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Efficient approach to compute melting properties fully from ab initio with application to Cu
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Applying thermodynamic integration within an ab initio-based free-energy approach is a state-of-the-art
method to calculate melting points of materials. However, the high computational cost and the reliance on a good
reference system for calculating the liquid free energy have so far hindered a general application. To overcome
these challenges, we propose the two-optimized references thermodynamic integration using Langevin dynamics
(TOR-TILD) method in this work by extending the two-stage upsampled thermodynamic integration using
Langevin dynamics (TU-TILD) method, which has been originally developed to obtain anharmonic free energies
of solids, to the calculation of liquid free energies. The core idea of TOR-TILD is to fit two empirical potentials to
the energies from density functional theory based molecular dynamics runs for the solid and the liquid phase and to
use these potentials as reference systems for thermodynamic integration. Because the empirical potentials closely
reproduce the ab initio system in the relevant part of the phase space the convergence of the thermodynamic
integration is very rapid. Therefore, the proposed approach improves significantly the computational efficiency
while preserving the required accuracy. As a test case, we apply TOR-TILD to fcc Cu computing not only the
melting point but various other melting properties, such as the entropy and enthalpy of fusion and the volume
change upon melting. The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional and the local-density approximation (LDA) are used. Using both functionals
gives a reliable ab initio confidence interval for the melting point, the enthalpy of fusion, and entropy of fusion.
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I. INTRODUCTION

Theoretical predictions of the melting point T m of materials
have a long history. Since 1910 two empirical rules have
been available to determine T m, the Lindemann criterion [1]
and the Born criterion [2]. The Lindemann criterion relates
melting to a vibrational instability, i.e., melting occurs when
the root mean square displacement of the atoms reaches a
critical fraction of the nearest-neighbor distance. The Born
criterion relates melting to an elastic instability, i.e., melting
happens when the shear modulus vanishes. More recently,
it became understood that these empirical rules hold true
only for a restricted class of systems [3]. For example, in
aluminum the elastic shear constants remain finite at T m in
contradiction to the Born prediction [4,5]. An alternative to the
empirical rules are simulations with classical model potentials
for explicitly determining T m. Such model potentials are either
fitted to experimental data or to ab initio calculations. The
advantage of using classical model potentials is that they can
be efficiently applied to large systems and for long simulation
times. However, the main disadvantage is that these classical
potentials are generally lacking transferability so that the
accuracy of the predictions is questionable.

In the past twenty years, with increasing computing power
ab initio molecular dynamics (MD) simulations based on
density functional theory (DFT) have been used as a general
simulation tool for determining T m. In 1995 Sugino and Car [6]
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for the first time calculated T m of Si from first principles
without relying on any adjustable parameters. They used the
local-density approximation (LDA) to explicitly calculate the
Gibbs energies of the solid and liquid by thermodynamic
integration. T m was determined by the crossing point of the
Gibbs energies (cf. Fig. 1). Somewhat later, Alfè called this
method the free-energy approach (FE), applying it to Fe and
Al [7,8]. Since the work of Sugino and Car [6], FE became
a standard method for calculating T m and a number of works
based on it have followed as indicated in Table I.

While it provides in principle DFT accuracy, FE suffers
from two main problems which hindered a more general
application. The first one is the high computational cost of
the free energy calculations. The free energies of solid and
liquid need to be calculated with high precision because they
cross at a shallow angle (Fig. 1). The difference in the slopes
is the entropy change upon melting, i.e., entropy of fusion,
which critically affects the precision of the T m calculations.
For example, the entropy of fusion of fcc Cu is about 1.2 kB ,
which means that an error of 1 meV/atom in either the liquid
or solid Gibbs energy can cause an error of ∼10 K in T m. The
second problem is that the computational efficiency strongly
relies on the reference system used for the thermodynamic
integration. FE only works well if one is able to find a
reference system for which the free energy can be easily
calculated and which is as close as possible to the ab initio
system so that the computational effort needed to calculate
the free energy difference between the two systems can be
reduced to a minimum. As calculations of solid free energies
are nowadays mature (Sec. II A), the problem of FE is how
to efficiently and accurately calculate the liquid free energy.
Up to now, different reference systems have been used for
the liquid free energy calculations. Car and Sugina [6] used
a Stillinger-Weber potential as the reference system for liquid
Si. de Wijs et al. [9] applied the Lennard-Jones fluid as the
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FIG. 1. Free energy approach for determining the melting tem-
perature T m at a constant pressure by the crossing point of the Gibbs
energies of solid and liquid, Gsolid and Gliquid.

reference system for liquid Al. Alfè et al. [7,10–12] used
inverse-power potentials for liquid Fe and Al. However, these
reference systems are limited to special materials. A general
approach which is easy and efficient to apply for obtaining a
proper reference system is missing.

