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Elastic dipoles of point defects from atomistic simulations
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The interaction of point defects with an external stress field or with other structural defects is usually well
described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from
atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with
continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of
the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these
different available methods to extract elastic dipoles, and show that they all lead to the same values when the
supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect
is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition
through the residual stress appears tractable. The approach is illustrated by considering various point defects
(vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio
calculations.
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I. INTRODUCTION

Point defects in crystalline solids, such as vacancies,
self-interstitial atoms, solute atoms, or their small clusters,
play a crucial role in controlling materials properties and their
kinetic evolutions, particularly through their interaction with
other defects, like dislocations, surfaces, interfaces, grain
boundaries, and also other point defects. While ab initio
calculations give an accurate description of such interactions
at short range, this modeling approach is not tractable to
characterize the long-range part because of the inherent
size limitation of these simulations. For neutral defects, the
long-range interaction is elastic and elasticity theory appears
therefore as a natural modeling approach. A point defect can
be described within elasticity theory through an equivalent
distribution of point forces [1–3]. Of particular importance is
the elastic dipole, a second-rank tensor which corresponds to
the first moment of the force distribution, from which one can
determine the long-range elastic field of the point defect and
calculate its interaction with an external strain field. Extraction
of this elastic dipole from atomistic simulations, in particular
ab initio calculations, allows then to fully characterize and
model the point defect within elasticity theory. This is essential
for upscaling approaches, where mesoscale techniques are
required to treat long-term evolutions and/or interactions of
point defects with the complex elastic fields of various struc-
tural defects, and that must include the necessary information
from the atomic scale. Accurate elastic dipole extractions thus
allowed successful modeling of stress-driven diffusion [4,5]
and more generally elastodiffusion [6,7], or of sink strength
optimization of semicoherent interfaces [8]. Furthermore,
their extraction enables to set up finite-size correction schemes
to obtain the energy of an isolated point defect from ab initio
calculations relying on periodic boundary conditions [9].
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However, because of the small size of ab initio simulations,
computation of such accurate values of elastic dipoles may be
challenging.

There is a rather long history of extraction of elastic dipoles
from atomistic simulations, mainly using empirical potentials.
The Kanzaki method [1,10], based on the measurement of
the defect-induced forces, has been widely used for vacan-
cies in ionic crystals and various point defects in metals
[11–16]. This approach relies on the harmonic approximation,
which has been found to give erroneous results for charged
vacancy defects [12] and/or when distortions are large. When
calculating the elastic dipole from the Kanzaki forces, one
thus needs to check that these forces correspond to the
harmonic regime or the approach has to be extended to take
care of anharmonicity [13,14]. On the other hand, Gillan
[17,18] popularized the measurement of the elastic dipole
components from the strain derivatives of the point-defect
formation energy. Subsequent uses of this method or similar
ones are numerous, again for defects in both ionics crystals
[19] and metals [9,20–23]. Finally, the elastic dipole value
can be obtained by extracting from atomistic simulations the
displacement field induced by the point defect and by fitting it
by the corresponding continuum linear elasticity solution [24].

Most often in the context of ab initio simulations, measure-
ments of elastic dipoles or relaxation volumes employ only
one of the above methods [9,15,23,25–27]. A recent paper by
Nazarov et al. [28] shows nevertheless a comparison between
the Kanzaki and strain derivatives methods for the hydrogen
impurity in hcp zirconium. The authors found significant
differences between the methods, although the H solute is
a rather simple defect that is known to induce small lattice
distortions [29]. Clarifications on the applicability of the
different measurement methods in ab initio calculations are
thus required, even more importantly for the study of defects
creating large distortions, like self-interstitial atoms. The con-
vergence of the elastic dipole components with the supercell
size is also a point that is not well established in the literature.

2469-9950/2017/96(22)/224103(11) 224103-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.224103


CÉLINE VARVENNE AND EMMANUEL CLOUET PHYSICAL REVIEW B 96, 224103 (2017)

In this paper, we first review the different possible ap-
proaches to extract elastic dipole tensors from atomistic
simulations: strain derivatives of the energy, fitting of the
displacement field, and computation from Kanzaki forces. We
then provide a systematic comparison of the results obtained
with these different approaches. Atomistic simulations relying
on empirical potentials are used for this thorough comparison,
as they allow for very large simulation sizes and high precision
in energy, force, and relaxed atomic positions, which is
required to assess the conditions under which each approach
must be applied to get consistent results. This is done by
considering the vacancy and various configurations of the
self-interstitial atom in hcp zirconium. We finally discuss
the feasibility of the different methods within ab initio
calculations, considering the same point defects, and the H
impurity in hcp Zr as well. In particular, we show that the strain
derivative method, or conversely the residual stress method, is
the only one that would give a meaningful result for point
defects involving large distortions.

II. METHODS TO EXTRACT ELASTIC DIPOLES

In this section, we recall the necessary background of
anisotropic continuum linear elastic modeling of point defects,
so as to introduce the concept of elastic dipole. All along the
theoretical progress, we detail the different possibilities for
their determination into atomistic simulations.

