probe pulse, we used λUV = 250 nm, uUV =
(1,0,0), and TUV = 2.5 fs. We kept the peak electric field of
the UV pulse at FUV = 10−3 V/Å, which is sufficiently small
to neglect nonlinear wave-mixing processes that involve more
than one UV photon. That is, the polarization response is
approximately linear with respect to the UV pulse. Modeling
pump-probe measurements, we introduce the delay, τ , via the
argument of the probe field: FUV(t − τ ). In the following,
we use Fresnel’s formula, F vac

P = 1
2 [1 + n(ωP)]FP, as an

approximate relation between the vacuum amplitudes of the
incident pulses, F vac

P , and those inside the crystal.
Investigating how the polarization state of the probe pulse

changes during the propagation along the z axis, we define its
polarization angle θ (ω,z) and ellipticity ε(ω,z) = tan α(ω,z)
in the frequency domain via

(
F UV

x

)∗
F UV

y∣∣F UV
x

∣∣2 + ∣∣F UV
y

∣∣2 = cos(2α) sin(2θ ) + i sin(2α)

2
. (6)

If the probe pulse is initially polarized along the x axis, we
obtain (see Appendix B)(

∂θ

∂z
+ i

∂ε

∂z

)∣∣∣∣
z=0

= 2πiω
[
F UV

x (ω,0)
]∗

Py(ω,0)

cn(ω)
∣∣F UV

x (ω,0)
∣∣2 , (7)

where n(ω) is the refractive index (see Appendix B for more
details).

III. RESULTS AND DISCUSSION

Presenting our results, we first show how the optical
Faraday effect depends on the strength of the IR field.
The red curve in Fig. 1 illustrates that deviations from the
∂θ/∂z ∝ F 2

IR scaling law are small even at IR intensities
that are close to the damage threshold. There results were
obtained for pump-and-probe pulses arriving simultaneously
(τ = 0). For a peak IR intensity of 1013 W/cm2, the induced
optical Faraday rotation at the central UV frequency is 0.03
radians (1.7◦) per micrometer. Note that reaching this rotation
strength in the conventional Faraday effect would require
a magnetic field as strong as 700 T, which exceeds the
strongest nondestructive magnetic fields currently available
in laboratories. Consequently, the polarization rotation is not
due to light-induced magnetization (inverse Faraday effect).

In addition to polarization rotation, the UV pulse also
experiences IR-induced circular dichroism, shown by the blue
curve in Fig. 1. In the weak-field limit, the induced ellipticity
per unit propagation length scales as ∂ε/∂z ∝ F 3

IR because
at least three IR photons must be absorbed in addition to a
UV photon to overcome the band gap. At FIR = 0.25 V/Å,
the induced zero-delay ellipticity changes its sign, which
looks like a narrow downward spike on the logarithmic scale.
Altogether, ∂ε/∂z changes its sign four times in Fig. 1.

To clarify the origin of the induced chirality, we first
review the relevant wave-mixing processes within the stan-
dard framework of nonlinear optics, where the nonlin-
ear polarization response in the vicinity of a frequency

FIG. 1. The induced polarization rotation and circular dichroism
at the central UV frequency for the zero delay between the pulses. The
upper horizontal axis is labeled with peak intensities of the incident
IR pulse in vacuum. The lower horizontal axis shows the peak IR
field at the crystal surface.
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ω = ω1 + ω2 + ω3 is described by the third-order suscepti-
bility tensor χ

(3)
ijkl(ω; ω1,ω2,ω3). As long as the polarization

response is linear with respect to the probe field, the optical
Faraday effect is best understood by decomposing the lin-
early polarized UV pulse into its circularly polarized com-
ponents: f UV(t) = e+f UV

+ (t) + e−f UV
− (t) with e± = (x̂ ±

i ŷ)/
√

2. In the case f UV(t) ‖ x̂, we have f UV
+ (t) = f UV

− (t) =
x̂ · f UV(t)/

√
2. The pump pulse rotates the polarization plane

of the probe pulse if it has different effects on its left- and
right-rotating components. If the two components experience
different absorption, circular dichroism is observed.

Wave-mixing processes that involve one UV photon and
two IR photons also produce light at frequencies ωUV ± 2ωIR.
Since the duration of our bandwidth-limited probe pulse is
comparable to the oscillation period of the pump field, the three
wave-mixing channels are spectrally separated (see Fig. 2). In
this case, the polarization response to each circularly polarized
component of the probe pulse, P±(t,ωUV) = χ eff

± f UV
± (t), is

described by effective susceptibilities: χ eff
± = χ (1) + �χ±.

