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We consider a closed chain of an even number of Majorana zero modes with nearest-neighbor couplings which
are different site by site generically, thus having no crystal symmetry. Instead, we demonstrate the possibility
of an emergent supersymmetry (SUSY), which is accompanied by gapless fermionic excitations. In particular,
the condition can be easily satisfied by tuning only one coupling, regardless of how many other couplings are
there. Such a system can be realized by four Majorana modes on two parallel Majorana nanowires with their ends
connected by Josephson junctions and their bodies connected by an external superconducting ring. By tuning the
Josephson couplings with a magnetic flux � through the ring, we get the gapless excitations at �SUSY = ±f �0

with �0 = hc/2e, which is signaled by a zero-bias conductance peak in tunneling conductance. We find this f

generally a fractional number and oscillating with increasing Zeeman fields that parallel to the nanowires, which
provide a unique experimental signature for the existence of Majorana modes.
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Introduction. The interplay between particle and
condensed-matter physics has proved remarkably fertile for the
development of modern physics [1]. Recently, the longed for
Majorana fermion finds its stage in condensed-matter physics
as a collective excitation [2–5]. A Majorana fermion is a
fermion that is its own antiparticle and described by a real
solution of the Dirac equation. In a group of materials called
topological superconductors which have spin-triplet Cooper
pairing, there are gapless excitations that are a mixture of elec-
trons and holes with equal amplitude and spin direction, and
thus can be regarded as Majorana fermionic modes. Unpaired
Majorana modes can stay at well-separated topological defects
and each of the modes is immune to the local disturbance due
to topological protection, which provide a promising platform
for decoherence-free quantum computation [4]. Because spin-
triplet superconductors are rare in nature, it is convenient to
construct the effective Hamiltonian through heterostructures,
for example with spin-orbital coupling (SOC), Zeeman field,
and superconductivity combined [6–10], where phenomena
that can be explained by Majorana modes have been observed
in many experiments [11–19].

Meanwhile, supersymmetry (SUSY) is a symmetry that
relates bosons and fermions, and extends the Standard Model
by finding a brother of every known elementary particle with
a difference of a half spin [20–23]. Although SUSY was
initially proposed to solve the hierarchy problem in particle
physics, it has later been proposed in many nonrelativistic
condensed-matter systems such as interacting spin systems,
cold atoms, and topological matters [24–41]. In particu-
lar, SUSY in quantum mechanics appears in time-reversal-
invariant topological superconductors and Majorana models
with translational symmetry, in which the time-reversal and
translational operator changes the fermion parity, thus playing
the role of a supercharge [29,38].

In this work we show an experimentally accessible SUSY
in a closed chain of coupled Majorana modes without any
crystal symmetries, which is different from previously studied
translational invariant systems [38]. Specifically, we consider
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an even number of Majorana modes with nearest-neighbor
couplings as shown in Fig. 1(a). Different from an open chain
where the couplings inevitably split the zero-energy levels, we
can obtain a nonlocal zero-energy Dirac fermion, resulting in
double degeneracy between states of opposite fermion parities
at all energy levels, which can be interpreted as a SUSY in
quantum mechanics.

We find that despite the large number of couplings, the
SUSY can be reached by tuning only one coupling, which
is convenient for experimental realization. The signature of
SUSY is a zero-bias peak in tunneling conductance. We design
a setup with two parallel Majorana nanowires with their ends
linked by Josephson junctions, thus obtaining a closed chain
of four Majorana modes with nearest-neighbor couplings. By
putting this setup as a part of a superconducting quantum
interference device (SQUID) as shown in Fig. 1(b), we can
use the magnetic flux � to tune the Josephson couplings
between Majorana modes on different nanowires. In this way,
we reach the SUSY at �SUSY = ±f �0 with f a fractional
number in general. In particular, this f oscillates with the
Zeeman field that induces the topological superconductivity,
which is related to the oscillation of energy splitting caused by
hybridization of Majorana modes on a single nanowire [42].
This fractional number f and its oscillation should be observ-
able in experiments, which provide an indirect demonstration
of the existence of Majorana modes.

