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Mesoscopic pairing without superconductivity
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We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending
on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic
and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy
difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity
parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng
et al. [Nature (London) 521, 196 (2015)], where it marks the critical magnetic field that separates pair and
single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the
BCS side of the crossover.
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In unconventional superconductors, the formation of
Cooper pairs and their condensation do not coincide and there
are pairing signatures in the normal phase (i.e., above the
critical temperature or the critical magnetic field). One picture
that captures such pairing without superconductivity is the
BCS-BEC crossover, which describes the evolution of a Fermi
system from a weak to strong attractive pairing interaction. The
quantitative distinction between BCS and BEC regimes is the
Cooper pair size set by the coherence length ξ = h̄vF /π�

(with vF the Fermi velocity and � the superconducting
gap), which is much larger than the interparticle spacing
on the BCS side, ξn1/d � 1 (n is the electron density and
d the dimension), but decreases rapidly on the BEC side,
ξn1/d � 1. There, Cooper pairs are dimers that can form a
Bose-Einstein condensate but are also present in the normal
state. The BCS-BEC crossover was originally proposed for
superconducting semiconductors such as strontium titanate
(SrTiO3) [1,2], where it is tuned by a change in carrier
density [3–6] (with a BCS regime at large doping and a
BEC regime at small doping). It has gained a lot of attention
over the past decade in applications to ultracold quantum
gases [7–10], and may have some bearing on the pseudogap
physics in high-Tc superconductors [11,12]. In this Rapid
Communication, we explore pairing signatures in mesoscopic
transport experiments, where in addition to the BCS-BEC
crossover, superconductivity can be destroyed by finite level
spacing but pairing signatures remain [13].

The motivations for this work are recent experiments on
SrTiO3 nanowires that measure the conductance oscillations
of a single-electron SrTiO3 transistor [14,15] (see Ref. [16]
for a review). In Refs. [14,15], quantum wires of width 5 nm
and length L = 0.5–1 μm are created at a SrTiO3/LaAlO3

interface and coupled to two leads by tunnel junctions at zero
bias, as sketched in Fig. 1(a). The positions of the conductance
peaks as a function of gate voltage Vg are independent of
an external magnetic field up to Bp = 2 T, above which the
peak Zeeman splits in two with a linear field dependence [14].
As Bp is larger by an order of magnitude compared to the
critical field of a long wire [14] or the interface electron gas

*jbh38@cam.ac.uk

[17], this is interpreted as direct evidence for pairing without
superconductivity, as expected for the BEC side of the BCS-
BEC crossover.

In this Rapid Communication, we propose an alternative
scenario in which the large value of Bp is explained by strong
fluctuations in a mesoscopic BCS-type superconductor rather
than by the BCS-BEC crossover. We show that the critical field
Bp is proportional to the parity parameter [18]

�P = E2l+1 − 1
2 (E2l + E2l+2), (1)

a central quantity in the study of mesoscopic superconductors.
Here, EN denotes the ground-state energy of an N -electron
state in the wire, which (at zero magnetic field) contains
an equal number of spin-↑ and spin-↓ electrons for an even
total particle number (even parity) and an additional unpaired
spin for an odd total particle number (odd parity). Generally,
in systems with attractive interactions, configurations with
an even total particle number have an enhanced stability
compared to configurations with an odd total particle number
[19]—known as the parity effect and illustrated in Fig. 1(b)—
and, hence, the parity parameter is always positive. The parity
effect is observed, for example, in nuclei [19], superconducting
nanograins [20–22], and ultracold Fermi gases [23,24]. The
parity parameter itself, despite its considerable conceptual
importance, has yet to be observed directly in experiment.

