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Topological quantum paramagnet in a quantum spin ladder
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It has recently been found that bosonic excitations of ordered media, such as phonons or spinons, can
exhibit topologically nontrivial band structures. Of particular interest are magnon and triplon excitations in
quantum magnets, as they can easily be manipulated by an applied field. Here, we study triplon excitations in
an S = 1/2 quantum spin ladder and show that they exhibit nontrivial topology, even in the quantum-disordered
paramagnetic phase. Our analysis reveals that the paramagnetic phase actually consists of two separate regions
with topologically distinct triplon excitations. We demonstrate that the topological transition between these two
regions can be tuned by an external magnetic field. The winding number that characterizes the topology of the
triplons is derived and evaluated. By bulk-boundary correspondence, we find that the nonzero winding number
implies the presence of localized triplon end states. Experimental signatures and possible physical realizations
of the topological paramagnetic phase are discussed.
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The last decade has witnessed tremendous progress in
understanding and classifying topological band structures
of fermions [1–4]. Soon after the discovery of fermionic
topological insulators [5,6], it was recognized that bosonic
excitations of ordered media can exhibit topologically non-
trivial bands as well [7–11]. Such bosonic topological bands
have been observed not long ago for photons in dielectric
superlattices [12]. Theoretical proposals of topological states
in polaritonic systems have been made [13–15], some of
which have been observed experimentally [16]. Besides
these examples, bosonic band structures are also realized
by elementary excitations of quantum spin systems, e.g., by
magnons in (anti)ferromagnets or by triplons in dimerized
quantum magnets.

The study of these collective spin excitations is enjoying
growing interest, due to potential applications for magnonic
devices and spintronics [17]. Because magnetic excitations
are charge neutral, they are weakly interacting, and therefore
exhibit good coherence and support nearly dissipationless spin
transport. Moreover, the properties of spin excitations are
easily tunable by magnetic fields of moderate strength, as the
magnetic interaction scale is in most cases relatively small.
Of particular interest are magnetic excitations with nontrivial
band-structure topology, since they exhibit protected magnon
or triplon edges states. This was recently studied for triplons in
the ordered phase of the Shastry-Sutherland model [9,18,19]
and for magnons in an ordered pyrochlore antiferromagnet [20]
as well as in an ordered honeycomb ferromagnet [21].
However, the development of a comprehensive topological
band theory for magnetic excitations is still in its infancy.
Specifically, it has remained unclear whether topological spin
excitations can exist also in quantum-disordered paramagnets.

In this Rapid Communication, we address this question
by considering, as a prototypical example, the paramagnetic
phase of an S = 1/2 quantum spin ladder with strong spin-
orbit coupling. The considered spin ladder model describes a
large class of well-studied compounds, called coupled-dimer
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magnets [22], which have two antiferromagnetically coupled
spins per crystallographic unit cell (see Fig. 1). Due to the
strong antiferromagnetic exchange coupling within each unit
cell, the magnetic ground state of these compounds is a
dimer quantum paramagnet, where the two spins in each unit
cell form a spin singlet. Examples of S = 1/2 spin ladder
materials include NaV2O5 [23], Bi(Cu1−xZnx)2PO6 [24], and
the cuprates SrCu2O3 [25], CaCu2O3 [26], BiCu2PO6 [27],
and LaCuO2.5 [28]. Particularly interesting among these is
BiCu2PO6, since it exhibits strong spin-orbit couplings, which
lead to spin-anisotropic even-parity exchange couplings as
well as odd-parity Dzyaloshinskii-Moriya (DM) interactions.
As we will show, the latter gives rise to topologically nontrivial
triplon exctiations.

The elementary low-energy excitations of coupled-dimer
magnets correspond to breaking a singlet dimer into a spin-1
triplet state. These excitations are called triplons and can be
viewed as bosonic quasiparticles with S = 1. In the absence of
spin-orbit coupling the three triplet states are degenerate, due
to SU(2) spin-rotation symmetry. For spin-ladder compounds
with heavy elements, however, strong spin-orbit interactions
lead to antisymmetric DM couplings, which split the triplon
band into multiple dispersive bands. We find that these triplon
bands can have a nontrivial topological character, which can
be tuned by an applied field. In the topologically nontrivial
phase, which we call the topological quantum paramagnet, the
spin ladder exhibits triplon end states with a fractional particle
number (see Figs. 3 and 4). We show that these end states
are protected by a nonzero winding number and determine
their experimental signatures in heat-transport and neutron-
scattering measurements.