Within continuum elastic theory [1–3], a point defect
located at the origin can be represented as a finite distribution
of point forces {Fq}, acting at positions {aq}. This distribution
is at mechanical equilibrium, meaning that there is no force
resultant and no net torque:

∑

q

Fq = 0;
∑

q

Fq × aq = 0. (1)

The elastic displacement at continuous position R from the
defect is then given by

uel
i (R) =

∑

q

Gij (R − aq)Fq

j , (2)

where i,j are Cartesian indexes, and summation over repeated
indexes is implicit. Gij (R) is the continuum anisotropic elastic
Green’s function of the matrix. For large distance R, i.e., R =
‖R‖ � ‖aq‖, a Taylor expansion of the Green’s function can
be performed with respect to the {aq} as

uel
i (R) =

∑

q

[
Gij (R) − Gij,k(R)aq

k + o(‖aq‖)
]
F

q

j

= − Gij,k(R)Pjk + o(‖aq‖), (3)

with Pjk =
∑

q

F
q

j a
q

k . (4)

The zeroth-order term in Eq. (3) vanishes because there is
no force resultant [Eq. (1)]. The notation “k” stands for the
operator ∂/∂xk and Gij,k(R) is thus the first derivative of
the Green’s functions. The tensor Pjk is the elastic dipole
of the defect, defined as the first moment of the defect force
distribution [Eq. (4)]. This tensor is symmetric since the defect
has no net torque [Eq. (1)]. Higher-order terms in Eq. (3)

would correspond to higher-order moments of the defect force
distribution (multipoles), and are neglected here.

Equation (3) provides a first way to determine the elastic
dipole tensor in atomistic simulations. After the structural
relaxation in a point-defect calculation, the difference between
final and initial atomic positions gives atomistic values for the
displacement field {uat(R)} at any atomic position R. The first
derivative of the anisotropic elastic Green’s function Gij,k(R)
can be computed from the elastic constants Cijkl of the bulk
matrix, e.g., following the numerical scheme provided by
Barnett [30]. A fitting of the atomistic displacement fields
using the elastic solution of Eq. (3) will thus allow for an
identification of the defect elastic dipole. Such an approach
has been followed within empirical potential simulations by
Chen et al. [24], but with the additional constraint of isotropic
elasticity for the computation of the first derivative of the
Green’s function.

A second approach emerges when considering the interac-
tion energy between the point defect located at the origin, as
represented by the finite distribution of point forces, and an
external field of arbitrary source. This interaction energy is
given by [31]

Eint = −Pij εext
ij (0) + o(‖aq‖), (5)

after a Taylor expansion of the external displacement field,
and noting again that the force resultant is null. εext

ij (0) is the
external deformation field evaluated at the defect position. This
well-established expression allows computing the interaction
of a point defect with the strain produced by another defect or
with an external applied strain. It also provides a route to iden-
tify the elastic dipole tensor in atomistic simulations [9,22].
Let us consider a simulation box of volume V , the equilibrium
volume of the defect-free bulk material, containing one point
defect and submitted to a homogeneous strain εij . According
to linear elasticity, the energy of the simulation box is

E(εij ) = E0 + ED + V

2
Cijklεij εkl − Pij εij , (6)

with E0 the bulk reference energy and ED the unstrained
defect excess energy. We are considering a simulation box with
periodic boundary conditions to keep the volume V finite and
to prohibit the presence of any surface. ED contains therefore
a contribution corresponding to the interaction of the point
defect with its periodic images. Within linear elasticity theory,
this contribution does not depend on the applied strain εij . The
average residual stress on the simulation box is thus given by

〈σij 〉 = 1

V

∂E

∂εij

= Cijklεkl − Pij

V
. (7)

For simulations carried out with fixed periodicity vectors,
i.e., with εij = 0, the elastic dipole is proportional to the
homogeneous residual stress

Pij = −V 〈σij 〉. (8)

This residual stress corresponds to the stress increase, after
atomic relaxation, due to the introduction of the point defect
in the simulation box. Consequently, if the perfect bulk
simulation box experiences a nonzero homogeneous stress,
this contribution must be subtracted from the residual stress
of the defective supercell to identify the elastic dipole tensor.
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This is particularly important for ab initio simulations, where
finite convergence criteria may lead to non-null stresses for a
perfect bulk material at its equilibrium lattice parameters. Note
that Eq. (8) is to be related to the dipole tensor measurement
first proposed by Gillan [17,18], where the elastic dipole
is equal to the strain derivative of the formation energy,
evaluated at zero strain. This relation can also be derived
by averaging the stress field, as predicted by linear elasticity
theory, produced by the point defect, taking explicitly into
account the periodic boundary conditions [32].

Finally, a third numerical route is found if one focuses
on forces and atomic positions around the point defect. This
corresponds to the Kanzaki force approach [10,13,33], which
is a discrete elasticity approach. Kanzaki forces are defined as
the additional forces applied to the atoms in the neighborhood
of the defect, so as to produce the same static displacement field
as the defect. In the continuous limit and if the displacements
are small, making the harmonic approximation valid, we have
an equivalence between the finite distribution of point forces
{Fq} and Kanzaki forces. Kanzaki forces are obtained by first
relaxing the simulation cell containing the defect and by then
removing the defect and restoring the perfect crystal in its
vicinity. The Kanzaki forces are the opposite of the atomic
forces obtained in this second step, when the system is kept
frozen, i.e., without any relaxation. Equation (4) can be used to
compute the elastic dipole tensor, with {aq} the positions of the
atoms experiencing a force. Technical details for its application
will be given in the next section, when appropriate.