For an IR field rotating counterclockwise, we obtain (see
Appendix A)

�χ± = 12F 2
IR

[
χ

(3)
1111(ωUV; −ωIR,ωIR,ωUV)

−χ
(3)
2211(ωUV; ∓ωIR, ± ωIR,ωUV)

]
(8)

(replace �χ± with �χ∓ for a clockwise-rotating
IR field). The optical Faraday effect emerges if
�χ− �= �χ+, which requires χ

(3)
2211(ωUV; ωIR, − ωIR,ωUV) �=

χ
(3)
2211(ωUV; −ωIR,ωIR,ωUV). The two susceptibilities are equal

if the polarization response is instantaneous (more precisely, if
Kleinman’s symmetry holds). Therefore, the optical Faraday
effect is a consequence of the nonlinear polarization response
being noninstantaneous.

We now turn our attention to the case of a field as strong
as FIR = 1 V/Å, where third-order susceptibilities no longer
provide an accurate description of the optical Faraday effect
(see Fig. 1). Figure 2 shows that, even in this case, the three
wave-mixing channels mentioned above are well separated
from each other. In Fig. 2(a), we use the logarithmic scale
for polarization spectra, plotting the x and y components
along the vertical and horizontal axes, respectively. The black
curve represents the polarization induced by a sole UV pulse
(note that we chose ωUV = 3ωIR). The area filled with the
pale red color represents the polarization induced by the
IR pulse alone. It illustrates that a circularly polarized IR
pulse propagating along the optical axis of sapphire generates
no third harmonic even if the pulse is strong enough to
excite some electrons from valence bands into conduction
bands. The presence of such excitations is evident from
the polarization response at frequencies above the band
edge (ω/ωIR � 5.3 in our simulations) [24]. Nevertheless,
|P IR(ω)|2 reaches significant values at frequencies close to
3ωIR, which is why suppressing the IR-only response by using
a noncollinear geometry may be required in experiments unless
this response is sufficiently suppressed by phase matching (the
optical Faraday effect is self-phase-matched). We model this
suppression by subtracting the IR-only response. The areas
filled with green and blue colors show |Px(ω) − P IR

x (ω)| and
|Py(ω) − P IR

y (ω)|, respectively.

(a)

(b)

FIG. 2. The spectral analysis of the polarization response for
FIR = 1 V/Å and the zero pump-probe delay. (a) The x and y

components of the IR-only response P IR (pale red), the UV-only
response PUV (black curve), and the polarization induced by both
pulses after subtracting the IR-only response: P − P IR (the green
and blue areas). All the curves are plotted on the same scale. (b)
The decomposition of P − P IR into the left- and right-rotating
components induced by the left- and right-rotating components of
the UV pulse (see the text for further details). The vertical black
dashed line shows the position of the band edge.

To verify that the ωUV ± 2ωIR channels have no significant
effect on the polarization response at ω = ωUV, we decompose
both the UV pulse and the polarization response into compo-
nents with positive and negative helicities: P(ω) − P IR(ω) =
e+P+(ω) + e−P−(ω). The result is shown in Fig. 2(b). The
subscript in P

(±)
± refers to the helicity of the polarization

response, while the superscript denotes the helicity of the probe
pulse. Analyzing these components, we see that, well below
the band edge, they are consistent with the conservation of the
spin angular momentum of a photon, S. For example, P

(+)
− ,

which is the blue line, shows the clockwise rotating component
of the polarization response that would be generated by a
counterclockwise rotating UV field. This component peaks at
ωUV − 2ωIR = ωIR because a parametric third-order process
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(a)

(b)

FIG. 3. The dependence of induced (a) polarization rotation and
(b) ellipticity of the probe pulse on the pump-probe delay. For a
positive delay, the probe pulse arrives after the pump pulse. In
both panels, data for FIR = 0.1 V/Å (blue curves) were multiplied
by a factor of 100 to make them comparable to those for FIR =
1 V/Å (green curves). In panel (a), the dashed red curve shows
the convolution between the UV envelope and the square of the IR
envelope.

in which one UV photon with Sz = 1 is absorbed and two
IR photons with Sz = 1 are emitted must generate a photon
with Sz = −1. However, these considerations would prohibit
the blue curve from peaking at ωUV + 2ωIR = 5ωIR due to
|Sz| � 1. Near the band edge, the conservation of the photon
spin is violated because some angular momentum is transferred
to charge carriers.

