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Superconducting states for semi-Dirac fermions at zero and finite magnetic fields
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We address the superconducting singlet state of anisotropic Dirac fermions that disperse linearly in
one direction and parabolically in the other. For systems that have uniaxial anisotropy, we show that the
electromagnetic response to an external magnetic flux is extremely anisotropic near the quantum critical point of
the superconducting order. In the quantum critical regime and above a critical magnetic field, we show that the
superconductor may form an exotic smectic state, with a stripe pattern of flux domains.
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Introduction. Semi-Dirac metals form a class of two-
dimensional (2D) systems with chiral quasiparticles that
disperse linearly in one direction and quadratically in a
different direction [1]. In the presence of spin-orbit coupling,
the zero energy crossings of the Dirac cones remain protected
by space group symmetries of the crystal [2] and may have
a nonzero Chern number [3,4]. Examples of semi-Dirac
metals include a variety of systems, including VO2/TiO2

heterostructures [3,5], and strained crystals such as graphene
and black phosphorus, which can undergo a topological phase
transition towards a semi-Dirac phase [6,7]. Semi-Dirac cones
have been experimentally realized on the top layer of black
phosphorus under electric field effects, which tune the system
from a trivial band gap insulator to a band inverted system [8].

In this Rapid Communication, we explore the properties of
s-wave singlet states for semi-Dirac fermions in the vicinity
of a quantum critical point (QCP). We show that semi-
Dirac fermion superconductors have an exotic electromagnetic
response to an applied magnetic flux. Due to the anisotropy of
the quasiparticles, the stiffness of the order parameter to the
penetration of a magnetic flux can be highly anisotropic near
the QCP. In that regime, we show that semi-Dirac metals with
uniaxial anisotropy can effectively behave as type-I supercon-
ductors along one direction, and as type-II superconductors
in the other. As a result, instead of vortices, the system may
form a smectic state with stripes of superconducting domains
intercalated by thin normal strips of magnetic flux [9].

Hamiltonian. For concreteness, we start from a two-orbital
model on a square lattice,

H0(k) ≡ g(k) · �σ , (1)

where g = (gx,gy,gz) is a vector with components gx(k) =
4t ′(cos kx − cos ky)2, gy(k) = 0, and gz(k) = 2t(cos kx +
cos ky), t and t ′ are effective hopping parameters, k is the
momentum with respect to the center of the square Brillouin
zone, and σx and σz are Pauli matrices in the orbital space
[1]. The low-energy Hamiltonian is described by semi-Dirac
fermions around four nodal points k0 = (± 1

2 , ± 1
2 )π , with

H(+)
0,α(p) = p2

x

2m
σx − αvpyσz ≡ h+,α(p) · �σ , (2)

describing the pair of nodes at k0 = α( 1
2 , 1

2 )π (α = ±), where
p is the momentum away from the nodes (we set h̄ → 1),
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with px and py as momentum coordinates along the two
diagonal directions (1,1̄) and (1,1), respectively. m is the
mass of the quasiparticles that disperse quadratically with
momentum px along one direction and v gives the Fermi
velocity of the quasiparticles that disperse linearly along
the perpendicular direction. The other two nodes at k0 =
α( 1

2 , − 1
2 )π are described by the low-energy Hamiltonian

H(−)
0,α(p) = −αvpxσx + p2

y

2m
σz ≡ h−,α(p) · �σ . (3)

In both sets of pairs, opposite nodal points are related by
time-reversal symmetry (TRS).

The Bogoliubov–de Gennes Hamiltonian for Eq. (1) is

HBdG(k) =
(
H0(k) �̂

�̂ −T H0(k)T −1

)
, (4)

where the 2 × 2 matrix �̂ gives superconducting order param-
eter matrix elements in the orbital space and T H0(k)T −1 =
H0(k) is the TRS operation of the Hamiltonian.