Because of the problems with FE, researchers started to
resort to other methods to determine T m from ab initio MD.
The two most commonly used methods are the coexistence
approach by Alfè (aka interface method) [7,8] and the Z
method [21]. The coexistence approach is based on the simulta-
neous simulation of solid and liquid in coexistence. Originally
the coexistence approach was carried out by using classical
model potentials [30]. Alfè has proposed an on-top ab initio
correction to obtain the same level of accuracy as with FE. The
idea is to start with coexistence simulations for a reference sys-

tem, e.g., embedded-atom method (EAM) potential, and then
to correct the resulting free energy by a perturbation approach
employing DFT calculations [7,13,14,16]. The crucial require-
ment is that the model potential is reasonably close to the ab
initio system, i.e., the accuracy of the final results is influenced
by the choice of the model potential. It is worth noting that
for FE the reference system only influences the computational
efficiency, while the final results are independent of the choice
of the reference system (provided that they are statistically
converged). To avoid the dependence of the coexistence
approach on the model potential, direct DFT calculations
with the coexistence approach have been performed for a few
cases [15–19]. However, because of the extreme computational
effort these calculations were based on very low convergence
parameters, e.g., only the � point was taken into account to
sample the Brillouin zone, or on small system sizes [20]. For
general applications a full quantum mechanical simulation of
solid and liquid in coexistence seems still out of reach.

The Z method is based on a one-phase approach. It was
developed by Belonoshko et al. first by using empirical
potentials [31] and later ab initio calculations [21]. The idea is
to simulate the solid in the NV E ensemble corresponding to a
temperature of the superheated limit. If the simulation is long
enough, the solid will melt spontaneously and the temperature
will drop back to T m. The corresponding pressure-temperature
relation follows approximately the shape of the letter Z,
explaining the name of the method. Even though the Z method
has been successfully applied to a few systems [22–25], its
strong dependence on simulation size and length are still a
matter of debate [27,32–34].

Table I shows that in the last decade there was a strong focus
on the coexistence approach and the Z method. More recently,

TABLE I. Representative ab initio studies of melting points; FE=the free-energy approach; Coexist+Perturb=the coexistence
approach+DFT correction; DFT-Coexist=direct DFT simulation of coexistence; DFT-CoexistSmall=coexistence using small DFT systems;
2PT-MF=two-phase thermodynamic model using a memory function formalism; LDA=the local-density approximation; GGA=the generalized
gradient approximation; PW91=the Perdew-Wang GGA functional [28]; PBE=the Perdew-Burke-Ernzerhof GGA functional [29].

Year Author Journal Reference Material Approach Exchange-correlation

1995 Sugino and Car PRL [6] Si FE LDA
1998 de Wijs et al. PRB [9] Al FE LDA
1999 Alfè et al. Nature [10] Fe FE GGA-PW91
2002 Alfè et al. PRB [11] Fe FE GGA-PW91
2002 Vočadlo and Alfè PRB [12] Al FE GGA-PW91
2002 Alfè et al. JCP [7] Fe FE&Coexist+Perturb GGA-PW91
2003 Alfè PRB [17] Al DFT-Coexist GGA-PW91
2004 Vočadlo et al. JCP [13] Cu Coexist+Perturb GGA-PW91
2005 Alfè PRL [18] MgO DFT-Coexist GGA-PW91&LDA
2007 Taioli et al. PRB [14] Ta Coexist+Perturb GGA-PBE&LDA
2008 Belonoshko et al. PRL [21] Mo Z-method GGA-PW91
2009 Alfè PRB [19] Fe DFT-Coexist GGA-PW91
2009 Belonoshko et al. PRB [22] Fe Z-method GGA-PW91
2010 Hernández et al. PRL [15] Li DFT-Coexist GGA-PBE
2010 Burakovsky et al. PRL [23] Ta Z-method GGA-PW91
2010 Belonoshko et al. PRB [27] MgO Z-method LDA
2012 Belonoshko and Rosengren PRB [24] Pt Z-method GGA-PW91
2013 Pozzo and Alfè PRB [16] Ni Coexist+Perturb&DFT-Coexist GGA-PBE
2013 Hong and van de Walle JCP [20] Ta Na NaCl DFT-CoexistSmall GGA-PBE
2015 Burakovsky et al. PRB [25] Os Z-method GGA-PBE
2015 Robert et al. PRE [26] Al 2PT-MF GGA
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Robert et al. proposed a new approach to compute the melting
curves of materials [26]. This method is based on the two-phase
thermodynamic (2PT) model originally developed by Lin
et al. [35] and extended by Desjarlais [36] using a memory
function (MF) formalism to correct the short time nonphysical
behavior of the hard sphere velocity autocorrelation function
while preserving the long time correlation time scale of the
original 2PT model. The 2PT-MF model has been applied
to liquid sodium, aluminum, tin, gallium, and iron, but
not to the solid phase. Robert et al. utilized the 2PT-MF
model for both solid and liquid aluminum and found its
accuracy to be comparable to the accurate FE at much lower
computational cost. Since the present formulation of 2PT-MF
method captures only partly the anharmonic content for the
solid phase, it is limited to light chemical elements.

Overall, our survey reveals that—after an initial period
of active research—FE studies became quite rare, which can
be traced back to the aforementioned difficulties. Meanwhile
there was, however, some interesting progress in computing
anharmonic free energies in solids. An example is the up-
sampled thermodynamic integration using Langevin dynamics
(UP-TILD) method [37] which provides an efficient hierar-
chical scheme to coarse grain the configuration space during
thermodynamic integration from ≈107 to ≈102 configurations
retaining ab initio accuracy for the anharmonic free energy of
solids. With this technique the calculation of the anharmonic
free energy for solid Al became orders of magnitude more effi-
cient. In 2015 an improved version of UP-TILD, the two-stage
upsampled thermodynamic integration using Langevin dynam-
ics (TU-TILD), has been proposed by Duff et al. [38] and
applied to calculate the anharmonic free energy of solid ZrC.
Within TU-TILD the thermodynamic integration is performed
in two stages. The first stage switches the system from the
quasiharmonic reference state to a highly optimized empirical
interatomic potential. In the second stage the empirical poten-
tial is switched to the full DFT system, keeping the upsampling
step of the UP-TILD method. The key feature of TU-TILD is
that the empirical potential is fitted only to the most relevant
part of the phase space (e.g., fcc phase in a certain temperature
window) while transferability to other parts of the phase space
(e.g., other phases) is not required. With this development
DFT accuracy is combined with high efficiency. For the case
of ZrC, a speed-up factor of 50 compared to the UP-TILD
method was achieved. So far UP-TILD and TU-TILD have
been only applied for computing free energies of solids.