Supersymmetric closed chain. We show the closed chain in
Fig. 1(a) where each Majorana mode γj couples to its nearest
neighbors with arbitrary strength. We consider an even number
of Majorana modes because every operator of a Dirac fermion
is expressed in terms of two Majorana operators, which makes
the even number a natural case. The effective Hamiltonian is
given by

H = i

2N∑
j=1

tj γjγj+1 = i

2
�T A�, (1)

where tj is the coupling strength, γ2N+1 = γ1, � =
(γ1,γ2, . . . ,γ2N )T , and A is the corresponding coupling
matrix. We do not require any crystal symmetries such
as translational, reflection, or inversion symmetry for the
Hamiltonian. Therefore, generically the Hamiltonian cannot

2469-9950/2017/96(22)/220504(5) 220504-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.220504


RAPID COMMUNICATIONS

ZHAO HUANG, SHINJI SHIMASAKI, AND MUNETO NITTA PHYSICAL REVIEW B 96, 220504(R) (2017)

FIG. 1. (a) Closed chain of 2N Majorana modes with nearest-
neighbor couplings without requiring any crystal symmetries. (b)
Schematic figure of setup to realize supersymmetry. There are two
nanowires (blue) with their ends connected by Josephson junctions
(yellow) and bodies connected by an external superconducting ring.
The phase shifts across the junctions are controlled by the magnetic
fluxes penetrating through the ring. The Zeeman fields parallel to
the nanowires are to induce the Majorana modes noted as γ1, γ2, γ3,
and γ4. There is a reference junction (gray) to suppress the phase
fluctuation.

be solved analytically, but an important question is whether
exact solutions for low-energy excitations are available in
some special occasions. By obtaining the determinant of the
coupling matrix Det(A) = (t1t3 · · · t2N−1 − t2t4 · · · t2N )2, it is
straightforward to find the existence of zero eigenvalues at the
condition

N∏
j=1

t2j−1 =
N∏

j=1

t2j , (2)

which can be easily reached by tuning only one coupling.
The open chain indicates only one coupling as zero, which
by no means satisfies the above condition and thus no gapless
excitation is available.

There are at least two orthogonal zero-energy eigenstates
due to the particle-hole symmetry and they are written as

γ ′ = |X1|−1X1�, γ ′′ = |X2|−1X2� (3)

with X1=(1,0,t1/t2,0,t1t3/t2t4, . . . ,
∏N−1

j=1 t2j−1/
∏N−1

j=1 t2j ,0)

and X2 = (0,1,0,t2/t3,0,t2t4/t3t5, . . . ,
∏N−1

j=1 t2j /
∏N−1

j=1 t2j+1).
Here γ ′ and γ ′′ are two nonlocal Majorana zero modes with
wave functions on the whole ring, and combine into a nonlocal
gapless Dirac fermion c = (γ ′ + iγ ′′)/2.

Now we show all energy levels are at least doubly
degenerate. Here we notice that the energy level here means
the eigenenergy in many-particle space, not the single-particle
excitation energy. We first define the fermion parity operator
P = (−i)N

∏2N
j=1 γj , for which we have [P,H ] = 0 and

γ ′Pγ ′ = γ ′′Pγ ′′ = −P. (4)

Given [γ ′,H ] = [γ ′′,H ] = 0, at all energy levels there are two
degenerate states |ϕ〉 and γ ′|ϕ〉 which have opposite fermion
parity due to Eq. (4). It is obvious that the degeneracy comes
from adding or eliminating one zero-energy Dirac fermion
since γ ′ = c + c†, which does not change the total energy but
reverses the parity.

This degeneracy can be interpreted as a SUSY in quantum
mechanics. By adding a constant to the Hamiltonian to make
all energy levels positive, we can find two fermionic operators

Q1 = γ ′√H, Q2 = γ ′′√H, (5)

which satisfy the algebra

{P,Qi} = 0, {Qi,Qj } = 2δijH (6)

with i,j ∈ {1,2}. Therefore, our Hamiltonian exhibits an
N = 2 supersymmetry [43,44] with zero superpotential since
there are two supercharges Q1,2 that generate the transfor-
mation |ϕ〉odd = E

−1/2
ϕ Q1,2|ϕ〉even. Here |ϕ〉even and |ϕ〉odd

are the degenerate eigenstates that satisfy P |ϕ〉even = |ϕ〉even

and P |ϕ〉odd = −|ϕ〉odd, and Eϕ is the eigenenergy.
√

H can
be obtained by diagonalizing the Hamiltonian in the many-
particle space and then take the square root of the diagonal
matrix. The explicit form of Q1,2 and

√
H are provided in [45]

for the case of four Majorana modes.
The degeneracy of states with opposite parities enables

the resonant tunneling of a single electron at zero voltage
bias [38,46,47] and thus a conductance peak appears as the
signature for the SUSY here. In the following we propose a
setup with one-dimensional (1D) topological superconductors
to realize a supersymmetric closed chain and explore relative
novel phonemena.