In the context of mesoscopic (BCS) superconductors, the
parity parameter was introduced by Matveev and Larkin as a
generalization of the bulk BCS gap �BCS to mesoscopic sys-
tems [18]. For BCS-type superconductors, the parity parameter
has a minimum if the size of the system L is comparable to
the size of a Cooper pair ξ , indicating a crossover between
a bulk superconducting regime (ξ/L � 1) and a mesoscopic
regime (ξ/L � 1) [25]. In the mesoscopic regime, fluctuations
increase the parity parameter as �P /�BCS ∼ ξ/[L ln(ξ/L)]
[18], which can be much larger than the bulk gap [cf.
Figs. 2(a) and 2(b)] and which, as we show in this Rapid
Communication, can account for the large value of Bp.
Separately, there is also an interaction-induced increase of
the parity parameter when moving from the BCS to BEC
regime. Our calculations indicate that the first mechanism due
to mesoscopic fluctuations plays out in the experiment [14].
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(a) (b)

FIG. 1. (a) Schematic of a nanowire single-electron transistor
used in Ref. [14]. (b) Sketch of the ground-state energy of a
two-component Fermi gas without and with attractive interactions.
The ground-state energy of an odd-parity state E2l+1 (with a single
unpaired spin) is larger than the mean of the neighboring even-parity
energies. This is the parity effect.

We begin by introducing a model that describes the
simultaneous bulk-to-mesoscopic and BCS-to-BEC crossover
in an interacting SrTiO3 nanowire. At small doping in the
SrTiO3/LaAlO3 interface, only a single (dxy) band is occupied
[26,27]. A wire with length L in this surface layer forms a
one-dimensional box with energy levels

εj = h̄2π2

2mL2
j 2, (2)

where j = 1,2, . . . and m = 0.7me is the effective dxy band
mass [28]. We include an attractive BCS-type interaction with
strength λ that couples pairs of time-reversed states with
opposite spin and consider the Hamiltonian

Ĥ =
∑
jσ

(εj + σh)ĉ†jσ ĉjσ − λ
∑
ij

ĉ
†
i↑ĉ

†
i↓ĉj↓ĉj↑, (3)

where ĉ
†
jσ creates an electron in state j with energy εj and

spin σ = ±1 (or σ = ↑,↓). An external magnetic field h =
1
2gμBB shifts the single-particle energies through the Zeeman
term, where g ≈ 1.2 is the Landé factor [14] and μB the Bohr
magneton. A dimensionless interaction strength γ is set by the
ratio of interaction energy Eint = λ

4 L2n2 and kinetic energy

Ekin = π2

12
h̄2

m
Ln3 as

γ = mλL

h̄2n
. (4)

The large and small doping regime corresponds to the BCS
and BEC limit (with a weak and strong attractive interaction,
respectively).

The model (3) is an example of a Richardson-Gaudin
model, which can be solved exactly for arbitrary particle num-
bers [29–33]. Since the interacting ground and excited states

evolve adiabatically from their noninteracting counterparts, an
interacting configuration is characterized by the occupation of
states in a box, i.e., by a set {J1, . . . ,Jnp

} of np levels occupied
by pairs and a set B = {{k1,σ1}, . . . ,{kns

,σns
}} of ns levels

occupied by single electrons. B is called the set of blocked
levels because the interaction term in Eq. (3) only couples
empty or doubly occupied states, i.e., singly occupied states do
not participate in the interaction. The N = 2np + ns-particle
wave function of this state is [33,34]

|	N 〉 =
⎛
⎝ ∏

{
,σ }∈B
ĉ
†

σ

⎞
⎠

⎛
⎝

np∏
μ=0

B̂
†
Jμ

⎞
⎠|0〉, (5)

where |0〉 is the vacuum state without particles and

B̂
†
J = λCJ

∑
j 
∈B

ĉ
†
j↑ĉ

†
j↓

2εj − EJ

(6)

with a normalization constant 1/(λCJ )2 = ∑
j 
∈B 1/|2εj −

EJ |2. The wave function is determined by the set of roots
{EJ } that solve the Richardson equations [29,33,34]

1

λ
−

∑
j 
∈B

1

2εj − EJν

+
np∑

μ=1,μ 
=ν

2

EJμ
− EJν

= 0, (7)

which can be solved numerically [32] much more efficiently
than by exact diagonalization of the model (3). The energy of
the state |	N 〉 is given by [29]

EN =
np∑
i=1

EJi
+

∑
{
,σ }∈B

(ε
 + σh). (8)

An important point is that the roots EJ are independent of the
field h, which affects the ground-state energy EN only through
the Zeeman shift of unpaired electrons in blocked levels.