Since the optical Faraday effect results from the nonlinear
medium response being noninstantaneous, these effects lend
themselves to pump-probe measurements. In Fig. 3(a), we
show the delay dependence of the polarization rotation
evaluated at the central UV frequency. At FIR = 0.1 V/Å,
the conventional perturbative nonlinear optics works well
(see Fig. 1), so we expect ∂θ/∂z ∝ F 2

IR. It is therefore not
surprising that ∂θ/∂z as a function of the delay (blue curve)
has precisely the same shape as the convolution ||f IR|2 ∗ f UV|
(red dashed curve). When we increase FIR to 1 V/Å, we
observe a small but significant reshaping of ∂θ/∂z, revealing
the onset of nonadiabatic processes that disappear by the
end of the pulse. Our analysis of the results presented in
Fig. 2 suggests that these effects are probably related to the
creation of real (nonvirtual) electronic excitations and angular
momentum transfer from light to charge carriers. For 1 V/Å,

the residual excitation density is 2.9 × 10−5 electrons per unit
cell. We also note that the dynamical Franz-Keldysh effect
becomes an important excitation mechanism at such field
strengths; nonadiabatic features of this effect have recently
been predicted in numerical simulations [14], and they are
likely to contribute to the induced circular dichroism [25].
We point out, however, that the Franz-Keldysh effect is not
a prerequisite for observing induced circular dichroism, as
evident from the ∝ F 3

IR scaling in the weak-field limit (see
Fig. 1).

The nonadiabatic effects manifest themselves more vividly
in the delay dependence of the induced ellipticity of the
UV pulse. In Fig. 3(b), we show ∂ε/∂z evaluated with
the aid of Eq. (7). When the IR field is weak (0.1 V/Å),
the induced ellipticity is mainly due to the time-dependent
polarization rotation—the intensity of the 5-fs IR pulse
changes significantly during the 2.5-fs UV pulse, and so does
∂θ/∂z. This contribution to the induced ellipticity represents
a transfer of angular momentum from the pump pulse to the
probe pulse in the absence of circular dichroism, and it is
particularly large at delays where d|f IR(τ )|2/dτ is large. At
the same time, even this relatively weak IR field induces some
noticeable ellipticity at τ = 0, where d|f IR(τ )|2/dτ = 0,
and, therefore, the main mechanism is the induced circular
dichroism (helicity-dependent absorption). This contribution
has a qualitatively different delay dependence: it does not
change sign at τ = 0. The sum of the two delay-dependent
functions, one of which is approximately odd and the other
approximately even, results in the asymmetric shape of the
blue curve in Fig. 3(b). At FIR = 1 V/Å (green curve),
the induced ellipticity exhibits an oscillatory dependence on
the pump-probe delay. The period of these oscillations is close
to the optical period of the IR field (2.5 fs).

This period of oscillations cannot be explained by con-
ventional nonlinear susceptibilities. Indeed, as long as the
polarization response is linear with respect to the UV field,
the nth-order polarization is proportional to χ (n)FUVFn−1

IR ,
where n − 1 is an even number in a centrosymmetric medium.
Therefore, according to conventional nonlinear optics, the
induced polarization rotation and ellipticity are even functions
of FIR. Since the main effect of changing the delay between
the UV and IR pulses by π/ωIR is the sign flip of the IR
field, one would expect either no modulations in a delay scan
or modulations with a frequency that is a multiple of 2ωIR.
We verified that, at FIR = 1 V/Å, wave-mixing processes that
involve two UV photons were negligible. In particular, there is
no visible change in ∂θ/∂z and ∂ε/∂z if we change the sign of
the UV field. Consequently, the modulation of the ellipticity in
Fig. 3(b) is a strong-field effect that cannot be described with
χ (3), χ (5), or higher-order susceptibilities. We also observed
that the phase of this modulation is sensitive to FIR, which
explains the sign change of ∂ε(τ = 0,z,FIR)/∂z in Fig. 1.