In the singlet state, there are two possible pairing channels.
The first one is the intraorbital pairing state, with pairing matrix
elements �̂ = �σ0, which result in a fully gapped low-energy
spectrum

±Ep = ±
√

h2(p) + �2, (5)

with h(p) = |h(p)| (the valley indices are omitted). The
second channel is the interorbital pairing state, �̂ =
�σx , which leads to gapless superconductivity, ±Ep,s =
±√

h2
x(p) + [hz(p) + s�]2, with s = ± indexing two addi-

tional branches, shown in Fig. 1(b). For a given attractive
interaction, the fully gapped state lowers the free energy of
the system more than the gapless one by pushing the energy
states down towards the bottom of the band, as shown in
Fig. 1(a). In this Rapid Communication, we will focus on
the dominant instability and address the thermodynamic and
electromagnetic properties of the fully gapped state.

Critical behavior. The free energy of the superconducting
state is F (T ) = �2/g − T

∑
k,γ log{2 + 2 cosh(γEk/T )},

with γ = ± indexing the particle and hole branches of the
spectrum, respectively, T is the temperature, and g > 0 is the
effective attractive interaction that leads to the formation of
Cooper pairs. At the mean field level, minimization of the free
energy with respect to � (assumed to be real) gives the standard
BCS equation of state g−1 = ∑

q tanh ( 1
2T

Eq)/2Eq. Using
the parametrization where hx(p) = p2

x/2m = h cos θ and
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FIG. 1. Energy spectrum of the superconducting singlet states
of semi-Dirac fermions. (a) Intraorbital pairing state, which is fully
gapped around each nodal point. (b) Interorbital state, where the
nodes split and remain gapless. The gapped state is dominant.

hz(p) = vpy = h sin θ , with θ ∈ [−π
2 , π

2 ], the density of states
can be written in terms of the Jacobian of the transformation
(px,py) → (h,θ ) [10],

ρ(h,θ ) = N0

8π2

√
2mh

v cos θ
. (6)

Integration in θ gives the actual density of states, ρ(h) =
2
∫ π/2
−π/2 dθρ(h,θ ) = ρ0

√
h, where ρ0 = √

mN0K( 1
2 )/(π2v),

with K( 1
2 ) ≈ 1.85 an elliptic function and N0 is the node

degeneracy.
At zero temperature and half filling, the phase transition is

quantum critical due to the vanishing density of states (DOS)
at the nodal point [11–13]. Near the QCP, the mean-field zero-
temperature gap scales with the coupling as

�(0,g) = 1

(c1ρ0)2

(
1

gc

− 1

g

)2

θ (g − gc), (7)

where c1 = 	2( 3
4 )/

√
π ≈ 0.85, with 	(x) a gamma function,

and gc = 1/(
√


ρ0) is the critical coupling defined in terms
of the effective energy bandwidth 
. In the gapless state,
the critical coupling is g′

c = 3/(
√

2
ρ0) > gc, and hence the
gapped instability clearly prevails. In the two-band model
(1) where m−1 = 16t ′, v = 2

√
2t , and 
 ∼ 2t , then gc/t =

8π2/[N0K( 1
2 )]

√
t ′/t . In the limit where t ′/t ≪ 1, the critical

coupling can be small enough to allow the QCP physics to be
accessed experimentally. In general, since gc ∝ v/

√
m scales

with the velocity and mass of the quasiparticles, the critical
coupling can be further lowered with strain effects [14].

The mean-field critical temperature is given by Tc(g) ≈
c2

1�(0,g), as shown in Fig. 2. In the critical regime,

�(T ≈ Tc,g) ≈ 2.02 �(0,g)

√
Tc

T
− 1. (8)

The specific heat at fixed volume is defined as CV =
−T d2F/dT 2. At the phase transition, the specific heat jump
normalized by the specific heat in the normal side of the
transition is universal, δCV ≈ 0.71 [15]. In the case of Dirac
fermions in 2D (graphene), δCV ≈ 0.35 [16], while in the
Fermi liquid case δCV ≈ 1.43 [17].

Supercurrent. To calculate the Meissner response to an
external magnetic flux, we include a vector potential A in

FIG. 2. Phase diagram of temperature (in units of the cutoff 
)
vs coupling for the fully gapped state in the vicinity of the QCP
at g = gc. The order parameter scales as � ∝ (1 − gc/g)β near the
QCP, with β = 2 in mean field.