We first discuss the behavior of the parity parameter (1)
along the BCS-BEC crossover. To this end, we solve the
Richardson equations (7) numerically for up to 2000 particles
in an interaction range 0 � λ/ε1 � 2500. In order to compare
few- and many-body regimes with similar pairing behavior, we
determine the parity parameter as a function of total particle
number while keeping both the total density n = N/L and
the dimensionless interaction strength γ fixed. Figure 2 shows
the result of this calculation as a function of inverse particle
number for five interaction strengths γ = 0.8, 1.1, 1.5, 3, and
20. Two main results are directly apparent from the figure:
First, along the BEC-BCS crossover, the parity parameter
increases strongly with increasing interaction strength γ . In
the weak-coupling and strong-coupling limit, the explicit form

FIG. 2. Parity parameter as a function of particle number 1/N for five interaction strengths γ = 0.8, 1.1, 1.5, 3, and 20 (a)–(e). The green
and red dashed lines are given in Eq. (9). The black dashed line is the exact BCS result of Ref. [18]. �P /εF is a function of γ and N only. Note
that at fixed density n and interaction strength γ , decreasing the particle number N increases ξ/L ∼ δε/�BCS ∼ δε/εF = 2/(πN ).
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at large N is

�P

εF

=

⎧⎪⎨
⎪⎩

8 e
− π2

2γ − 2

N
, γ � 1,

γ (γ + 2)

π2
− 8γ

π2N
, γ � 1,

(9)

which are shown as a green dashed line and a red dashed line in
Figs. 2(a), 2(b), and 2(e), respectively. The first term is the bulk
mean-field result and the second term is a finite-size correction.
The bulk limit at weak coupling corresponds to the mean-field
gap �BCS = 8εF e−π2/2γ , which is the energy cost to add an
additional unpaired fermion to a condensate of Cooper pairs.
On the BEC side, however, the bulk parity parameter is equal to
the absolute value of the chemical potential μBEC = −γ 2/π2,
which corresponds to the bound-state energy of a dimer: The
parity parameter generalizes to a pair-breaking energy along
the crossover. Second, on the BCS side for γ � 3, there is a
clear separation between a bulk and a mesoscopic regime as the
particle number is lowered (marked by a minimum in the parity
parameter for ξ ∼ L), and the parity parameter can be much
larger than its bulk value [Figs. 2(a) and 2(b)]. With increasing
interaction strength, however, this minimum is pushed to a
smaller particle number and eventually disappears on the BEC
side—the size of the dimer is so small that no finite-size effects
can be detected even for the shortest wires.

Note that the weak-coupling limit can be connected to mod-
els of mesoscopic pairing for metallic nanograins [18,35–38],
where the total particle number is large and pairing is restricted
to the vicinity of the Fermi surface. Here, an attractive
interaction of the type used in Eq. (3) is combined with equally
spaced single-particle energy levels εj = jδε with j = 0, ±
1, . . . , ± lDebye, where ωD = lDebyeδε is the Debye frequency.
The crossover is studied as a function of δε/�BCS (or δε/ωD)
while keeping the system at half filling, interpolating between
a bulk limit for δε � �BCS and a fluctuation-dominated
limit for δε � �BCS. Using for our model δε = h̄2kF

m
π
L

in
Eq. (9), we have for the first correction in the bulk limit
�P = �BCS − δε

2 , in agreement with the result for nanograins
[18,38]. In the mesoscopic BCS limit, the enhancement of the
parity parameter is �P = δε/[2 ln(δε/�BCS)] � �BCS [18].
This expression is shown as a black dashed line in Fig. 2(a)
and agrees well with our results for smaller γ .