Spin model and triplon description. We consider a spin-
1/2 frustrated quantum spin ladder, whose lattice geometry
and interactions are illustrated in Fig. 1. The corresponding
Hamiltonian is given by

H = J
∑

i

�S1i · �S2i + K
∑

i

[�S1i · �S1i+1 + �S2i · �S2i+1
]

+D
∑

i

[
Sz

1iS
x
1i+1 − Sx

1iS
z
1i+1 + Sz

2iS
x
2i+1 − Sx

2iS
z
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]
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FIG. 1. Schematic representation of the exchange interactions in
the quantum spin ladder described by Eq. (1). The spins are shown
as black circles, blue lines represent the intradimer exchange (J ),
and red lines interdimer interactions (K). The DM interaction (D),
indicated in green, points in the y direction into the plane of the
ladder. In addition, the model exhibits an even-parity spin-anisotropic
interaction (�), which arises along with the odd-parity DM interaction
due to spin-orbit coupling.
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where i denotes the dimer site, 1,2 label the two legs of the
ladder, J is the antiferromagnetic intradimer coupling, and K

is the interdimer Heisenberg interaction. Spin-orbit coupling
gives rise to the odd-parity DM interaction D and the even-
parity spin-anisotropic interdimer coupling �. We assume
that the two legs of the ladder are equivalent by symmetry.
Likewise, all the rungs are taken to be equivalent. Therefore,
the only symmetry-allowed DM term is the interdimer DM
interaction in the y direction between the spins along the legs
of the ladder [29]. The even-parity spin-anisotropic interaction
� is of a form similar to the DM term, but its direction is not
fixed by lattice symmetries. For simplicity, we assume that the
� term points in the same direction as the DM interaction; in
the Supplemental Material [30] we consider the case where
the � term points along the z direction. In Eq. (1) we have
also included a small magnetic field hy perpendicular to the
ladder plane, which provides a handle to induce a topological
transition.

For dominant J > 0, the spins within each unit cell of
the spin ladder form a singlet and a dimer quantum para-
magnet is realized. Throughout this Rapid Communication
we shall be interested in this phase only. This phase has
three gapped excitations corresponding to the three possible
spin-1 triplet excited states on each dimer. To describe these
elementary triplon excitations, we employ the bond-operator
formalism [31], which allows us to represent the spin operators

in Eq. (1) in terms of triplon creation and annihilation operators
t†γ and tγ (γ = x,y,z) [30]. For a given dimer these triplon
operators are defined as t†γ |t0〉 = |tγ 〉 (γ = x,y,z), where

|t0〉 = [|↑↓〉 − |↓↑〉]/√2 is the singlet state, while |tx〉 =
−[|↑↑〉 − |↓↓〉]/√2, |ty〉 = ι[|↑↑〉 + |↓↓〉]/√2, and |tz〉 =
[|↑↓〉 + |↓↑〉]/√2 are the spin-1 triplet states. Rewriting
Eq. (1) in terms of tγ and t†γ yields an interacting bosonic
Hamiltonian describing the dynamics of the triplons [30].
For simplicity, we consider here only the bilinear part of
this triplon Hamiltonian. This is known as the harmonic
approximation [32]. As it turns out, at the harmonic level
the ty triplon mode is decoupled from the other two triplons.
We therefore focus only on the tx and tz excitations, whose
dynamics in momentum space is given by [30]

Hk = 1

2

∑
k

�
†
kMk�k, (2a)

with the spinor �k = (tkx,tkz,t
†
−kx,t

†
−kz)

T
and the 4 × 4 matrix

Mk =
[
H1(k) H2(k)
H

†
2 (k) HT

1 (−k)

]
. (2b)

The diagonal and off-diagonal parts of Mk read

H1(k) = [J + K cos(k)]1 + �d · �σ , (3a)

H2(k) = −Ke−ιk1 − �x · �σ , (3b)

with the vectors

�d ≡ {d1,d2,d3} = {� cos(k), − D sin(k) − hy,0}, (3c)

�x ≡ {x1,x2,x3} = {� cos(k), − D sin(k),0}, (3d)

where 1 is the 2 × 2 identity matrix, ι = √−1, and �σ ≡
{σ1,σ2,σ3} are the three Pauli matrices.

Triplon bands and protected end states. The triplon bands of
Hamiltonian (2) are obtained by use of a bosonic Bogoliubov
transformation [33–35], which amounts to diagonalizing the
non-Hermitian matrix �Mk , where � = diag(1,−1). In Fig. 2
we show the typical triplon dispersions for different values of
the tuning parameter hy . Both triplon modes are gapped in the
entire dimer-quantum-paramagnetic phase. Moreover, the two
triplons do not touch each other, except at hy = ±D, where
they touch linearly. This observation suggest that at hy = ±D

there occurs a topological phase transition, which separates a
trivial phase from a topological one.