Our aim in this paper is to develop a general, accurate
and efficient methodology within an ab initio MD framework
that will enable the calculation of various melting properties
(melting point, enthalpy, and entropy of fusion) for a wide
range of elements as required for example in phase diagram
databases. The basic idea is to extend the TU-TILD method
to liquid free energy calculations combining the accuracy of
FE with the efficiency of TU-TILD. Within our methodology
a flexible and efficient approach for generating good reference
systems close to the ab initio system will be used for both the
solid and the liquid, and we thus refer to the new method as
the two-optimized references thermodynamic integration using
Langevin dynamics (TOR-TILD) method. As an example,
the melting point and other melting properties of fcc Cu are
calculated with TOR-TILD.

II. METHODOLOGY

A. Free energy approach

The free energy approach is based on explicitly calculating
the Helmholtz free energy F (V,T ) in an NV T ensemble of
both solid and liquid as a function of volume V and temperature
T . The reason to start with the Helmholtz free energy
as the thermodynamic potential is that the corresponding
fixed volume conditions are well amenable to first principles
calculations. Once F (V,T ) is available for the relevant V

and T range, the Gibbs energy G(P,T ) can be obtained by
a Legendre transformation,

G(P,T ) = F (V,T ) + PV, (1)

where the pressure P is obtained from the free energy surface
as P = −(∂F/∂V )T . The melting point T m is determined
by the condition of equality of the Gibbs energies of solid,
Gsolid(P,T ), and liquid, Gliquid(P,T ) (Fig. 1). To get T m fully
from ab initio, we therefore need to calculate F solid(V,T ) and
F liquid(V,T ) from first principles and apply Eq. (1) to both.
Any other thermodynamic equilibrium quantity, such as the
enthalpy or entropy, can be derived by proper thermodynamic
relations [39].

Within the free energy Born-Oppenheimer approxima-
tion [40,41], we can decompose the total free energy of a
nonmagnetic solid as:

F solid
DFT (V,T ) = E0K(V ) + F el(V,T ) + F qh(V,T )

+F ah(V,T )+F el-vib(V,T )+F vac(V,T ), (2)

where E0K(V ) is the total electronic energy at T = 0
K, F el(V,T ) the electronic contribution for a static lat-
tice, F qh(V,T ) the quasiharmonic contribution, F ah(V,T )
the anharmonic contribution, F el-vib(V,T ) the adiabatic
electron-phonon coupling, and F vac(V,T ) the vacancy con-
tribution. The sum of F qh(V,T ) and F ah(V,T ) con-
stitutes the full vibrational free energy of the solid.
The first three terms of Eq. (2) can be calculated
straightforwardly and are understood well [42]. The cal-
culation of the anharmonic free energy is more in-
volved requiring sophisticated techniques [37,38,43–50].
Here we rely on the TU-TILD method [38] as introduced
above. The coupling between electrons and phonons, including
anharmonicity, can be captured within the free energy Born-
Oppenheimer approximation in an adiabatic fashion (see
Refs. [51,52] for details). The vacancy term can be calculated
according to our previous developments [37,53], also including
anharmonicity and electron-phonon coupling. Note however
that the contribution of vacancies to the total free energy is
rather small (≈−0.1 meV/atom at the melting point [37,53]).

A decomposition as performed in Eq. (2) for the solid free
energy is not possible for the case of the liquid, because a static
reference lattice is missing. Instead, one needs to fully rely
on thermodynamic integration from an appropriate reference
system:

F
liquid

DFT (V,T ) = F
liquid
ref (V,T ) + �F

liquid
ref→DFT(V,T ). (3)

Here, F
liquid
ref (V,T ) is the free energy of the reference system

and �F
liquid
ref→DFT(V,T ) the free energy difference between the
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reference system and the ab initio system, obtained by
thermodynamic integration. Alfè [11,12] used for example an
inverse power potential as a reference system and calculated
F

liquid
ref of Fe and Al by thermodynamic integration to the

Lennard-Jones liquid, for which the free energy has been
tabulated [54]. Our approach is different as we will use an
optimized empirical potential as a reference system. Further,
we will calculate F

liquid
ref by connecting it to the solid free

energy using a specifically designed procedure (Sec. II B).
Electronic excitations and their adiabatic coupling to atomic
motion within the liquid are included in our approach at the
stage of calculating �F

liquid
ref→DFT(V,T ).