Experimental realization. Because 1D topological super-
conductors have relatively large minigaps [48] and candidate
materials such as semiconducting nanowires with proximity-
induced superconductivity have been fabricated successfully,
we adopt two such nanowires to form a closed chain of four
coupled Majorana modes. As shown in Fig. 1(b), on a big
superconducting ring there are two parallel nanowires (blue)
with their ends connected by Josephson junctions (yellow).
There is a Zeeman field in the x direction parallel to the
nanowires to induce the topological superconductivity and
four Majorana modes γ1,2,3,4 residing at the ends. An applied
magnetic flux � in the z direction penetrates through the ring to
tune the phase shift across the interwire Josephson junctions.
This field is much smaller than the field along the nanowire.
There is also a reference junction with high impedance and
Josephson energy to suppress the phase fluctuation and ensure
the phase drop mainly across the interwire junctions.

We first consider a simple but important case that the two
wires are identical, but the two junctions can be different. The
explicit Hamiltonian is given by H = HL + HR + H� where

Hβ =
∫ l

0
dxψ

†
βσ (x)

(
− ∂2

x

2m∗ −μ+iασy∂x +Vxσx

)
σσ ′
ψβσ ′(x)

+
∫ l

0
dx[|�|eiθβ ψ

†
β↑(x)ψ†

β↓(x) + H.c.] (7)

with β = L,R, which is the Hamiltonian for each nanowire
with length l which combines SOC with strength α, Zeeman
energy Vx , and superconductivity with a gap function |�|eiθβ ,
and

H� =−
∑

σ=↑,↓
[�0ψ

†
Lσ (0)ψRσ (0)+�lψ

†
Lσ (l)ψRσ (l)+H.c.] (8)
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describes the the single-electron tunneling across the junctions
with strength �0,l > 0. The phase shift across the junctions is
given by θ = θR − θL = 2π�/�0.

To conveniently analyze the couplings between Majorana
modes, we adopt the Kitaev’s model on a 1D spinless p-wave
superconductor [4] which captures the nature of topological su-
perconductivity in the nanowires. The Hamiltonian is given by
H ′ = H ′

L + H ′
R + H ′

� where H ′
β = ∑n−1

x=1(−wa
†
β,xaβ,x+1 +

|�p|eiθβ a
†
β,xa

†
β,x+1 + H. c.) which describe the left and right

spinless p-wave superconductor with w the hopping inte-
gral and |�p|eiθβ the superconducting gap functions, and
H ′

� = −�′
0a

†
L1aR1 − �′

la
†
LnaRn + H.c. with �′

0,l > 0, which
describes the interwire single-particle tunneling across the
junctions [48]. We define aβ,x = eiθβ/2(ibβ,2x−1 + bβ,2x) with
bβ,2x−1 and bβ,2x the Majorana operators.

We first consider the case w = |�p| that the Majorana
modes stay locally at the edge site, which means that we can
write aL1 → i 1

2eiθL/2γ1, aLn → 1
2eiθL/2γ2, aR1 → i 1

2eiθR/2γ4,
and aRn → 1

2eiθR/2γ3 [48,49], leading to H ′
� = it2γ2γ3 +

it4γ4γ1 with t2 = �′
0

2 sin θ
2 , t4 = −�′

l

2 sin θ
2 which indicates

t2t4 < 0. When w 
= |�p|, the wave functions of Majorana
modes exponentially decay from the edges into the bulk,
leading to reduced amplitude at the edges. As a consequence,
t2 and t4 should be reduced by multiplying a factor g < 1,
but their relative sign does not change. On the other hand,
we have the couplings t1γ1γ2 and t3γ3γ4 because the decayed
Majorana modes on the same wire inevitably overlap in any
realistic wires with finite length. Considering that the two wires
are identical, we have γ4 identical to γ1 and γ3 identical to γ2

in terms of their locations in Fig. 1(b), and the couplings
t1γ1γ2 and −t3γ4γ3 should also be equivalent, leading to
t1 = −t3. Since such intrawire hybridizations correspond to
energy splittings ε1 = |t1| and ε3 = |t3|, we have

t2t4

t1t3
= g2�′

0�
′
l

4ε2
1

sin2 π�

�0
, (9)

which indicates that t1t3 = t2t4 can be obtained by tuning �

when g2�′
0�

′
l/4ε2

1 � 1. Accordingly, the zero-energy excita-
tions appear at

�SUSY = ±�0

π
arcsin

2ε1

g
√

�′
0�

′
l

. (10)

Here we should notice that the change of wave functions of the
Majorana modes due to these weak couplings are ignorable,
which is the reason why we can analyze the couplings
separately.