To confirm this conjecture, we study the edge states of
Hamiltonian Hk , whose presence indicates the topological
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FIG. 2. Triplon bands (tx and tz) obtained from Hk [Eq. (2)] are plotted for different hy . We see that the gap between the two modes vanishes
to form a Dirac point at hy = ±D. Everywhere else in the dimer-quantum-paramagnetic phase, the two modes do not touch each other. For
|hy | < D the phase is topologically nontrivial, else it is trivial. The parameters used are D/J = �/J = 0.1 and K/J = 0.01.
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FIG. 3. Band structure of the quantum spin ladder [Eq. (2)] with
open ends. Protected end states (green line) appear in the topological
paramagnetic phase, |hy | < D. Parameters used are the same as in
Fig. 2.

character of the triplon bands. For that purpose we determine
the eigenenergies and eigenmodes of Hk in real space with
open boundary conditions. Figure 3 displays the so-obtained
spectrum as a function of hy . We also compute the energy-
integrated local density of states (LDOS) of Hk , by adding
the contributions from the lower triplon band and from the end
states with energies in between the two triplon bands. To reveal
the existence of end states we subtract the LDOS of Hk with
periodic boundary conditions ρ0 from the LDOS with open
boundary conditions ρ. The resulting triplon end-state density
profile ρ − ρ0 is plotted in Fig. 4 for different values of hy .
From Fig. 3 we clearly see that for |hy | < D the spectrum
contains, besides the bulk triplon bands (red and blue), an
additional state (green) with energy in between the two
triplons. Figure 4 shows that this in-gap state is exponentially
localized at the two ends of the spin ladder. Hence, we conclude
that the paramagnetic phase of S = 1/2 quantum spin ladders
is subdivided into a trivial phase (|hy | > D) and a topological
phase (|hy | < D) [36]. We call the latter a topological quantum
paramagnet [37], which is characterized by a nonzero winding
number, as we will show below.

But before doing so, let us examine the area under the peaks
in the triplon end-state density profile of Fig. 4. We find that it is
zero in the trivial phase, while in the topological phase it takes
on the fractional value 1/2. This fractional value is reminiscent
of the charge e/2 end states in the Su-Schrieffer-Heeger
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FIG. 4. Triplon end-state density profile ρ − ρ0 plotted in the
topological paramagnetic phase, |hy | < D, near one of the ladder
ends. In the topologically trivial phase, |hy | > D, the end states are
absent (black trace). Parameters used are the same as in Fig. 2.

(SSH) model [38] and is intimately connected to the nontrivial
topology of the system [2]. Physically, the fractional value
hints towards a fractionalized nature of the triplon end states.
However, unlike the SSH model, here we are dealing with
bosons and it is not straightforward to establish this connection.
This will be addressed in future work.

Winding number. We now show that the topological quan-
tum paramagnetic phase is characterized by a nonzero winding
number. Although the problem at hand is seemingly similar to a
one-dimensional fermionic topological insulator, we find that
the calculation of the winding number proceeds along quite
different lines than in the fermionic case. Recall that in order
to compute the winding number of fermionic systems, one first
needs to identify the chiral symmetry operator and transform
the Hamiltonian to a basis wherein the chiral symmetry
operator is diagonal. This results in a block off-diagonal
Hamiltonian, which is then used to calculate the winding
number [3,4]. For our bosonic model, we find that Eq. (2) can
be deformed into a chiral symmetric Hamiltonian, i.e., for K =
0 we have {1 ⊗ σ3,Mk − J1 ⊗ 1} = 0, since σ3 anticommutes
with H1 − [J + K cos(k)]1 and with H2 + Ke−ιk1. However,
this observation is not very helpful for two reasons: (i) The
symmetry operator is already diagonal and (ii) the eigenmodes
of our model are not given by Mk , but rather by �Mk .