We now turn our attention to the experiment [14] and show
that the parity parameter defines the critical magnetic field
Bp that marks the bifurcation of the conductance peak. For
the quantum wire in contact with the leads and side gate, the
ground-state configuration at zero temperature is obtained by
minimizing [18]

�(V ) = min
N

(EN − V N ), (10)

where V is the electrostatic potential in the wire which depends
linearly on the gate voltage. The charging energy EC = e2/C�

is negligible because of the large dielectric constant of SrTiO3

[39]. Figure 3(a) illustrates the zero magnetic field case using
the exact solution of the Richardson model (3) with λ/ε1 = 2
for three different values of the potential V/ε1 = 7, 7.997 52,
and 9. The thin black lines interpolate between the even-parity
ground-state energies. As in Fig. 1(b), the excess energy of
the odd-parity states (marked by the vertical black lines) is

(a) (b)

10

FIG. 3. (a) Energy EN − V N in the quantum wire as a function
of particle number with λ/ε1 = 2 for three different electrostatic
potentials V/ε1 = 7, 7.997 52, and 9. The minimum marks the ground
state. (b) Ground-state phase diagram in the V -h plane.

the parity parameter (1). A unique minimum of Eq. (10)
determines the ground-state particle number. In this case,
the wire is in a Coulomb blockade regime provided that
kBT < �P . Importantly, because of the parity effect, this
ground state has an even total particle number. In the special
case where V is fine tuned such that Eq. (10) has two minima,
pairs can tunnel on and off the two leads kept at zero bias, and
a pair current will flow. This corresponds to the condition that
the electrostatic potential V is tuned equal to the pair chemical
potential, Vc(N ) = (EN+2 − EN )/2. Since the ground-state
energy of an even-parity state does not depend on the external
field, E2l(h) = E2l(h = 0), this picture is unchanged for weak
fields. However, an odd-parity state lowers its ground-state
energy in a magnetic field through the Zeeman shift of the
unpaired electron [cf. Eq. (8)], E2l+1(h) = E2l+1(h = 0) − h.
This defines a critical field hp above which the even-parity state
is no longer the ground state. Above this field, a single-particle
tunneling current can flow. This is summarized in Fig. 3(b),
which shows the ground-state phase diagram of the wire in
the V -h plane with the same parameter values as in Fig. 3(a).
The vertical line denotes the pair current, and the slanted lines
denote the single-particle current. This is precisely the form
observed in the experiment [14], where a similar qualitative
picture was obtained from a numerical solution of a 16-site
Hubbard chain. From Eq. (8) [and Fig. 3(a)], we see that this
critical field hp is given by the parity parameter

hp = 1
2gμBBp = �P . (11)

This is a central result of this work.
Having gained a microscopic understanding of the critical

field Bp in terms of the parity parameter, we can fit our results
to the experiment [14] to obtain an interaction strength λ and
particle number N . The electrostatic potential in the wire is
related to the gate voltage as V = eαVg with a lever arm
α ≈ 0.1 [14] (we neglect the contribution of the background
charge and lead potentials as they only shift the position of the
conductance peaks). The critical field at which the conductance
peaks split is Bp ≈ 1.8 T [14], corresponding to an energy
hp = 1

2gμBBp ≈ 63 μeV. In addition, the separation �Vg(N )
of two adjacent conductance peaks bordering a Coulomb
blockade region with N particles is �Vg(N ) = − 1

eα
�

(2)
P ,

where �
(2)
P is a pair parity parameter,

�
(2)
P = EN − 1

2 (EN−2 + EN+2), (12)
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(a) (b)

FIG. 4. (a) Ground-state phase diagram of the even-parity system
in a magnetic field with γ = 2. (b) Parity parameter and critical
Clogston field in the bulk limit N → ∞ as a function of interaction
strength γ . Dashed lines indicate the limits of Eq. (9). Inset: Critical
field Bp as a function of particle number for fixed λ/ε1 = 65. Black
lines correspond to the asymptotic limits.