Now we numerically solve the Hamiltonian of nanowires
in Eqs. (7) and (8) to testify the above analysis. Let us explore
the lowest-energy spectra with respect to the magnetic flux. By
using the substitutions xα = m∗αx, Eα = m∗α2 to recast the
Hamiltonian into a dimensionless form and then solving the
corresponding tight-binding Bogoliubov–de Gennes (BdG)
equations, we obtain the lowest-energy spectra as shown in
Fig. 2(a). The three curves correspond to three groups of
parameters which have different �0,l but the same �0�l .
At the magnetic flux around �SUSY ≈ ±0.213�0 all three
curves reach zero, which indicates the emergence of SUSY.
We get unchanged �SUSY when keeping �0�l constant. This

FIG. 2. Emergent SUSY tuned by fluxes through the SQUID.
(a) Lowest-energy spectra with respect to magnetic fluxes through the
SQUID. The red, green, and black curves, respectively, correspond
to {�0,�l} = {3,3}, {4,2.25}, and {5,1.8}, which give the same �0�l

and reach zero at the same flux �SUSY ≈ 0.213�0 where SUSY is
obtained (blue circles). The other parameters are μ = 0,Vx = 5, α =
1, |�| = 1, and L = 15 which is discretized into 180 sites. (b) Flux
dependence of t2t4/t1t3. t1t3 = t2t4 coincides with the appearance
of gapless excitations. (c) Oscillatory dependence of �SUSY on
Zeeman energy Vx . We use {�0,�l} = {4,2.25} for (b) and (c). (d)
Energy splitting due to hybridization of Majorana modes in the same
nanowire at different Zeeman energy.

property is reflected in Eq. (10) in the form that �′
0�

′
l is the

characteristic value not the �′
0 and �′

l separately. If we consider
an additional small amount of flux threading the space between
two nanowires, which is a situation in real experiments, �SUSY

is shifted a little to recover the SUSY [45].
Now we numerically obtain t2t4/t1t3 to check the corre-

spondence between t2t4 = t1t3 and the appearance of SUSY.
We first consider a single nanowire where only the coupling
it1γ1γ2 or it3γ3γ4 is available. By solving HL with the
parameters given in Fig. 2(a), we obtain |t1| = ε1 ≈ 0.0139.
We have |t3| = |t1| because two nanowires are the same. The
situation with only it2γ2γ3 can be found in the setup with two
long nanowires (t1 = t3 ≈ 0) and �0 = 0, and then we obtain
|t2| = ε2 ≈ 0.0297| sin(π�/�0)| for �l = 2.25, where E2 is
the first finite-energy excitation. Similarly we get |t4| = ε4 ≈
0.0167| sin(π�/�0)| for �0 = 4. Considering the same sign of
t1t3 and t2t4, we obtain t2t4/t1t3 ≈ 2.57 sin2 π�/�0 which is
consistent with Eq. (9). By drawing this relation in Fig. 2(b), we
can observe an exact correspondence between t3t4 = t1t2 and
the appearance of gapless excitations by comparing Figs. 2(a)
and 2(b), which proves that our setup can realize a closed chain
of Majorana modes with nearest-neighbor coupling where the
SUSY can be obtained.

Oscillation of �SUSY as signature of Majorana modes. Let
us study the dependence of �SUSY on the Zeeman energy
Vx . Since the Majorana wave functions depend on Vx , so do
tj and t2t4/t1t3 as well. As a consequence, when we change
Vx after obtaining t1t3 = t2t4, this equality should be rebuilt
by finding a new �SUSY in general. For a typical group of
parameters, we get oscillatory curves for �SUSY(Vx) as shown
in Fig. 2(c), which has three noteworthy features. First of
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FIG. 3. (a) Oscillatory dependence of energy splitting on Zeeman
energy in different nanowires. (b) Smallest value of lowest-energy
excitations within � ∈ [0,�0] at different Vx . Red lines show the
regime where gapless excitations are available. We use {�0,�l} =
{3,3} and other parameters are the same as Fig. 2.

all, the curves oscillate in a similar way to ε1(Vx) shown
in Fig. 2(d), indicating t1 and t3 as the dominant role in
changing �SUSY. Moreover, the curves repeat in every regime
of � ∈ [m,m + 1]�0 with m an integer and are symmetric
with respect to the axies � = m�0,m�0/2 because t2t4/t1t3 ∝
sin2(π�/�0) is an even function of � with a period of �0.
Here Fig. 2(c) is for the regime with m = 0. Last but not
least, with increasing Vx the lower and upper curves reach
�SUSY = 0.5�0 as noted by the blue circle in Fig. 2(c) and
then �SUSY do not exist within a range of larger Vx where the
increased ε1 makes 2ε1/g

√
�′

0�
′
l > 1 in Eq. (10).