III. VALIDATION OF THE DIFFERENT APPROACHES

We apply in this section the previously described ap-
proaches to obtain the elastic dipole tensors of various
point defects, modeled through atomic simulations relying
on empirical potentials. These energy models have a low
computational cost and a high precision in force and atomic
position determination, thus allowing for a detailed study
without any penalizing limitation on the size of the system.
We first present the investigated point defects, and then show
and discuss the results obtained with the different definitions
of the elastic dipole.

A. Studied defects and simulation details

We study here the vacancy and several configurations of
the self-interstitial atom (SIA) in hcp zirconium. Both types of
point defects are created under irradiation. Their long-range
elastic interaction with the different sinks, in particular the
dislocations, controls their clustering and the kinetic evolution
of the irradiation microstructure. It has thus macroscopic
consequences like irradiation hardening [34], irradiation creep
[35–38], or irradiation growth [39–41]. In this context, an
accurate measure of the elastic dipoles for both vacancy and
SIA defects is of interest. Various ab initio studies [9,41–43]
showed that several SIA configurations with close energies
coexist and must be considered. The unrelaxed structures of
the studied defects are represented in Fig. 1: the vacancy (V),
and the three most stable SIA configurations, i.e., the basal
octahedral (BO), the octahedral (O), and the basal split (BS)
for which we consider the variant aligned along the [2110]

Vacancy Basal Split

OctahedralBasal Octahedral

FIG. 1. Projection in the basal plane of the different point defects
investigated in hcp Zr: the vacancy and three SIA configurations. The
white spheres represent the bulk Zr atoms at z = 0, the gray spheres
the bulk Zr atoms at z = c/2. The square represents the vacancy (V),
the blue spheres are SIAs at z = 0 (BO and BS configurations), and
the yellow sphere the SIA at z = c/4 (O configuration).

direction. The symmetry, which is conserved here during
structural relaxation, is hexagonal for V and BO, trigonal for O,
and orthorhombic for BS. As a consequence, only the diagonal
components of the dipole are non-null, with three independent
components for BS, and only two for V, BO, and O for which
P11 = P22 in a coordinate system with e1 and e2 in the basal
plane, respectively, parallel to the [2110] and [011̄0] directions,
and e3 along the [0001] direction. Those point defects, with
various relaxation magnitudes and point symmetries, cover a
wide range of situations.

We select two embedded atom method (EAM) potentials
to model Zr, both developed by Mendelev and Ackland [44]
and denoted as #2 and #3 in Ref. [44]. A second moment
approximation (SMA) potential developed by Willaime and
Massobrio [45] is also used and is referred to as WM1 in the
following. All potentials give reasonable properties for bulk
hcp Zr.1 The EAM #2 potential was originally designed to de-
scribe the hcp-bcc transition, but also gives reasonable defect
properties. It accounts for the vacancy-vacancy binding but
underestimates stacking fault and surface energies [46]. The
EAM #3 potential is supposed to be well suited to study defects
in the hcp phase, as some stacking fault energies were adjusted
on ab initio calculations. It has been used for the computation
of the properties of vacancy, SIAs, and clusters [47]. However,
it does not account for the binding between vacancies [46].
The WM1 SMA potential was also developed to describe the
hcp-bcc transition. It has a lower cutoff radius than the two
EAM potentials, and is chosen for discussion purposes.

Atomistic simulations with these many-body potentials
are performed on supercells containing up to 12 800 atomic
sites (i.e., 20 × 20 × 16 hcp primitive unit cells), which
ensures well-converged defect energetics and is sufficiently
large to define well-converged elastic dipoles with any of the
previously introduced methods. Note that periodicity vectors
are kept fixed during the structural relaxations, and also in
the eventual additional calculations required for elastic dipole
tensor computation.

1Note that WM1 elastic constants are unrelaxed in Ref. [45].
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TABLE I. Elastic dipoles of the vacancy (V), of the BO, O, and BS configurations of the SIA, and of the H solute in tetrahedral position in
hcp Zr. In the chosen coordinate system, with e1 ‖ [2110], e2 ‖ [011̄0], and e3 ‖ [0001], all tensors are diagonal. The dipole components have
been obtained either by a fitting of the displacement field, by the computation of the Kanzaki forces, or from the residual stress. Results are
given in eV, for different empirical potentials, EAM #2 and #3 from Ref. [44], and SMA WM1 from Ref. [45], and for ab initio calculations. Pij

values are obtained using N = 12 800 atoms supercells for empirical potentials (except the displacement method, on 1600 atoms supercells),
and from 1/N → 0 extrapolation for ab initio calculations.