B. TOR-TILD: The improved free energy approach

Our goal is to efficiently and accurately calculate the free
energy surface of the liquid, F

liquid
DFT (V,T ). We assume that we

have already computed an accurate DFT based free energy
surface of the solid, F solid

DFT (V,T ), using the standard TU-TILD
method [38]. This means that we have an optimized classical
reference potential available (EAM or modified EAM), fitted
to MD trajectories of the DFT solid. We also have the free
energy surface of this potential for the solid phase available,
which we call F solid

ref1 (V,T ). The main extension to TOR-TILD
is that we have to fit a second optimized reference potential, this
time however to MD trajectories of the DFT liquid. Thus, we
rely on two optimized references (hence TOR), one optimized
for the solid (labelled “ref1”) and one optimized for the liquid
(“ref2”). Based on these preliminaries, TOR-TILD works as
sketched in Fig. 2 and described in the following.

Step 1: We use the coexistence approach [30] to locate
T m

ref1, the melting point of the “ref1” potential at constant
pressure. Since the reference potential is a classical potential,
the calculation of T m

ref1 can be performed very efficiently and
accurately. In particular we use sufficiently large supercells
(several thousands of atoms) and long timescales (several tens
of ps) to get a well converged T m

ref1. Since at the (constant
pressure) melting point the Gibbs energies of solid and liquid
are equal, we can also easily relate the free energies of the
solid, F solid

ref1 (V m,sol
ref1 ,T m

ref1), and liquid, F liquid
ref1 (V m,liq

ref1 ,T m
ref1), at the

melting point via Eq. (1). We have only to carefully consider
that the volumes of the solid, V

m,sol
ref1 , and of the liquid, V

m,liq
ref1 ,

will differ [see black and orange crosses in Fig. 2(a)].
Step 2: From Step 1 we know F

liquid
ref1 (V m,liq

ref1 ,T m
ref1). We now

perform a thermodynamic integration (λ integration) from the
“ref1” to the “ref2” potential within the liquid phase at V

m,liq
ref1

and T m
ref1 to obtain:

F
liquid
ref2

(
V

m,liq
ref1 ,T m

ref1

) = F
liquid
ref1

(
V

m,liq
ref1 ,T m

ref1

)

+
∫ 1

0
dλ

〈
E

liquid
ref2 − E

liquid
ref1

〉
λ,T m

ref1
, (4)

where E
liquid
ref2 and E

liquid
ref1 are the potential energies correspond-

ing to the two reference potentials, λ is a coupling constant,
and 〈.〉λ,T denotes the thermodynamic average at a temperature
T and coupling λ. The calculations in this step rely only on
classical potentials and can be therefore performed with high
accuracy and precision.

FIG. 2. Schematic representation of the TOR-TILD method.
Details on the different steps are given in the main text. Note
that for visualization purposes the curvature along the volume
axis has been made somewhat smoother in the shown free energy
surfaces.
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Step 3: From Step 2 we know one point on the liquid free
energy surface of the “ref2” potential, i.e., F liquid

ref2 (V m,liq
ref1 ,T m

ref1).
Starting from this point, we integrate the pressure, P (V,T ), of
the liquid of the “ref2” potential to lower and higher volumes
(V integration) using [55]

F
liquid
ref2

(
V,T m

ref1

) = F
liquid
ref2

(
V m

ref1,T
m

ref1

)

−
∫ V

V m
ref1

P
(
V ′,T m

ref1

)
dV ′, (5)

and the internal energy, U (T ,V ), of the liquid of the “ref2”
potential to lower and higher temperatures (T integration)
using [55]

F
liquid
ref2 (V,T )

kBT
= F

liquid
ref2

(
V,T m

ref1

)
kBT m

ref1

+
∫ T

T m
ref1

d

(
1

T ′

)
U (V,T ′), (6)

where kB is the Boltzmann constant, to get F
liquid
ref2 (V,T ) at

any required volume and temperature. The calculations in this
step also rely only on classical reference potentials and can be
therefore performed efficiently and with high accuracy.

Step 4: From F
liquid
ref2 (V,T ) we perform a thermodynamic

integration to the DFT liquid phase

F
liquid

DFT-low(V,T ) = F
liquid
ref2 (V,T )

+
∫ 1

0
dλ

〈
E

liquid
DFT-low − E

liquid
ref2

〉
λ,T

, (7)

where E
liquid
DFT-low represents the potential energy of the DFT

system. For the DFT calculations we use “low” convergence
parameters (k points, cutoff) that are still accurate enough to
describe the phase space distribution well. This strategy is
in the spirit of the original UP-TILD method [37]. Since the
“ref2” potential has been optimized to describe the DFT liquid
phase (using specifically low parameters), the thermodynamic
integration in Eq. (7) is very efficient.

Step 5: Finally, we correct for the error introduced by the
low converged parameters by upsampling to high converged
parameters using a perturbative approach:

F
liquid

DFT (V,T ) = F
liquid

DFT-low(V,T ) +
∫ 1

0
dλ 〈�E〉UP

λ,T , (8)

where

〈�E〉UP
λ,T = 1

N

N∑
i

(
E

liquid
DFT,i − E

liquid
DFT-low,i

)
, (9)

with the sum running over N uncorrelated snapshots ex-
tracted from the DFT-low MD and with E

liquid
DFT,i and E

liquid
DFT-low,i

corresponding to the DFT potential energies of the ith
snapshot calculated using high and low converged parameters,
respectively. The upsampling strategy is the same as used in
the original UP-TILD and TU-TILD methods [37,38]. From
the condition G

liquid
DFT (T m

DFT) = Gsolid
DFT (T m

DFT) the melting point
of the DFT system T m

DFT can be obtained.