This phenomenon, that fluxes realizing zero-bias conduc-
tance peak oscillate with Vx with the above three features,
serve as a signature to test the existence of Majorana mode.
To emphasize, the conductance peak is not blurred by extra
Cooper-pair tunneling through the junctions, showing its
advantage over the fractional Josephson effect on detecting
Majorana modes. Moreover, since the current-phase relation
is not explored here, the parity conservation is not required
for the observation of �SUSY. Since the oscillation of zero-
energy splitting with the Zeeman fields has been observed
experimentally in a 0.9 μm InAs nanowire with an epitaxial
aluminium shell [16], the same nanowires can be adopted
for our proposal and the corresponding oscillation of �SUSY

should be observed if that splitting is caused by hybridization
of Majorana modes.

So far, we have focused on the setup with two same
nanowires. Now we study the case with different nanowires
by increasing the strength of spin-orbital coupling of the right
nanowire by 10%. We find different oscillation curves of
energy splitting compared with the unchanged left nanowire,
as shown in Fig. 3(a). In particular, the two curves touch zero at
different Vx . Because touching zero indicates a sign change of
the corresponding t1 or t3 [42,50–52], the sign of t1t3 oscillates
as well with the Zeeman energy. On the other hand, the sign
of t2t4 is fixed, which means that t1t3 and t2t4 have opposite
signs in some regimes of Vx where SUSY cannot be obtained.
To testify to this, we numerically study the smallest value of

the lowest-energy excitations within � ∈ [0,�0] at different
Vx and the energy spectra are given in Fig. 3(b). The gapless
excitations are available in separated regimes with boundaries
where the sign of t1t3 reverses. For Vx outside these regimes,
all excitations are gapful. In particular, for the cases with
�0 = �l , we can prove that the smallest values are obtained
at t2 = t4 = 0, i.e., � = 0, and the value is the smaller one
between |t1| and |t3| [45].

Summaries and discussions. In this Rapid Communication,
we have proved a supersymmetry in a closed chain of
nearest-neighbor coupled Majorana modes by tuning only one
arbitrary coupling. We have adopted two nanowires with ends
connected by Josephson junctions as a setup for experimental
realization of a closed chain of four coupled Majorana
modes. By using a magnetic flux � to tune the Josephson
couplings, we have obtained the supersymmetry at � =
m�0 ± �SUSY which is signaled by a zero-bias conductance
peak. In particular, �SUSY has an oscillatory dependence on
the Zeeman field parallel to the nanowires, which is a unique
phenomena and clear evidence for the existence of Majorana
modes.

Oscillation of zero-energy splitting and fractional Joseph-
son effect are two nontrivial phenomena of Majorana modes.
Due to the complexity of real experiments, mechanisms other
than Majorana modes may also realize either phenomenon,
but their chances to realize both phenomena together should
be much less. Therefore, the oscillatory �SUSY, which is based
on the interplay of the two phenomena, is a more convincing
signature for the existence of Majorana modes than the two
phenomena working separately. Our system thus has a large
potential to help facilitate notable progress in the experimental
study of topological superconductivity.

Apart from the setup shown in Fig. 1(b), there are other
possible methods to realize our proposal with cutting-edge
techniques. Recently a wirelike thin layer Al has been
produced lithographically on a two-dimensional layer of
electron gas in order to fabricate a one-dimensional topological
superconductor [53]. The same technique can be adopted to
fabricate two parallel 1D topological superconductors with
ends connected by deposited insulating barriers. Another
method is to apply a gate voltage along the centerline of
the nanowire to push the electron gas to the right and left
surfaces, which effectively “cut” one nanowire into two
parallel one-dimensional electron gases [54], thus achieving
four Majorana modes on a single wire. Moreover, four nearest-
neighbor coupled Majorana modes are realized as natural
situations for the second-order topological superconductors,
which is a superconducting generalization of square second-
order topological insulators with four corner states [55–57].
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