V BO O BS H

Potential Method P11 P33 P11 P33 P11 P33 P11 P22 P33 P11 P33

EAM #2 Kanzaki −0.67 −0.79 13.8 5.85 11.5 8.30 13.5 14.8 6.6
Residual stress −0.65 −0.79 14.0 6.00 11.6 8.36 13.6 14.8 6.6

EAM #3 Displacement −5.45 −5.55 11.8 6.15 15.3 16.2
Kanzaki −5.41 −5.51 11.8 6.35 15.6 16.5 13.6 11.6 8.2
Residual stress −5.43 −5.51 11.7 6.32 15.5 16.4 13.5 11.6 8.2

SMA WM1 Kanzaki −4.28 −4.34 30.2 16.8 24.4 29.3 31.1 29.9 15.5
Residual stress −4.27 −4.33 30.5 16.9 24.5 29.5 31.3 30.2 15.6

Ab initio Residual stress −5.14 −7.62 17.0 10.6 14.9 17.0 14.2 22.1 9.3 1.74 2.92

B. Validation of the residual stress method

We first identify the elastic dipole from the residual stress
measured in the simulation box after introduction of the point
defect and relaxation of the atomic positions [Eq. (8)] using
the virial stress [48,49] given by the atomic simulations. The
values obtained for the different point defects and using the
different empirical potentials are given in Table I. These values
are well converged: no difference larger than 5 × 10−3 eV
is observed when going from a simulation cell containing
1600 atoms to one with 12 800 atoms. To validate the values
thus obtained, we compare the interaction energy of the point
defect with an applied homogeneous strain, as predicted by
the elasticity theory [see Eq. (5)] using this elastic dipole,
with the result given by direct atomistic calculations. In these
simulations, the interaction energy is defined as

Eint(εij ) = EPD
εij

− Ebulk
εij

+ Ebulk
0 − EPD

0 , (9)

with EPD
εij

and Ebulk
εij

the energies of the strained defective

and bulk supercells, and with EPD
0 and Ebulk

0 the energies
of the unstrained defective and bulk supercells, respectively.
Results of the comparison are shown in Fig. 2 for two
different deformations: a dilatation (εij = ε δij ) and a pure
shear (ε11 = −ε33 = ε with all other components set to zero).
A very good agreement is found between elasticity theory
and atomistic simulations for all investigated defects. The
interaction energy predicted by atomistic simulations starts
to deviate from the linear behavior predicted by elasticity
theory only for the dilatation when the applied strain gets too
high, close to ±2%. This therefore validates the measurement
of the elastic dipole tensor from the defect-induced residual
stress in the simulation box. Similar validations can be found
in Refs. [5,27]. We will thus use the value obtained from
the residual stress as a reference for the elastic dipole when
comparing with other methods.

C. Displacement field approach

We now consider the method identifying the elastic dipole
through the displacement field. The elastic dipole components

are obtained from the displacement field {uat(R)} extracted
from atomistic simulations through a least-square fitting using
the cost function

f (Pij ) =
∑

R
‖R‖ > rexcl

‖R2[uel(R) − uat(R)]‖2, (10)

with rexcl the radius of a small spherical zone around the point
defect, so as to exclude from the fitting the atomic positions
where elasticity does not hold. The R2 factor is meant to
account for the scaling of the elastic displacements with the
distance R to the defect, i.e., to give a similar weight to all
atomic positions in the fitting. Without this R2 penalty, the
obtained Pij values are entirely fixed by the displacements at
the neighbor shell bordering the exclusion zone. Due to the
periodic boundary conditions used in atomic simulations, we
need to include the contribution of the defect periodic images
into the elastic displacements {uel(R)}, that are now given by

uel
i (R) = −

∑

n,m,p

Gij,k(R − Rnmp)Pjk, (11)

with Rnmp = nA1 + mA2 + pA3 the positions of the supercell
periodic images, with n,m and p ∈ Z, and A1, A2, and A3 the
periodicity vectors of the supercell. Gij,k(R) is computed using
Barnett’s numerical scheme [30]. The summation involved in
Eq. (11) is conditionally convergent and is regularized using
the procedure of Cai et al. [50]. With this, the cost function f

can be accurately evaluated for any trial values of the elastic
dipole Pij and the fitting is realized. We have assumed in
Eqs. (10) and (11) that the point defect is located at the origin,
but the exact position of the point defect can also be included
in the cost function to be obtained then from the least-square
fitting.

The resulting elastic dipole tensor components for the
vacancy and the BO and O configurations of the SIA are shown
in Fig. 3 as a function of the exclusion zone radius for the EAM
#3 potential. Two different simulation box sizes are tested: a
large one with 1600 atomic sites and a smaller one with 200
sites. With the largest simulation box, the choice of rexcl has
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FIG. 2. Interaction energy between (a) V, (b) BO, (c) O, and (d)
BS point defects and homogeneous applied strains corresponding
either to dilatation or pure shear. Filled symbols are the results of
atomistic simulations and straight lines the predictions of elasticity
theory [Eq. (5)] using the elastic dipole deduced from the residual
stress [Eq. (8)]. Data have been obtained with the EAM #3 potential.