Hamiltonian (4) in the Coulomb gauge, explicitly breaking
TRS, T H0(k − e

c
A)T −1 = H0(k + e

c
A). When the Fermi

level is at the neutrality point, the energy spectrum can be
calculated analytically,

Ek,s(A) =
√

g2
D + g2

ξ + �2 + 2s

√
(gD · gξ )2 + g2

ξ�
2, (9)

with s = ±, and gD,ξ = |gD,ξ |, with gD,ξ (k) =
1
2

∑
s=± sqg(k − s e

c
A), where q = 0,1 describe the

symmetric (D) and antisymmetric (ξ ) combinations in
the vector potential, respectively.

The calculation of the supercurrent from Eqs. (1) and
(4) can be done in a very general way for any arbitrary
vector g = (gx,gy,gz) defined in terms of generic functions
of momenta gi(k), i = x,y,z, provided TRS is preserved
at zero field. From the minimal coupling between currents
and electromagnetic fields, HI = 1

c
j · A, the current oper-

ator is j = c∂HBdG/∂A. The supercurrent in the London
limit is 〈j〉 = −c tr 1

β

∑
iω,k∈BZ [∂AHBdG(k,A)]Ĝk(iω), where

Ĝk(iω) = [iω − ĤBdG(k,A)]
−1

is the Green’s function.
In leading order in the vector potential, the diamagnetic

response in the Coulomb gauge is given by 〈ji〉 = KijAj ,
where Kij is the London kernel. For anisotropic supercon-
ductors that preserve inversion symmetry, the kernel has the
form Kij = (δij − k̂i k̂j )Qj , with k̂ a unitary vector [18].
The off-diagonal components of the kernel result from phase
modes [19], which ensure that the static continuity equation
k · 〈j〉 = 0 is satisfied in the Coulomb gauge. Alternatively,
we can simply fix the gauge in such a way that 〈ji〉 = QiAi .
After a proper regularization of the deep energy states at the
bottom of the band [20], which is done by imposing periodic
boundary conditions at the edge of the Brillouin zone [18], the
London kernel per node is

Qi = e2

h̄2c
�2

∑
p

∂Ep

[
tanh(Ep/2T )

Ep

]
[∂pi

h(p)]2

Ep
, (10)

restoring h̄. Although 〈ji〉 is calculated in a fixed gauge, gauge
invariance is restored by screening effects [21], which preserve
the transversality condition of the supercurrent, k · 〈j〉 = 0,
irrespective of the gauge choice [22].
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FIG. 3. Anisotropy δ ≡ Qx/Qy per node times mv2/
 vs cou-
pling �(T0,g) (in 
 cutoff units) for different temperatures T0. T0/


ranges from zero (orange line) to 0.025 in 0.0025 steps. At T0 = 0, δ

scales to zero at the QCP. In that limit, the Meissner response becomes
quasi-one-dimensional.

In the semi-Dirac case, the supercurrent due to each node
is anisotropic, as expected, with

〈jx〉(T ) = e2

h̄2c

	2
(

3
4

)
π5/2

�1(T )
1√
mv

Ax, (11)

and

〈jy〉(T ) = e2

h̄2c

K
(

1
2

)
2π2

�0(T )
√

mvAy, (12)

where �n(T ) = �2
∫ ∞

0 dh hn
√

h 1
E
∂E[tanh ( E

2T
)/E], with

E = √
h2 + �2. This integral can be analytically calculated in

the zero-temperature limit and close to the critical temperature,

�0(T ) = −
⎧⎨
⎩

1√
π
	2

(
3
4

)√
�, for T = 0,

a0
�2(T )

(2T )
3
2
, for T ≈ Tc,

(13)

where a0 = ∫ ∞
0 dx x− 3

2 [x−1 tanh x − sech2 x] ≈ 0.79, and

�1(T ) = −
{

1
4
√

π
	2

(
1
4

)
�

3
2 , for T = 0,

a1
�2(T )√

2T
, for T ≈ Tc,

(14)

with a1 = 1
2

∫ ∞
0 dx x− 3

2 tanh x ≈ 1.91.
Near the critical temperature, the kernel anisotropy

δ(T ,g) ≡ Qx/Qy ∝ Tc(g)/(mv2) scales linearly with Tc and
vanishes at the QCP. In the zero-temperature limit, δ(0,g) ∼
�(g)/(mv2), and hence the anisotropy δ(0,g) → 0 linearly
with the gap as one approaches the QCP at g = gc (orange line
in Fig. 3). In that limit, the system is extremely anisotropic
[23], with relativistic quasiparticles carrying a supercurrent
along the direction of linear dispersion. In Fig. 3, we show
the plot of the anisotropy per node δ versus the gap �(T0,g)
for fixed temperatures T0. When � � T0, the kernel Qi has
a crossover from the anomalous zero-temperature scaling
regime, Qx ∝ �

3
2 , Qy ∝ √

�, to the standard BCS scaling,
Qi ∝ �2, where the anisotropy δ(T0,g) saturates to a constant.

Quantum fluctuations. Allowing the condensate to flow
with momentum ks = (kx,ky), we expand the free energy at
zero temperature in powers of the order parameter φ and ks .
The Ginzburg-Landau (GL) free energy, which fully includes

fluctuation effects, is

FGL =
(

cxk
2
x√

mv
|φ| 3

2 + cy

√
mvk2

y

√
|φ|

)
+ r(g)φ2 + u|φ| 5

2 ,

(15)

where φ = � + δφ gives the order parameter
around the saddle-point solution � in Eq. (7),
r(g) = (g−1 − g−1

c ), u = 4
5c1ρ0, cx = N0	

2( 3
4 )	2( 1

4 )/32π3,

and cy = N0K( 1
2 )	2( 3

4 )/16π
5
2 .

At finite magnetic field, ks = −(2e/h̄c)A by a suitable
gauge choice. Near the QCP, the GL supercurrent js =
c∂FGL/∂A independently recovers Eqs. (11) and (12) at
T = 0. Hence, the anisotropic quantum critical scaling of the
London kernel with φ, namely, Qy ∝ √|φ| and Qx ∝ |φ| 3

2 ,
persists near the QCP, where quantum fluctuations dominate.

Because the free energy (15) has nonanalytic terms both in
the kinetic energy and in the interaction term u, one cannot
expand in the fluctuation fields δφ in order to integrate them
out and calculate the quantum fluctuation corrections to the
scaling of �(0,g) ∝ (g − gc)β , with β = 2 in mean field [24].
Instead, one needs to resort to field theoretical methods [25,26],
which are beyond the scope of this work and will be addressed
elsewhere. In any case, the mean-field analysis is accurate in
the regime where the quadratic term of (15) dominates over the
interaction term u, namely, (g/gc − 1)2 � N−1

0 v/(
√

m

3
2 ).

Penetration depth. For a thin film of thickness d, the
penetration depth is given by the London kernel, λi =√−cd/(4πQi), with i = x,y. In general, for systems of semi-
Dirac fermions with uniaxial anisotropy, such as in uniaxially
strained graphene or semimetallic black phosphorus, the total
London kernel is calculated from the Meissner response of a
single nodal point times the nodal degeneracy N0. In that case,
at zero temperature,

λx ∝ h̄c

e

√
d �− 3

4 (g)(
√

mv/N0)
1
2 , (16)

and

λy ∝ h̄c

e

√
d �− 1

4 (g)/(
√

mvN0)
1
2 , (17)

and hence the penetration depth along the x and y axes
grows near the QCP with different scaling exponents, λx(g) ∝
(1 − gc/g)−3β/4 and λy(g) ∝ (1 − gc/g)−β/4. Near the critical
temperature, the penetration depth is still anisotropic, but
follows the standard BCS temperature scaling λ ∝ �−1(T ).