C. TOR-TILD: Discussion and details

An important advantage of our method is that the calcu-
lations requiring only the reference potentials, i.e., steps 1, 2,
and 3, can be performed with high accuracy and precision, i.e.,
in large supercells (several thousand of atoms) and over long
time scales (several tens of ps). This allows us to accurately
average over all degrees of freedom of the liquid, at least on
the level of the reference potential.

For the determination of the melting point of the reference
potential using the coexistence approach a special procedure
turned out to be necessary. Running a single coexistence
calculation resulted in an appreciable error in the melting
point of the reference potential which propagated into the final
DFT melting temperature. Our strategy to remove this error
is as follows: We start with many (in the range of a hundred)
coexistence calculations in parallel, with the only difference
lying in a different initial random seed. The resulting statistical
distribution of melting points closely resembles a Gaussian
function and the mean can be used as a precise prediction of
the melting point of the reference potential. The corresponding
standard error is well below 1 K and can be neglected in the
final DFT melting point.

The optimization of the reference potentials is a critical
point of the TOR-TILD method. We use the recently developed
MEAMfit code for that purpose [56]. This code takes as input
MD trajectories and corresponding energies and/or forces to
fit classical EAM or reference free modified EAM potentials.
Our fitting strategy is to include trajectories of a few hundred
MD steps at a few volumes and temperatures in the relevant
range and to use the DFT energies as target quantities. The
used supercells are in the range of a few tens to a hundred
atoms. The resulting datasets are rather large consisting of
several thousand geometries and energies, but they can be
nevertheless efficiently processed by the MEAMfit code [56].

III. APPLICATION TO COPPER

A. Computational details

For the DFT calculations we used the projector-augmented
wave method [57] as implemented in the VASP software
package [58–61] with the PAW Cu potential containing 11
valence electrons. LDA and GGA were employed as exchange-
correlation functionals, with the Perdew-Burke-Ernzerhof
(PBE) [29] parametrization for GGA. The set of explicitly DFT
computed volume and temperature points for the solid and
liquid free energy surfaces is given in Table II. Details on the
fitting of the DFT solid free energy surface and the respective
convergence parameters will be discussed elsewhere [62]. The
vacancy contribution was taken from our study in Ref. [53].
The DFT liquid calculations were performed in a 3 × 3 × 3
supercell with 108 atoms (see Sec. III B for finite size effects).
The explicitly DFT computed points were fitted with second
order polynomials in both volume and temperature. The plane
wave cutoff and k point mesh (Monkhorst-Pack [63]) were set
to 300 eV and 2 × 2 × 2 for the low converged calculations.
For the high converged calculations, a cutoff of 450 eV and a
k point mesh of 6 × 6 × 6 were used.
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TABLE II. Mesh of volumes V (per atom) and temperatures T for the thermodynamic integration from the optimized potentials to DFT-low
and for the upsampling to DFT with high converged parameters. The volumes are additionally expressed in terms of a corresponding fcc lattice
constant, a = (4V )1/3.

Solid Liquid

V (Å
3
) 11.00, 11.28, 11.57, 11.76 11.86, 12.06, 12.26, 12.46, 12.66

LDA a(Å) 3.53, 3.56, 3.59, 3.61 3.62, 3.64, 3.66, 3.68, 3.70
T (K) 450, 800, 1100, 1360 1000, 1200, 1400, 1600

solid liquid

V (Å
3
) 11.96, 12.36, 12.77, 13.18 12.56, 12.77, 12.97, 13.18, 13.40

PBE a(Å) 3.63, 3.67, 3.71, 3.75 3.69, 3.71, 3.73, 3.75, 3.77
T (K) 450, 800, 1100, 1360 1000, 1200, 1400, 1600

The volumes and temperatures used for fitting the “ref1”
and “ref2” potentials are summarized in Table III. We found
that to obtain a “ref1” potential which is not only close to the
DFT calculations but also can be applied to the coexistence
approach we need configurations from several temperatures for
fitting. For “ref2” which only serves as an efficient reference
for the DFT liquid the highest relevant temperature is sufficient
for fitting. The resulting potential parameters are provided in
Table IV. We used in particular three pair terms for each of
the density contributions and pair potentials. For details on the
potential parameters we refer to our previous work [38].

For the reference potential calculations we used the
LAMMPS software package [64]. The coexistence approach
(Step 1) was performed in a tetragonal 10 × 10 × 20 supercell
with 8000 atoms (cf. Fig. 3) resulting in T m

ref1 = 1274 K
with the “ref1” potential fitted to LDA energies and 1144 K
when fitting to PBE energies (experiment: 1358 K). The other
reference potential calculations were performed in a cubic
10 × 10 × 10 supercell with 4000 atoms (see Sec. III B for
finite size effects). For the MD simulations we used a time step
of 5 fs and a Langevin thermostat with a friction parameter of
0.01 fs−1 to control the temperature. For fitting the liquid
free energy surface from our potential we used the same
volumes as for the DFT calculations (see Table II), but a denser
temperature mesh (steps of 5 K).