almost no influence on the final value of the elastic dipole
components, for all defect types. Numerical values of the Pij

for rexcl = 2a are given in Table I for each defect. In fact, the
number of atomic positions included in the fit, and for which
elasticity is valid, is sufficiently high to avoid issues arising
from the defect core zone. On the other hand, for the smaller
simulation box, the obtained elastic dipole components are
highly sensitive to rexcl, and their convergence with rexcl cannot
be reached. This is especially true for the SIAs because of the
larger induced distortions. For this small size of the simulation
box, higher rexcl values cannot be used, as the number of
remaining atoms to be included into the fit becomes too small to
obtain a meaningful value of the Pij tensor. This convergence
issue preventing the determination of an appropriate rexcl will
become even more important for complex and larger defects,
such as point-defect clusters. This disqualifies the use of this
displacement method to obtain elastic dipoles from ab initio
calculations, as the typical simulation box sizes are limited to
a few hundred atoms.
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FIG. 3. Elastic dipole components P11 and P33 for the vacancy,
and the BO and O configurations of the SIA, obtained through a fitting
on the atomistic displacement, versus the radius of the exclusion
zone rexcl normalized by the lattice parameter a. The horizontal lines
indicate the values deduced from the residual stress. The simulation
boxes used for both displacement field and residual stress approaches
contain 1600 (left side) and 200 atoms (right side).

D. Kanzaki force method

We now focus on the Kanzaki force method, that uses
Eq. (4) to obtain Pij . To compute the defect-induced forces, we
follow the procedure given in Refs. [14,16], which is illustrated
for a vacancy in Fig. 4. Starting from the relaxed structure
of the point defect [Fig. 4(b)], we restore the perfect lattice
in the defect core, e.g., we add back the suppressed atom
for the vacancy case of Fig. 4(c) and then perform a static
force computation on all atoms of the obtained simulation
cell. These forces are used to compute the elastic dipole
Pij = ∑

q F
q

i a
q

j , where Fq is the force acting on atom located
at aq , assuming the point defect at the origin. The summation
is restricted to atoms located inside a sphere of radius r∞
(i.e., ‖aq‖ < r∞). As the Kanzaki technique is valid only in
the harmonic approximation, one also needs to check that the
atomic forces entering the elastic dipole definition are in the
harmonic regime [14]. This is done by restoring larger and
larger defect neighboring shells to their perfect bulk positions,
and computing the forces on the obtained restored structures
[Figs. 4(c) and 4(d)] before defining the elastic dipole. The case
where n defect neighbor shells are restored is referred to as the
nth-order approximation. As the restored zone becomes larger,
the atoms remaining at their relaxed positions are more likely
to sit in a harmonic region. The convergence of the resulting
elastic dipole components with respect to the restoration zone
radius thus enables to evaluate the harmonicity aspect.
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(a) unrelaxed vacancy (b) relaxed vacancy

(d) first order approx.(c) zeroth order approx.

FIG. 4. Schematic illustration of the procedure used for the
computation of the Kanzaki forces in the case of a vacancy defect.
The white spheres correspond to atoms at their perfect bulk positions,
i.e., before relaxation, the white square to the vacancy defect, and the
black spheres to the atoms at their relaxed position around the defect.

We first consider the zeroth-order approximation, where
only the atom corresponding to the point defect is restored.
Figure 5 provides the elastic dipole values obtained with the
EAM #3 potential for the vacancy and the three configurations
of the SIA. Results are shown as a function of the cutoff
radius r∞ used for the summation. This allows to determine
the range of the defect-induced forces. For all defects, constant
Pij values are reached for r∞ 	 2−2.5a, which corresponds
to ∼10−13 defect neighboring shells included in the Pij

calculations. The last forces entering the summation and
needed to reach a ∼0.1 eV precision for the Pij elastic
dipole are only a few meV/Å, a small value that requires a
high precision in the force calculation. The rather long-range
behavior of the defect-induced forces is also observed with the
two other empirical potentials. In particular, although the WM1
potential has a lower cutoff than EAM #2 and #3 potential, it
leads to longer-range defect-induced forces. This long-range
nature of these forces is not specific to hcp Zr as it has also
been observed in the case of SIA defect in bcc iron [16].
Note, finally, that the Pij values obtained with this zeroth-order
approximation do not always correspond to the values obtained
by the residual stress method (Fig. 5): this is especially true
for the O and BS configurations of the SIA.

We study now the effect of anharmonicity by increasing
the size of the defect restoration zone, going thus beyond this
zeroth-order approximation. We use, in the force summation,
a cutoff radius r∞ high enough to ensure convergence with
respect to this parameter. The value needed for this cutoff
radius increases with the order n of the approximation used
for the restoration zone. As a consequence, the precision on
the atomic forces also needs to be increased. As can be seen in
Fig. 6(a), the vacancy elastic dipole components are already
well converged for the zeroth-order approximation, meaning
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FIG. 5. Convergence of the elastic dipole components with the
cutting radius r∞ of the force summation [Eq. (4)] for the Kanzaki
method. The elastic dipoles are calculated in the zeroth-order
approximation for the vacancy and the BO, O, and BC configurations
of the SIA, using EAM #3 potential. The horizontal lines indicate the
values deduced from the residual stress method.