Coherence length. In the zero-temperature limit, the co-
herence length ξ0 corresponds to the length scale where
the energy of the system changes by an amount set by the
mass gap 2�. Near the neutrality point (μ � �, with μ the
chemical potential away from half filling), the corresponding
change in the momentum domain δp satisfies h(δp) ∼ 2�.
Since ξ0 ∼ h̄/δp, variations along the direction where the
energy spectrum is linear imply that ξ0,y ∼ h̄vy/(2�). A
similar dimensional analysis along the direction of parabolic
dispersion gives δpx ∼ √

2m�, and hence

ξ0,x ∼ h̄/
√

2m�, (18)

in contrast with the standard Fermi liquid result (μ � �),
where ξ0 ≡ h̄vF /(π�), with vF the Fermi velocity [17].
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FIG. 4. (a) Stripe phase of superconducting domains (S) oriented
along the direction where the order parameter is stiff. The normal
regions (N) have a magnetic field H , and width of twice the coherence
length ξ0. The separation between the center of the stripes is l �
ξ0. Red lines: Diamagnetic currents. (b) Scaling of z = l/λ vs the
magnetic field H . For H � H0 ≡ Hc/

√
κ , l → ∞. For H > H0, l is

finite.

Fluctuation effects are expected to give small deviations in
the quantum critical scaling of the coherence length with �

due to the emergence of an anomalous dimension.
In mean field, the ratio between the penetration depth in the

London limit and the coherence length κ = λ/ξ0 is given by

κx ∼ �− 1
4 (g)(

√
mv)

1
2 c

√
md

e
, (19)

and

κy ∼ �
3
4 (g)(

√
mv)−

1
2
c

v

√
d

e
, (20)

along the two principal directions x and y, with proportionality
factors of the order of 1. Therefore, in the vicinity of the
QCP, the order parameter becomes rigid for amplitude
variations along the direction where the quasiparticles
have linear dispersion [κy ∝ (1 − gc/g)3/2 � 1], as in
type-I superconductors. At the same time, the order
parameter becomes soft for variations along the direction of
parabolic dispersion [κx ∝ (1 − gc/g)−1/2 � 1], as in type-II
superconductors. While fluctuations could provide corrections
to the scaling of κ , the mean-field analysis is suggestive of a
possible smectic instability near the QCP.

Stripe phase. The energy of a domain wall becomes
negative when κ > 1/

√
2. Near the QCP, the magnetic flux

can form a stripe pattern of domain walls oriented along the
y direction, which coincides with the “easy” direction for
the supercurrent, as indicated in Fig. 4(a). Those domains

separate superconducting regions (S), which are screened by
diamagnetic currents [red arrows in Fig. 4(a)], from normal
regions (N) of width ∼2ξ0,x separated by a distance l � ξ0,x .
Because the magnetic field H has a stiffness of the order
of the penetration depth λx � ξ0,x along the x direction,
those domain walls of magnetic flux repel each other and can
stabilize a stripe phase in the regime where the magnetic field
normal to the sample is strong enough.

Domain wall formation in the bulk of macroscopic samples
is elusive and has been observed only in a few ferromag-
netic superconductors [27–29]. For samples with finite slab
geometry, domain walls are observed in the intermediate
state of type I superconductors, where the period of the
laminar state is set by the thickness of the sample, l ∝ √

d . In
semi-Dirac metals with uniaxial anisotropy, the stripe phase
will have a lower energy compared to the vortex state of type-II
superconductors near the QCP. In the presence of magnetic
fields, the Gibbs free energy of a striped normal domain
surrounded by superconducting regions of width l is [30]

G(H,z) = 1

8πz

(
H 2

c

κx

− H 2 tanh z

)
, (21)

where z = l/λx is the distance between the normal domain
walls normalized by the penetration depth and Hc is the
field that corresponds to the condensation energy H 2

c /8π .
The equilibrium separation between the stripes follows triv-
ially from minimization of the free energy for fixed field,
∂G(H,z)/∂z = 0.

In Fig. 4(b), we show the scaling of z = l/λx as a function
of the magnetic field H . Below the critical field H < Hc/

√
κx ,

l → ∞, and the system has a uniform phase (Meissner state).
In the regime Hc/

√
κx < H � Hcκx , l is finite and the system

will form a smectic state with stripes of superconducting
domains separated by thin strips of magnetic flux. Eventually,
when H � Hcκx , the separation of the domains l ∼ ξ0,x [30]
and superconductivity will be destroyed.

Conclusions. In summary, we examined the critical prop-
erties of semi-Dirac metal superconductors at zero and finite
magnetic fields. We showed that near the quantum critical
regime and at finite fields, the anisotropy of the quasiparticles
leads to an exotic electromagnetic response which may
stabilize a unique smectic state of superconducting stripes.
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