B. Finite size effects

An important advantage of the TOR-TILD method is that
the impact of finite size effects can be easily tested on

FIG. 3. Single snapshot of a 10 × 10 × 20 supercell with 8000
atoms for simulating the coexistence of solid and liquid.

the optimized potential level. The red line in Fig. 4 shows
corresponding results for liquid Cu at 1400 K and one can
observe that already a supercell of 6 × 6 × 6 repetitions (in
terms of the fcc cubic cell) with 864 atoms is sufficient to
obtain a convergence of well below 1 meV/atom. We have
also tested the convergence of the full DFT liquid free energy
up to a supercell of 4 × 4 × 4 with 256 atoms. The black line in
Fig. 4 shows nicely that for the DFT accessible supercells the
full DFT free energy closely follows the convergence behavior
of the potential (red line). This is an important finding as it
means that the difference between the optimized potential and
DFT converges rapidly with supercell size, as additionally
emphasized by the blue line in the inset of Fig. 4.

C. Computational efficiency

The key point of our method is the highly optimized
reference potentials that are fitted to the most relevant part
of the DFT phase space; “most relevant” with respect to the
thermodynamic integration from the reference potential to the
DFT system. A consequence of such a fitting procedure is
that our potentials have low transferability to other parts of
the phase space, e.g., different structural phases or structural
defects that are purposefully not included into the fitting
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FIG. 4. Impact of finite size effects on the liquid free energy at
1400 K. The DFT calculations correspond to the LDA functional.
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TABLE III. Volumes V (per atom) and temperatures T used for fitting the “ref1” (fit to the DFT solid) and “ref2” (fit to the DFT
liquid) potentials for the LDA and PBE calculations. The volumes are additionally expressed in terms of a corresponding fcc lattice constant,
a = (4V )1/3.

“ref1” “ref2”

V (Å
3
) 11.47, 11.86 11.86, 12.06, 12.26, 12.46, 12.66

LDA a(Å) 3.58, 3.62 3.62, 3.64, 3.66, 3.68, 3.70
T (K) 1000, 1200, 1358, 1400, 1600 1600

“ref1” “ref2”

V (Å
3
) 12.77, 13.18 12.56, 12.77, 12.97, 13.18, 13.40

PBE a(Å) 3.71, 3.75 3.69, 3.71, 3.73, 3.75, 3.77
T (K) 450, 800, 1100, 1360 1600

database. Our fitting strategy stands therefore in clear contrast
to the usual construction strategy of empirical potentials where
good transferability is an important criterion. Yet, our reference
potentials do not need to be transferable, they serve only as an
efficient bridge to DFT accuracy in a constrained part of the
phase space.

The efficiency of such an optimized reference potential for
the solid phase was shown in Ref. [38] within the framework
of the original TU-TILD method. Here we concentrate on
assessing the efficiency of the reference potential specifically
fitted to the DFT liquid system, the “ref2” potential. To
quantify the efficiency we investigate the standard deviation
with respect to the DFT energies defined as

σ (�E)2 = 〈(�E)2〉λ,T − (〈�E〉λ,T )2, (10)

where �E = E
liquid
DFT-low − E

liquid
ref2 as needed in Eq. (7) for

the thermodynamic integration from the reference potential
to DFT. The smaller σ is the less MD steps involving
computationally expensive DFT calculations are needed to
statistically converge the thermodynamic integration. In fact
since the standard error σn is proportional to the square root of
the number of (uncorrelated) sampling steps n, σn = σ/

√
n,

reducing σ for example by half results in a speed up factor

of four, i.e., only 1/4 MD steps are required to get the same
standard error.

The standard deviation for our optimized “ref2” potential
is shown for the example of LDA by the black line in Fig. 5(a)
as a function of the coupling parameter λ for the highest
investigated temperature of 1600 K. The standard deviation
increases strongly with temperature and investigating σ at
such a high temperature constitutes therefore a critical test,
regardless of the fact that this temperature was used for fitting.
Despite this severe testing condition, the standard deviation
for our optimized potential is only about 1.2 meV/atom and
independent of λ. This is a very small value and thus the
thermal average of the integrand in Eq. (7) converges quickly
with the number of MD steps as exemplified in Fig. 5(b) by
the black line. If we define a target value of for example
1 meV/atom for the standard error σn, the required CPU time
on a single core is less than one day (∼17 hours) as shown in
Fig. 5(c) (i.e., 17 CPU hours).

In order to put the achieved standard deviation and CPU
timings into perspective we have investigated two alternative
reference potentials. One of these potentials is an EAM
potential fitted to DFT MD trajectories of the solid phase,
i.e., the “ref1” potential of the previous sections. It was fitted
to the DFT solid at two volumes and five temperatures as
indicated in Table III. Results for this potential are shown

TABLE IV. Parametrization of the “ref1” (fit to the DFT solid) and “ref2” (fit to the DFT liquid) potentials for LDA and PBE. For the
meaning of the parameters we refer to Ref. [38].

a(1) (eV) a(2) (eV) a(3) (eV) b(1) (Å) b(2) (Å) b(3) (Å)

LDA “ref1” 1.5138 −0.1533 −2.1427 2.8631 4.3635 1.5580
Pair potential “ref2” −8.6950 3.8995 0.9831 1.5000 2.4379 2.8742

PBE “ref1” 1.3538 0.5381 3.2855 2.6481 3.1035 2.4093
“ref2” −1.7946 2.1319 1.9172 4.5970 2.6248 4.5830

a(1) a(2) a(3) b(1) (Å) b(2) (Å) b(3) (Å)
LDA “ref1” −0.8162 5.8300 0.2244 2.9683 2.4477 4.3109