IV. CONCLUSIONS

We conclude this paper with a brief discussion of the role
played by physical symmetries. We have considered the case
in which the polarization response to the probe pulse alone
(without the strong field) is invariant with respect to parity
and time-reversal symmetries. A strong adiabatic (i.e., with
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frequency within the band gap) circularly polarized optical
field transiently relaxes both of these symmetries. In analogy
to the conventional Faraday effect, imposing time reversal
on the crystal and the applied (strong) field reverses the
polarization rotation of the probe pulse. However, in contrast
to the conventional Faraday effect, the time-reversal symmetry
is relaxed not due to the presence of a magnetic field but due to
a transient transfer of angular momentum from light to matter.
Even though the optical Faraday effect is a consequence of
the nonlinear polarization response being noninstantaneous,
the response time appears to be so small that the optical
Faraday effect in solids is inertialess for any practical purposes.
Indeed, the time span of the pump-probe delay dependence in
Fig. 3 is the same as the duration of the pump pulse even
if, within the pulse, the excitation of electrons to conduction
bands changes the shapes of θ (τ ) and ε(τ ). It is possible that
averaging over crystal momenta in Eq. (2) leads to effective
collisionless dephasing (Landau damping) that counteracts
excitation-induced chirality. In reality, the induced chirality
may decay even faster than our simulations predict because we
neglected scattering processes. We have studied the ultrafast
optical Faraday effect for a uniaxial crystal, but our general
conclusions are also valid for isotropic media.

For basic research, the ultrafast optical Faraday effect
is attractive as a spectroscopic tool capable of studying
chiral dynamics with an attosecond temporal resolution.
Potential applications of this effect include ultrafast all-optical
circular-polarization modulators, optical isolators, and optical
circulators without the need for a magnetic field.
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APPENDIX A: THIRD-ORDER
POLARIZATION RESPONSE

In this appendix, we provide some expressions for the third-
order nonlinear polarization induced by a circularly polarized
IR pulse and a weak linearly polarized UV pulse. We obtained
these equations using the standard methods of nonlinear optics
implemented in a MATHEMATICA script. In doing so, we used
the spatial symmetries of the χ

(3)
ijkl tensor that correspond to a

crystal with the sapphire symmetry (3̄2/m). We assume that
both laser beams propagate along the crystal axis, which we
chose to be the z axis of our coordinate system.

In the main text, we defined the complex pulse amplitude via
FP(t) = Re [f P(t)e−iωPt uP], where P ∈ {IR,UV}. Here, to be

consistent with the notation most frequently used in nonlinear
optics, we use a different definition:

FP(t) = f P(t)e−iωPt uP + c.c. (A1)

We used an IR pulse with positive helicity: uIR = (1,i,0). Even
though we propose measurements with a linearly polarized
probe pulse, it is instructive to decompose the pulse into
its left- and right-rotating circularly polarized components:
uIR = (1, ± i,0). The sign on the right-hand side of this
expression appears in the subscript of P

(±)
± (t) in the equations

below, where we use the same convention as in the main text:
the superscript refers to the helicity of the probe pulse, while
the subscript refers to the helicity of the polarization response.
At the central frequency of the UV pulse, we obtained
the following expressions for the part of the third-order
polarization response that mixes the IR and UV beams:

P
(+)
+ (t ; ωUV) = 12

√
2|f IR(t)|2f UV(t)

× [
χ

(3)
1111(ωUV; −ωIR,ωIR,ωUV)

−χ
(3)
2211(ωUV; −ωIR,ωIR,ωUV)

] + c.c., (A2)

P
(−)
− (t ; ωUV) = 12

√
2
∣∣f IR(t)

∣∣2
f UV(t)

×[
χ

(3)
1111(ωUV; −ωIR,ωIR,ωUV)

−χ
(3)
2211(ωUV; ωIR, − ωIR,ωUV)

] + c.c., (A3)

P
(−)
+ (t ; ωUV) = P

(+)
− (t ; ωUV) = 0. (A4)

Deriving these equations, we dropped terms that were nonlin-
ear with respect to f UV(t) because the UV pulse is assumed
to be weak. Deviating from the notation used in the main text,
we do not explicitly account for the delay. If the UV pulse
is delayed by τ , its envelope f UV(t) must be replaced with
f UV(t − τ )eiωUVτ .