Hence, we need to find another way to bring �Mk into
block off-diagonal form. To that end, let us consider the
transformation with the unitary matrix

U =

⎡
⎢⎣

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎦. (4)

Under the action of U , the relevant matrix �Mk transforms
as

M̃k = U †(�Mk)U =
[
Ak D1k

D2k Ak

]
, (5a)

where

Ak =
[
J + K cos(k) −Ke−ιk

Keιk −J − K cos(k)

]
, (5b)

and the off-diagonal blocks are given by

D1k =
[
x1 + ι(x2 − hy) −x1 − ιx2

x1 + ιx2 −x1 − ι(x2 + hy)

]
, (5c)

D2k =
[
x1 − ι(x2 − hy) −x1 + ιx2

x1 − ιx2 −x1 + ι(x2 + hy)

]
. (5d)

Although M̃k is not block off-diagonal, note that the diagonal
block Ak only leads to an overall energy shift (same for both
modes) and small variations in the shape of the modes, but does
not alter the topological properties. This is most easily seen by
noting that the difference in the triplon energy spectrum with
or without the anomalous terms H2(k) is negligible. So let us
focus on D1k and D2k . In a way similar to the fermionic case,
we can define the winding number as

W = 1

2

1

4πι

∫
BZ

dk Tr[D−1∂kD − (D†)−1∂kD†], (6)

220405-3



RAPID COMMUNICATIONS

DARSHAN G. JOSHI AND ANDREAS P. SCHNYDER PHYSICAL REVIEW B 96, 220405(R) (2017)

−D 0 D

0

−1

hy

W
in

d
in

g
nu

m
b
er

FIG. 5. Winding numberW [Eq. (6)] as a function of applied field
hy . In the topological paramagnetic phase, |hy | < D, W evaluates
to −1, which, by the bulk-boundary correspondence, leads to the
appearance of triplon end states (cf. Figs. 3 and 4). Parameters used
are the same as in Fig. 2.

where D = (D1k + D†
2k)/2. We note that the factor 1/2 in

Eq. (6) is due to the prefactor 1/2 in Eq. (2a). The winding
numberW is quantized to integer values and evaluates toW =
−1 in the topological quantum paramagnetic phase |hy | <

D (see Fig. 5). By the bulk-boundary correspondence, the
nonzero winding number leads to the protection of the triplon
end states of Fig. 2.

Conclusions and implications for experiments. We have
studied the topological properties of S = 1/2 quantum spin
ladders with strong spin-orbit coupling and have shown that the
quantum-disordered paramagnetic state of these spin ladders
subdivides into a trivial and a topological phase. The latter is
what we call a topological quantum paramagnet, since it ex-
hibits topologically nontrivial triplon excitations. It should be
noted that there is no qualitative difference between the ground
states in the two phases. The topological aspects feature only in
the triplon excitation modes. The phase transition between the
topological and the trivial quantum paramagnet can be tuned
by an applied field and occurs when two triplon modes touch,
forming a Dirac point. The topological quantum paramagnet
has a nontrivial winding number, which leads to protected
triplon end states with a fractional particle number 1/2.

We expect that the topological quantum paramagnetic phase
exists in many spin ladder compounds, even for relatively
weak spin-orbit interactions [39]. The quantum dimer model of
Eq. (1) is just one example of a large class of Hamiltonians that
all exhibit the same topological phase. It is always possible to

add small perturbations to Hamiltonian (1) without changing
its topological properties. Based on these considerations we
expect that topological triplon bands are quite ubiquitous.
A particularly promising candidate material for observing
topological triplons is the strongly spin-orbit-coupled spin
ladder BiCu2PO6, for which field-induced phase transitions
have recently been investigated [27,40]. To experimentally
study the topological phase transition and the evolution of the
triplon band structure as a function of applied field, one may
use neutron-scattering experiments. It may even be possible
to directly observe the triplon end states using small-angle
neutron scattering (SANS). In fact, our calculations show that
the local dynamic spin structure factor exhibits a sharp peak at
the triplon end-state energy (see Ref. [30]), which should be
observable in SANS. Another possibility is to use specific heat
measurements to look for the residual ln 2 entropy contributed
by the triplon end states.

The triplon interaction terms, arising beyond the harmonic
approximation, can in principle result in the intrinsic zero-
temperature damping of the triplon modes [41]. This could
in particular also apply to the localized end states in the
topological phase [42]. However, as long as the gap is greater
than 0.5J , because of energy-momentum constraints, the end
states will not decay spontaneously. This is in contrast to the
topological edge excitations of ordered magnets [20,21], which
can decay by coupling to the Goldstone modes.

Our findings represent the first step towards the develop-
ment of a comprehensive topological band theory for triplons.
Indeed, we expect the topological quantum paramagnet to
be a rather commonly occurring phase, which may exist
even in two- and three-dimensional quantum magnets. One
possible generalization of our work are two-dimensional
magnets composed of coupled spin ladders, which may exhibit
dispersing triplon edge modes carrying dissipationless spin
current. Besides this, other interesting questions for further
study are (i) the fate of the topological quantum paramagnet
at finite temperature and (ii) the study of phase transitions
between topological quantum paramagnets and quantum spin
liquids.
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by the National Science Foundation under Grant No. NSF
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