Electron density “ref2” 8.7088 1.4851 −8.8691 6.0000 3.9035 5.9765
PBE “ref1” 2.6478 0.0948 6.3258 1.5000 6.0000 3.8304

“ref2” 0.2001 −6.2915 −0.5301 4.3116 2.2875 3.0848

a (eV) b (eV) c (eV)

LDA “ref1” 3.3952 × 10−4 1.0610 × 10−2 −3.7844 × 10−6

Embedding function “ref2” 0.6759 1.0147 × 10−4 1.5309 × 10−9

PBE “ref1” 0.3255 2.3648 × 10−5 −3.7966 × 10−8

“ref2” 2.8355 5.9232 × 10−5 1.7272 × 10−8
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FIG. 5. Example for the efficiency of the present TOR-TILD method. The figure represents results of a thermodynamic integration for the
liquid phase at 1600 K from different reference potentials to DFT (low converged values and LDA functional). The “ref1” potential has been
fitted to DFT solid energies, “ref2” to DFT liquid energies, and “lit” is a Cu potential available from literature [65]. (a) Standard deviation
[Eq. (10)] versus the coupling parameter λ. (b) Convergence of the mean value of the free energy for λ = 1, referenced to the converged value.
(c) Total CPU time taken to converge the mean value to below 1 meV/atom on a single core.

in Fig. 5 by the blue lines. Although this potential provides
reasonable efficiency, it is apparent that it is less efficient
than the “ref2” potential, about a factor of three difference
in the CPU timing. The other reference potential chosen for
the thermodynamic integration to DFT is an EAM potential
available from the literature [65] (labeled “lit”). Using this
potential the efficiency further decreases (red lines in Fig. 5),
about an order of magnitude in the CPU timing difference to
our highly optimized reference potential.

We note that our method is fully independent of the
availability of literature based empirical potentials for the
system under study, the test being done here only for
comparison purposes. This point is of practical importance
because for other material systems empirical potentials might
not be readily available.

D. Results

Figure 6 and Table V compile the results of the TOR-TILD
approach applied to Cu. Figures 6(a) and 6(b) show the Gibbs
energies referenced with respect to the internal energy of fcc
Cu at T = 0 K. The melting temperature is determined by
the crossing point of the liquid and solid Gibbs energies.
Our PBE calculations yield a value of 1251 ± 15 K. This
result is in good agreement with that of Vočadlo et al. who
predicted the melting temperature of Cu to be 1176 ± 100 K
from the phase coexistence approach using GGA-PW91 [13].
Considering our LDA calculations, we find a substantially
higher melting temperature of 1494 ± 5 K. This finding can
be rationalized by recalling that LDA gives smaller lattice
constants, stiffer bulk moduli, and phonon frequencies [42]
due to its overbinding property. The stiffer LDA system is
more resistant to melting than the softer GGA system. The
stiffness of LDA also explains why the melting point of the
LDA system is less sensitive to the statistical error in the
MD simulations (smaller error bar for LDA than PBE in
Table V).

Comparison of the DFT results to the experimental melting
temperature of 1358 K [66] leads us to an interesting
conclusion. Neither one of the functionals performs better:
PBE underestimates by −107 K and LDA overestimates by

136 K. Thus, the experimental value resides in between the
two functionals, by coincidence quite close to the middle of the
interval. A similar behavior was observed before for properties
of the solid phase of Cu and several other fcc elements [42].
The conclusion of Ref. [42] was that, although one cannot
clearly assign a better performance to GGA nor LDA, using
both functionals for the calculations provides an ab initio
based confidence interval for the prediction of experimental
data. Based on the present results, we expect that LDA and
GGA provide also an approximate confidence interval for the
melting temperature.

The virtue of the proposed approach is that it not only
provides access to the melting temperature but to other

TABLE V. Melting properties of Cu computed with TOR-TILD
using PBE and LDA in comparison to experiment: Melting tempera-
ture T m, enthalpy of fusion �H m, entropy of fusion �Sm, and volume
change �V m = V m

liquid − V m
solid with the volume of the liquid V m

liquid

and solid V m
solid at the respective melting point. The error bars for the

melting points were estimated based on a statistical error-propagation
analysis: Using the initial standard errors from the MD runs as bounds,
we fitted a set of normally distributed free energy surfaces that resulted
in a melting point distribution. The standard deviation of this function
gives a quantitative measure of the error.

PBE Experiment LDA

T m (K) 1251 ± 15 1356a/1358b/1361c 1494 ± 5

�H m (kJ/mol) 12.99 13.59b 14.77
�H m (meV/atom) 135 141b 153

�Sm (J/(mol K)) 10.45 10.01b 9.89
�Sm (kB/atom) 1.250 1.204b 1.190

�V m (Å
3
/atom) 0.86 0.63c 0.66

V m
liquid (Å

3
/atom) 13.90 13.17a/13.39c 12.49

V m
solid (Å

3
/atom) 13.04 12.64d/12.76c 11.83

aRef. [68]
bRef. [66]
cRef. [67]
dRef. [69]
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FIG. 6. Thermodynamic properties of Cu calculated with our methodology using the PBE and LDA functional.

important equilibrium properties related to the melting pro-
cess. For the enthalpy of fusion, which is defined as the
enthalpy change at the melting point between solid and
liquid, i.e., �H m = H m

liquid − H m
solid [Figs. 6(c) and 6(d)], PBE

and LDA again give a lower (12.99 kJ/mol) and upper
(14.77 kJ/mol) limit to the experimental value of about
13.59 kJ/mol [66]. The entropy of fusion is defined as the

entropy change at the melting point between solid and liquid,
i.e., �Sm = Sm

liquid − Sm
solid [Figs. 6(e) and 6(f)], or equivalently

�Sm = �H m/T m. The PBE result is 10.45 J/(mol K) and the
LDA result 9.89 J/(mol K) giving once again limits for the
experimental value of 10.01 J/(mol K) [66].