Absorbing a UV photon and two IR photons generates the
following components of the nonlinear polarization:

P
(−)
+ (t ; ωUV + 2ωIR) = 12

√
2|f IR(t)|2f UV(t)

×χ
(3)
2211(ωUV + 2ωIR; ωIR,ωIR,ωUV)

+ c.c., (A5)

P
(+)
+ (t ; ωUV + 2ωIR) = P

(−)
− (t ; ωUV + 2ωIR)

= P
(+)
− (t ; ωUV + 2ωIR) = 0. (A6)

Absorbing a UV photon and emitting two IR photons
generates

P
(+)
− (t ; ωUV − 2ωIR) = 12

√
2|f IR(t)|2f UV(t)

×χ
(3)
2211(ωUV−2ωIR; −ωIR,−ωIR,ωUV)

+ c.c. (A7)

and

P
(+)
+ (t ; ωUV − 2ωIR) = P

(−)
− (t ; ωUV − 2ωIR)

= P
(−)
+ (t ; ωUV − 2ωIR) = 0. (A8)
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The x and y components of the polarization response can
be evaluated as

Px = (P+ + P−)/
√

2, (A9)

Py = i(P+ − P−)/
√

2. (A10)

Using our MATHEMATICA script, we explicitly verified that
there is no third-harmonic generation by the circularly po-
larized IR pulse, even if we take the fifth-order terms into
account.

The conservation of the angular momentum

In a homogeneous isotropic medium, the spin angular
momentum of a photon, S, is conserved. From this principle,
the following selection rules for third-order processes follow:
(i) a circularly polarized IR field cannot generate the third
harmonic; (ii) a circularly polarized component of the UV
pulse induces a circularly polarized P (3)(ωUV) rotating in the
same direction as the UV field (in other words, absorbing
and emitting an IR photon as a part of wave mixing does not
change the spin angular momentum of the UV light); (iii) in the
case of co-rotating IR and UV fields, emission at ωUV + 2ωIR

is forbidden due to S � 1, while P (3)(ωUV − 2ωIR) rotates
in the direction opposite to that of the light fields; (iv) in
the case of counter-rotating IR and UV fields, emission at
ωUV − 2ωIR is forbidden, while P (3)(ωUV + 2ωIR) rotates in
the same direction as the IR field. We have verified that the
same rules apply to the 3̄2/m crystal system of sapphire if
the laser beam is aligned with its threefold rotation-inversion
axis. This is a nontrivial fact: for example, third-harmonic
generation with circularly polarized light is allowed in cubic
crystals, where the linear response is also isotropic.

APPENDIX B: PROPAGATION MODEL

To evaluate the induced ellipticity and polarization rotation
of the probe pulse, we need to model its propagation. For this
purpose, we employed the first-order propagation equation in
the slowly evolving wave approximation [26]:

∂ F
∂z

= ik(ω)F(z,ω) + 2πiω

cn(ω)
PNL(z,ω). (B1)

Here, we use CGS units, neglect diffraction, define the Fourier
transform according to

F[f (t)] =
∫ ∞

−∞
f (t)eiωt dt, (B2)

and define the nonlinear polarization via

P(z,ω) = χ̂ (1)(ω)F(z,ω) + PNL(z,ω). (B3)

The wave vector for propagation along the crystal axis is
given by

k(ω) = ω

c
n(ω), (B4)

where n(ω) =
√

1 + 4πχ (1)(ω) is the refractive index.

To obtain Eq. (7) in the main text, we first translate Eq. (6)
into

α(ω,z) = 1

2
arcsin

(
2 Im

[(
F UV

x (ω,z)
)∗

F UV
y (ω,z)

]
|FUV(ω,z)|2

)
, (B5)

θ (ω,z) = 1

2
arcsin

(
2 Re

[(
F UV

x (ω,z)
)∗

F UV
y (ω,z)

]
|FUV(ω,z)|2 cos (2α(ω,z))

)
, (B6)

and

ε(ω,z) = tan (α(ω,z)). (B7)

We then consider a UV pulse that is initially polarized along
the x axis, and we notice that

∂

∂z

((
F UV

x

)∗
F UV

y

|FUV|2
)∣∣∣∣

z=0

=
(

∂θ

∂z
+ i

∂α

∂z

)∣∣∣∣
z=0

. (B8)

With

F UV
y (0,ω) ≡ 0, (B9)

∂F UV
x

∂z

∣∣∣∣
z=0

= ik(ω)F UV
x (0,ω), (B10)

∂F UV
y

∂z

∣∣∣∣
z=0

= 2πiω

cn(ω)
P NL

y (0,ω), (B11)