that the harmonic approximation is valid very close to the
defect position in this case. On the other hand, this is not
true for the different configurations of the SIA [Figs. 6(b)–
6(d)]. Converged values are obtained only for restoration zones
extending a few lattice distances from the point defect (�2a).
The zeroth-order approximation can be sometimes completely
wrong. This is the case for instance for the O configuration
for which the magnitude of the elastic dipole components are
∼50% off as compared to the converged values, and the relative
magnitude of P11 and P33 is reversed. The BS configuration
presents an interesting feature, as the size of the necessary
restoration zone is ∼4a for P11, ∼2a for P22, and ∼3a for P33.
This thus defines the anisotropic dimensions of the point-defect
core zone, which, within an Eshelby’s inclusion model [51],
corresponds to the dimensions of the principal axes of the
ellipsoidal inclusion. Similar behaviors are found with the
two other empirical potentials, with a small anharmonicity for
the vacancy with WM1 potential. When defining the elastic
dipoles from Kanzaki forces, one therefore needs to adapt
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FIG. 6. Convergence of the elastic dipole components with the
radius of the defect restoration zone for the Kanzaki method. The
elastic dipoles are calculated for the vacancy and the BO, O,
and BS configurations of the SIA, using EAM #3 potential. The
horizontal lines indicate the values deduced from the residual stress
method. The vertical gray tics indicate the converged values of the
defect restoration radii, corresponding to the point-defect core zone
dimensions.

the restoration zone to include the anharmonic region around
the point defect. As this anharmonic region depends on the
defect and on the material, one cannot choose a priori an
approximation order for the restoration zone, but one needs to
check the convergence of the elastic dipole with the size of
this restoration zone.

E. Discussion

Table I provides the elastic dipole components for all
studied point defects, obtained with the three different em-
pirical potentials, and measured by the different techniques.
The Kanzaki method values correspond to those converged
with respect to the defect restoration zone size and to the
cutoff radius of the force summation. Displacement field
values are those obtained with the largest simulation box,
which is sufficient to provide Pij values converged with
respect to the supercell size, as tested by the residual stress

method. The three approaches give the same results for the
elastic dipole tensors of all point defects. This confirms the
coherence of the elastic dipole definition and its link to
the point-defect stress field and energetics. As an aside, we note
that comparison between the different interatomic potentials
for a given defect shows important variations of the obtained
elastic dipoles, with differences of several eV and eventually
different relative magnitudes between the different dipole
components. Although some properties of the point defects
were considered in the fitting of these empirical potentials,
they lead to completely different pictures of the long-range
elastic field induced by these point defects. It is therefore
difficult to rely on any of them, and this motivates the need for
ab initio computations to obtain quantitative estimates of the
Pij elastic dipoles.

We now discuss practical aspects of the different methods
which can be used to determine Pij . For the fitting of the
displacement field, one drawback is the necessity to check the
sensitivity of the result to the parameter defining the exclusion
zone around the defect and, also, to a less extent, to the
initial conditions. But most importantly, the method is not
operative for small supercells that are typically tractable in
ab initio simulations. On the other hand, the method offers
the advantage that the exact position of the point defect does
not need to be known a priori since it is determined through
the fitting. This is not true anymore when the elastic dipole
is defined from the Kanzaki forces. The defect position must
then be known so as to properly restore the defect zone and
compute the atomic positions {aq} entering in the definition
of the dipole. Knowing the defect position is usually easy
for high-symmetry defects, but can be more tricky for point
defects with lower symmetry, e.g., small amorphous zones.
Another drawback of the method is that additional calculations
are required to obtain the Kanzaki forces and to check that
the forces entering the dipole definition are in the harmonic
regime. The residual stress method appears therefore as the
easiest and fastest one to obtain accurate values of the elastic
dipole. It only uses the virial stress on the simulation box,
which is a standard output from any atomistic code, either
relying on empirical potentials or ab initio, and the defect
position is not needed. With this method, no post treatment
nor additional calculations are required to obtain an accurate
value of the elastic dipole.

We finally comment on additional point-defect characteris-
tics that are outcomes of some of the Pij extraction techniques.
We first notice that the point-defect higher-order multipoles,
corresponding to the higher-order terms in the expansion of
Eq. (3), are accessible by both Kanzaki’s and displacement
field methods2 but not from the defect residual stress. Their
contribution in the interaction energy between the point defect
and an external strain field involves successive gradients of the
strain. It is thus much shorter range than the dipole contribution
[3,31], and direct atomistic calculations are usually preferred
to the use of these higher-order elasticity models. Second, and
as pointed out in the previous section, Kanzaki’s technique

2Directly from the forces and position values after getting rid
of anharmonicity for the Kanzaki technique, and by including the
multipole terms in the fitting function for the displacement method.
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has the special feature of providing a physically founded
determination of the size and the shape of the defect core
zone, based on the analysis of anharmonicity. This could be
valuable in the context of Eshelby’s inclusion models used for
mesoscopic simulations of amorphous plasticity [52], where
a key step is the atomic-scale identification of the size of
the inclusion equivalent to each plastic event, and that would
become unambiguous by adapting Kanzaki’s procedure.

IV. APPLICATION TO AB INITIO COMPUTATIONS

We now consider extraction of elastic dipole tensors from
ab initio calculations, that are usually limited to a few hundred
atoms. As previously established using empirical potentials,
the displacement field method is not reliable for these small
supercells and is thus left out. We study the same point defects
in hcp Zr as with empirical potentials, plus the hydrogen
solute, an interstitial impurity occupying the tetrahedral sites
[53,54], and that induces smaller distortions than both the
vacancy and the SIA.