For constant pressure melting as considered here and in
typical experiments, a considerable volume increase, �V m,
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FIG. 7. Vacancy contribution to the (a) Gibbs energy and (b)
entropy of fcc Cu for PBE (orange lines) and LDA (blue). The dotted
lines indicate the respective melting points (black for experimental
one).

is observed from the solid to the liquid [Figs. 6(g) and 6(h)].
Measuring this volume increase is difficult but easily acces-
sible within our approach. PBE gives a larger increase of

0.86 Å
3
/atom and LDA a smaller one of 0.66 Å

3
/atom as

might have been anticipated due to the overall stiffer response
of LDA. Considering the absolute volumes of solid and liquid
copper at the melting point for which distinct experiments are
available [67–69], we observe that all of the experiments fall
in between our PBE and LDA results (see Table V). However,
for the differences between the absolute volumes of solid and
liquid this cannot be expected since it is highly sensitive to
even small errors in the absolute volumes. Indeed, the volume
increase from experiment is not inside the LDA/PBE bound
but still very close (see Table V).

The Gibbs energy of vacancy formation, Gf , in fcc Cu
was intensively studied in Ref. [53] including the influence of
anharmonicity. We have used the data from Ref. [53] to derive
the vacancy contribution to Gsolid

DFT using [70]:

Gvac(T ) = −kBT exp[−Gf (T )/kBT ]. (11)

Figure 7(a) shows the results for Gvac(T ) for PBE and LDA.
At the respective melting point, the vacancy contribution to
the Gibbs energy is negligibly small (≈−0.03 meV/atom)
for both functionals. Figure 7(b) shows the corresponding
vacancy contribution to the entropy of the fcc bulk, and the
conclusion is the same: There is only a negligible contribution
(≈0.003 kB/atom) at the respective melting point of the
two functionals. To provide an idea about the dependence
of the vacancy contribution above the melting point, we
have extrapolated the data from Ref. [53] using a third-order
polynomial (dashed lines in Fig. 7). Even for PBE, for which
the extrapolation is larger in the shown temperature window,
the contribution of the vacancies to bulk properties remains
very small.

The vacancy concentration can be extracted from the Gibbs
energy of vacancy formation [53]. At the experimental melting
point (1358 K), the vacancy concentrations are 8.9 × 10−4

for PBE (which agrees well with the experimental result of
7.6 ± 0.3 × 10−4 [71,72]) and 6 × 10−5 for LDA, i.e., signifi-
cantly smaller for LDA. However, at the respective theoretical
melting points of PBE (1251 K) and LDA (1494 K), the
vacancy concentrations are similar with 3.4 × 10−4 for PBE
and 1.8 × 10−4 for LDA. Thus, similarly as for the vacancy
contribution to the Gibbs energy and entropy discussed above,
we obtain a consistent result for the vacancy concentration

for both exchange-correlation functionals at their respective
theoretical melting points.

IV. CONCLUSIONS

We have developed a general, accurate, and highly efficient
methodology, the two-optimized references thermodynamic
integration using Langevin dynamics (TOR-TILD) method, to
fully ab initio calculate melting properties of materials, such
as the melting point, entropy of fusion, enthalpy of fusion,
volume change, and vacancy concentration at the melting
point. By extending the TU-TILD method from solid to liquid
free energy calculations we have overcome the two main
challenges of the standard FE approach, high computational
cost and reliance on a good reference system. The key aspects
of the new approach are tailored classical potentials fitted to
the relevant part of the DFT phase space. Transferability is
lost, but also not needed, because the potentials serve only as
highly optimized references for the thermodynamic integration
to DFT.

In the present work, TOR-TILD has been successfully
applied to fcc Cu using the two standard exchange-correlation
functionals PBE and LDA. Using both functionals provides
a reliable ab initio confidence interval for the experimental
melting properties.

Our methodology is not limited to calculate the melting
properties of nonmagnetic phases. For magnetic materials,
Eqs. (2) and (3) need to be extended by terms related
to magnetic excitations. Corresponding calculations are
nontrivial and under intensive research presently [73–76].
Assuming that close to the melting temperature the system
is sufficiently above its Curie or Néel temperature, one could
for example use the high temperature limit for the magnetic
entropy [73,74] as an approximation. Additionally, the DFT
calculations entering the other contributions in Eqs. (2) and (3)
would require the spin-polarized extension of DFT and a
proper representation of magnetic disorder, using for example
special quasirandom structures in the spin space [76–78].
Given a method to treat magnetic excitations, our approach
can be applied to magnetic materials.

To extend our methodology to binaries and higher order
systems, additional terms related to configurational entropy
might enter Eqs. (2) and (3) depending on the degree of
disorder. Finally, our methodology is not limited to calculate
the melting properties of stable phases, but can be likewise
applied to metastable phases, which is desirable for updating,
completing, and unifying the databases of CALPHAD based
approaches.
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