∂α

∂z

∣∣∣∣
z=0

= ∂ε

∂z

∣∣∣∣
z=0

, (B12)

and

∂|FUV|2
∂z

∣∣∣∣
z=0

= 2Re

[(
F UV

x

)∗ ∂F UV
x

∂z
+ (

F UV
y

)∗ ∂F UV
y

∂z

]∣∣∣∣
z=0

= −2ω

c

∣∣F UV
x (0,ω)

∣∣2
Im[n(ω)], (B13)

we obtain, neglecting the linear absorption (Im[n(ω)] = 0),(
∂θ

∂z
+ i

∂ε

∂z

)∣∣∣∣
z=0

= 2πiω
(
F UV

x (ω,0)
)∗

P NL
y (ω,0)

cn(ω)
∣∣F UV

x (ω,0)
∣∣2 . (B14)

If effective susceptibilities provide a good approxima-
tion for the nonlinear polarization at the UV frequency,
P±(z,ωUV) = �χ±F UV

± (z,ωUV), it is possible to obtain the
following expression for the polarization rotation in an
isotropic medium:

dθ (z,ωUV)

dz
= 2πωUV

c
Re

[
�χ− − �χ+

n(ωUV)

]
. (B15)

The right-hand side of this equation does not depend on
the probe pulse. Using the explicit expressions for �χ±, we
see that the optical Faraday effect exists if χ

(3)
2211(ωUV; ωIR,

−ωIR,ωUV) �= χ
(3)
2211(ωUV; −ωIR,ωIR,ωUV).

APPENDIX C: NUMERICAL SIMULATIONS

We obtained the lattice constants for Al2O3 from Ref. [27].
The density-functional-theory and dynamical calculations
were performed on an unshifted Monkhorst-Pack grid with
5 × 5 × 5 k-points. For each k-point, the initial mixed state
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can be written as a sum of independent valence-band wave
functions:

ρk(t) =
Nv∑
i

|ψi,k(t)〉〈ψi,k(t)|. (C1)

While the density-matrix description allows us to write
the key equations in a compact and general form, we obtain
the same results by solving the time-dependent Schrödinger
equation (TDSE), which requires less computation. We work
in the interaction picture:

ih̄
d

dt
|ψ̃i,k〉 = e

me

A(t) · ˜̂pk|ψ̃i,k〉, (C2)

where |ψ̃i,k〉 = eiĤ0t/h̄|ψi,k〉, ˜̂pk = eiĤ0t/h̄ p̂ke
−iĤ0t/h̄, and Ĥ0

is the unperturbed Hamiltonian. We used the fourth-order
Runge-Kutta scheme to solve Eq. (C2) for 36 valence bands
and 160 conduction bands. Thus, we had 36 × 5 × 5 × 5 =
4500 independent differential equations, each of which was
solved in a basis of 36 + 160 = 196 stationary states. On a
desktop computer (Intel Core 2 Duo E8400 3.00 GHz), solving
the TDSE for a single k-point and a particular initial (valence)
band takes 12 s.

Our simulations used the following expression for the
Hamiltonian: Ĥ (t) = Ĥ 0

k + e
me

A(t) · p̂k. A trivial unitary
transformation relates this Hamiltonian to another velocity-
gauge Hamiltonian that is frequently encountered in the
literature: Ĥ 0

k + e
me

A(t) · p̂k + e2

me
A2(t). This transformation

reads

|ψ〉 = exp

[
ie2

2h̄me

∫ t

−∞
A2(t ′) dt ′

]
|ψ ′〉. (C3)

Therefore, dropping the e2m−1
e A2(t) term in the Hamiltonian

does not introduce an additional approximation.
We chose the velocity gauge for our simulations because,

for each crystal momentum, calculations can be performed
using only the band energies and matrix elements for that
crystal momentum. Other popular choices are the length gauge
and the Houston basis [19], which may be advantageous for
nonlocal lattice potentials, but they do not have the property
of entirely independent crystal momenta. In particular, wave
functions need to be differentiated with respect to k in the
length gauge simulations, which not only couple different
crystal momenta but also require that the reciprocal-space grid
be dense enough for accurate differentiation. In three spatial
dimensions, length-gauge simulations with intense laser pulses
require a prohibitively large number of k nodes. This problem
is alleviated in the Houston basis, but both length-gauge and
Houston-basis simulations face another common problem:
they require transition matrix elements to be differentiable
functions of k, while matrix elements obtained in band-
structure calculations are, in general, not smooth functions
of k. Using so-called covariant derivatives solves this problem
in the length gauge [28]. However, the method that we use
here is considerably simpler.
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