A. Computational details

Our ab initio calculations are based on the density func-
tional theory (DFT), as implemented in the PWSCF code
of the QUANTUM ESPRESSO package [55]. Calculations are
performed in the generalized gradient approximation with
the exchange-correlation functional of Perdew, Burke, and
Ernzerhof [56]. Valence electrons are described with plane
waves, using a cutoff of 28 Ry. The pseudopotential approach
is used to describe the electron-ion interaction. For Zr and H,
ultrasoft pseudopotentials of Vanderbilt type have been chosen,
including 4s and 4p electrons as semicore in the case of Zr. The
electronic density of states is broadened with the Methfessel-
Paxton function, with a broadening of 0.3 eV. The integration
is performed on a regular grid of 14 × 14 × 8 k points for the
primitive cell and an equivalent density of k points for larger
supercells. This choice of cutoffs, k mesh, GGA functional
for the exchange correlation, and pseudopotential for Zr and
H have already been validated on the hcp bulk, on vacancy
cluster properties and on hydrogen-vacancy defect interactions
in previous studies [9,46,57,58].

To compare the Kanzaki and residual stress methods for
the various defects, we use supercells of 6 × 6 × 5 repeated
hcp unit cells (i.e., 360 atoms), with full periodic boundary
conditions. Atomic relaxations are performed at constant
volume, using a conjugate gradient algorithm. The force

tolerance is 1.5 meV Å
−1

for the H solute, and 5 meV Å
−1

for the vacancy and the SIA. Note that in the Kanzaki force
technique, all the measured defect-induced forces that are
lower than the tolerance for ionic relaxation were set to zero
for the elastic dipole tensor calculation. When defining the
dipole tensor from the residual stress, we subtract from the
stress of the defective supercell the stress of the perfect crystal
for the same supercell. Although this last contribution should
be zero in theory for a relaxed crystal, a remaining stress
exists in the perfect crystal because of the wave-function-basis
incompleteness. Withdrawing this remaining stress from the
defective supercell allows compensating numerical errors
associated with ab initio calculations and accounting only for
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FIG. 7. Convergence of the elastic dipole components obtained
from the Kanzaki forces with the cutting radius r∞ of the force
summation [Eq. (4)], for the H solute atom, the vacancy, and the
O configuration of the SIA, computed using ab initio calculations.
When computing the Kanzaki forces, only the point defect is restored
in the left figures (approximation 0), whereas the first-neighbor shell
is also restored in the right figures (approximation 1). The horizontal
lines indicate the values deduced from the residual stress and the
vertical lines the radius of the restoration zone.

the stress variation associated with the introduction of the point
defect.

B. Kanzaki vs residual stress method

Figure 7 displays the elastic dipole tensors obtained either
from the Kanzaki forces or from the residual stress for defects
of increasing relaxation magnitudes: the H impurity, the
vacancy, and the O configuration of the SIA.

When the zeroth-order approximation is used, i.e., when
the Kanzaki forces are calculated after a simple removal of the
point defect, the elastic dipole obtained from the summation
on the atomic forces converges to the value deduced from
the residual stress only for the H impurity. The agreement
between both methods is good only for the P33 component for
the vacancy defect, and for none of the dipole components
for the SIA. Going to the first-order approximation and
restoring the first nearest neighbors of the point defect, the
summation of the Kanzaki forces leads to an elastic dipole
closer to the value deduced from the residual stress for the SIA.
But, it does not change the values for the vacancy and indeed
worsens the agreement for the H impurity. With this first-order
approximation, the convergence of the elastic dipole with the
range of the Kanzaki forces, i.e., with the truncation radius r∞
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of the force summation, is hardly achieved. This is especially
true for the P33 component, whatever the point defect. As
previously underlined in empirical potential calculations, the
range of the defect-induced forces increases with the radius of
the restoration zone, and the last force to sum up in the dipole
calculation becomes smaller. This makes it difficult to reach
a converged value with ab initio calculations because of the
small size of the supercell and of the finite precision which
can be obtained on atomic forces. Consequently, increasing
further the size of the defect restoration zone is not a practicable
solution to get rid of anharmonicity and obtain well-converged
values, even for very simple point defects like the H impurity
and the vacancy. The definition of the elastic dipole from the
residual stress appears therefore as the only method leading to
reliable values within ab initio calculations.

C. Variation with supercell size

One remaining question is how sensitive is the elastic
dipole to the size of the supercell. Defining now the elastic
dipole only from the residual stress, we study its variations
with the supercell size for the H impurity, the vacancy, and
the three configurations of the SIA. As shown in Fig. 8,
important variations are seen between the smallest supercell
which contains only 32 lattice sites and the larger ones. But,
the obtained values are quite constant above a given size, above
96 lattice sites for the defect-inducing small relaxations (H and
V) and above 200 lattice sites for the SIA. Such a variation of
the elastic dipole at the small sizes arises from the interaction
of the point defect with its periodic images. Because of the
polarizability of the point defect [59–61], its elastic dipole may
depend on the strain seen by the point defect, and thus on the
strain created by its periodic images. As the strain created by
a point defect is varying as 1/r3, the polarizability associated
with the periodic boundary conditions leads to a value of the
elastic dipole which converges with the inverse of the supercell
volume [23,62]. This corresponds to the behavior observed in
our simulations (see insets in Fig. 8), and taking the limit
1/N → 0 with N the number of atoms in the supercell, or
similarly 1/V → 0, leads to a converged value of the elastic
dipole (see Table I for numerical values).