which only depends on even-parity states with �
(2)
P = −(N +

1)ε1 for weak interactions. Experimentally, �Vg ≈ 4.5 mV
from Fig. 2(a) of Ref. [14]. A simultaneous fit of our
calculations to parity parameter and peak splitting gives N =
800–900 with λ/ε1 = 65–75 or γ ≈ 0.4–0.5, respectively.
This particle number corresponds to a typical two-dimensional
density n2D = 1.6–1.8 × 1013 cm−2. The smallness of the
coupling constant γ ≈ 0.4–0.5 puts the system on the BCS
side of the crossover, and with ξ/L ≈ 2–7 (or δε/�BCS ≈
20–70), the wire is in the mesoscopic limit, where the parity
parameter exceeds the bulk gap [cf. Fig. 2(a)], �P /�BCS ≈
3–8 here. Assuming that for a given gate voltage, the
particle density n and effective interaction strength γ do not
change with the length of the wire, the observed order-of-
magnitude enhancement of Bp compared to Bc2 in Ref. [14]
can thus be accounted for by a strong fluctuation-induced
enhancement of the parity parameter in the mesoscopic regime,
which is characteristic of the BCS rather than the BEC regime
(cf. Fig. 2).

We briefly compare the parity parameter with the critical
Clogston magnetic field hc above which the ground state of an
even-parity state has finite polarization p = N↑ − N↓. There is
a fundamental distinction in these scales as the Clogston field
compares the energies of equal-parity states, whereas the parity
parameter compares energies with opposite parity. Figure 4(a)
shows the ground-state phase diagram for fixed parity as a
function of particle number and magnetic field at γ = 2.
The black line is the Clogston field and red lines indicate

transitions between ground states with different polarization.
For finite N , the polarized state contains pairs (i.e., p < N)
and is thus interacting, whereas in the bulk limit of large
N and fixed density, the Clogston field marks the transition
to a noninteracting partially polarized state, as in the BCS
case [40]. For comparison, we plot the parity parameter (blue
line), which is larger than the Clogston field above a critical
particle number, implying that in this regime the bifurcation
of the Coulomb conductance peak will be preempted by
a transition to an equal-parity polarized state. Figure 4(b)
compares the bulk values of the parity parameter and Clogston
field. Both quantities are of comparable magnitude along the
BEC-BCS crossover, and their ratio interpolates between the
standard BCS value hc/� = 1/

√
2 and hc/� = 1 in the BEC

limit.
To further illustrate the strong enhancement of the parity

parameter in the mesoscopic BCS regime, we show in the inset
of Fig. 4(b) the critical field for the fitted parameter values for
different particle numbers, where the black arrow indicates the
previous fit with N = 800. At small γ , the parity parameter
saturates to a constant nonzero value �P = λ

2 given by
perturbation theory (continuous black line), where the dashed
line indicates the logarithmic Matveev-Larkin correction [18].
Since the critical field Bc vanishes exponentially at small γ ,
there is indeed an infinite enhancement of the ratio Bp/Bc as
γ → 0. A similar effect does not exist in the BEC limit.

In summary, we discuss superconductors in the simulta-
neous crossover between the bulk and mesoscopic regime as
well as BEC-type and BCS-type superconductivity. The central
quantity that parametrizes the crossover is the Matveev-Larkin
parity parameter [Eq. (1)], which is enhanced by mesoscopic
fluctuations on the BCS side of the crossover or by an increased
interaction on the BEC side. We point out that the parity
parameter can be observed in recent experiments on SrTiO3

nanostructures [14], where it is linked to the critical magnetic
field that marks the transition between the pair-tunneling
current and single-particle current. Our calculations place
the experiment [14] on the BCS and the mesoscopic side of
the crossover. Given the versatility of current experiments,
this could allow a systematic experimental investigation of
mesoscopic superconductors.
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