Regarding finally the largest supercell size for the H
impurity and the vacancy, a decrease of the Pij values is
seen. For these defects with small elastic dipoles, the residual
stress needed to compute the elastic dipole becomes very
small for the 360 atom supercell, less than 40 MPa for the
smallest component of the elastic dipole (P11 	 1.5 eV for
H). Obtaining a higher precision on the stress places high
requirement in convergence criterion for the electronic density
and in the tolerance on forces for ionic relaxation. This would
then result in an important increase of computational time
for these defect computations. A compromise needs therefore
to be found to limit the polarizability influence observed
at small sizes and the stress precision problem inherent to
large sizes.

D. H solute: Comparison with experiments

As already noted by Domain et al. [29] and by Nazarov
et al. [28], the elastic dipole for H impurity deduced from
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FIG. 8. Convergence of the elastic dipole components deduced
from the residual stress computed by DFT with N the number of
atoms in the supercell for (a) the H impurity, (b) the vacancy, and
(c) the BO, (d) O, and (e) BS configurations of the SIA. The insets
show the variation of the elastic dipoles with the inverse of N , with
the straight line corresponding to the 1/N interpolation.

ab initio calculations only partly agrees with experiments.
Mac Ewen et al. [63] observed in Zr an anisotropic expansion
varying linearly with the hydrogen atomic fraction xH and
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characterized by the two coefficients

λa = 1

a

∂a

∂xH
and λc = 1

c

∂c

∂xH
.

They measured λa = (3.17 ± 0.38) × 10−2 and λc = (5.19 ±
0.46) × 10−2 at 727 K, and close values at 777 K. These two
coefficients are simply related to the elastic dipoles as

λa = 1

�

C33P11 − C13P33

(C11 + C12)C33 − 2C13
2 ,

λc = 1

�

−2C13P11 + (C11 + C12)P33

(C11 + C12)C33 − 2C13
2 ,

where � = √
3a2c/4 is the atomic volume. Using the

experimental elastic constants measured at 723 K [64]
and the lattice parameters measured at 700 K [65], our
ab initio values of the elastic dipole for H determined at 0
K (P11 = 1.74 and P33 = 2.92 eV) lead to λa = 2.4 × 10−2

and λc = 11.2 × 10−2. Like previous ab initio studies [28,29],
we obtain a reasonable agreement for the dilatation in the 〈a〉
direction and overestimate the dilatation in the 〈c〉 direction.
As mentioned by Nazarov et al. [28], part of the discrepancy
may arise from limitations of the GGA functional to describe
interaction between Zr and H atoms. A variation with the
temperature of the elastic dipole components, deviating from
their 0-K value, is also possible. Finally, one should not forget
that these theoretical values have been obtained by assuming
that H atoms only occupy the tetrahedral interstitial sites, in
agreement with neutron diffraction experiments performed
at room temperature [53] and inelastic neutron scattering
performed at 873 K [54]. But, recent ab initio calculations
[46,66] have shown that the difference in energy between the
tetrahedral and octahedral (O) interstitial sites is small enough
to allow for a non-negligible occupation also of the O sites at
finite temperature. A proper description of the variations with
temperature of the H concentrations in the different possible
insertion sites necessitates to include vibrations. The harmonic
approximation is not sufficiently precise for this purpose [46],
making difficult their computation. The experimental values
of the lattice expansion induced by H solute atoms measured

at 727 and 777 K could therefore hardly be compared to 0-K
static ab initio calculations in the case of H solute.

V. CONCLUSIONS

The different possible methods to extract elastic dipoles of
point defects from atomistic simulations have been compared.
These elastic dipoles can be obtained from a fitting of the
displacement field, a summation of the Kanzaki forces or
directly from the residual stress. Using various empirical
potentials, we established that, as long as they are carefully
applied, i.e., in a context where the harmonic approximation
is valid and with large enough supercells, all methods lead to
the same elastic dipole values, and this for all the investigated
defects. The definition of the elastic dipole from the residual
stress appears nevertheless as the most convenient one, as
it does not require any additional calculations and does
not need to know the defect position. Besides, it leads to
quantitative estimates of the elastic dipoles even in small
supercells compatible with ab initio calculations, in contrast
to the methods based on the displacement field or the Kanzaki
forces which are not tractable for such small supercells.
The definition from the residual stress appears therefore as
the best way to extract the elastic dipole from atomistic
simulations, in particular from ab initio calculations. By doing
such calculations for different applied strains, one can also
easily study the variation of this elastic dipole with the applied
strain and thus extract the diaelastic polarizability of the point
defect [59,60,67], another key quantity useful for instance
to describe physical phenomena involving the point defect
and a coupling between the strain fields originating from two
different sources.
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