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Quantum criticality of spinons
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Magnon bound states emerging in one-dimensional (1D) spin chains still lack a rigorous understanding. In
this Rapid Communication we show that the length-1 spin strings significantly dominate the critical properties
of spinons, magnons, and free fermions in the 1D antiferromagnetic spin-1/2 chain. Using the Bethe ansatz
solution, we analytically calculate the scaling functions of the thermal and magnetic properties of the model,
providing a rigorous understanding of the quantum criticality of spinons. It turns out that the double maxima
in specific heat elegantly mark two crossover temperatures fanning out from the critical point, indicating three
quantum phases: the Tomonaga-Luttinger liquid (TLL), the quantum critical, and fully polarized ferromagnetic
phases. For the TLL phase, the Wilson ratio RW = 4Ks remains almost temperature independent, where Ks

is the Luttinger parameter. Furthermore, by applying our results, we precisely determine the quantum scalings
and critical exponents of all magnetic properties in the ideal 1D spin-1/2 antiferromagnet Cu(C4H4N2)(NO3)2,
recently studied by Kono et al. [Phys. Rev. Lett. 114, 037202 (2015)]. We further find that the magnetization
maximum used in experiments is not a good quantity to map out the finite-temperature TLL phase boundary.
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Of central importance to the study of the one-dimensional
(1D) spin-1/2 antiferromagnetic Heisenberg chain is the
understanding of spin excitations [1–13]. Elementary spin
excitations in this model may exhibit quasiparticle behavior
which is described by spinons carrying half a unit of spin. Such
fractional quasiparticles are responsible for the Tomonaga-
Luttinger liquid (TLL) and correlations in the model [14–20].

Regarding the Bethe ansatz (BA) solution of the 1D spin-
1/2 chain, a significant development is Takahashi’s discovery
of spin string patterns [21], i.e., magnon bound states with
different string lengths. Takahashi’s spin strings give one
full access to the thermodynamics of the model through
Yang and Yang’s grand canonical approach [22], namely, the
so-called thermodynamic Bethe ansatz (TBA) equations [21].
However, the problems of how such spin strings determine the
free-fermion nature of spinons and how spin strings comprise
universal scalings of thermal and magnetic properties still lack
a rigorous understanding. In this Rapid Communication we
present an answer to these questions.

Using spin string solutions to the TBA equations, we
obtain the following results: (I) We obtain exact scaling
functions, critical exponents, and a benchmark of quantum
magnetism for the 1D spin-1/2 Heisenberg chain, revealing
the microscopic origin of the spinons and magnons that
emerge in different physical regimes. (II) We find that the
Wilson ratio (WR) [23,24], the ratio between the susceptibility
χ and the specific heat cv divided by the temperature T ,

RW = 4
3 ( πkB

gμB
)
2
χ/(cv/T ), significantly characterizes the TLL
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of spinons and marks the crossover temperature between the
quantum critical phase and the TLL [25] (see Fig. 1). We
show that the specific heat maxima elegantly mark the phase
boundaries between different phases at quantum criticality.
When the magnetic field is larger than the saturation field,
dilute magnon behavior is evidenced by the exponential decay
of the susceptibility. (III) Using our results, we precisely
determine the crossover temperatures, quantum scalings, and
magnetic properties of the ideal spin-1/2 antiferromagnet
Cu(C4H4N2)(NO3)2 (hereafter referred to as CuPzN) [25]. We
also find that the magnetization maximum used in experiments
[25–28] is not a good quantity to map out the finite-temperature
TLL phase boundary. Instead, one should use the WR or the
specific heat maxima. Our results shed light on the criticality of
spinons in systems with interacting charges and spins [29–32].

Bethe ansatz equations. The Hamiltonian of the 1D Heisen-
berg spin 1/2 chain is given by [33]

H = 2J

N∑
j=1

�Sj · �Sj+1 − gμBHMz, (1)

where J is the intrachain coupling constant, N is the
number of lattice sites, and Mz = ∑N

j=1 Sz
j = N/2 − M is

the magnetization. M is the number of down spins. In this
Hamiltonian, g and μB are the Landé factor and the Bohr
magneton, respectively. To simplify the notation, we let
gμB = 1. The spin-1/2 operator �Sj associated with the site
j interacts with its nearest neighbors under a magnetic field
H . The energy is given by E = −∑M

j=1
J

λ2
j + 1

4
+ HM + E0,

where E0 = 1
2N (J − H ), and the spin quasimomenta λj with

j = 1, . . . ,M are determined by the BA equations [5,33] (also
see Ref. [34]). For the ground state, all the λj take real values.
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FIG. 1. (a) Contour plot of the WR in the T -H plane. Here, we used the coupling constant 2J = 10.81 K and the Landé factor g = 2.3
of the spin-1/2 compound CuPzN [25]. It maps out the TLL, the quantum critical (QC), and the ferromagnetic (FM) phases. The circles
fanning out from the saturation field Hs = 4J show the maxima of the specific heat obtained from the TBA Eq. (3), in excellent agreement
with Eq. (8) (blue solid line). The black dashed line shows the magnetization maximum determined from Eq. (3) in an agreement with the
experimental data (blue stars) and Eq. (6) (red solid line) [48]. (b) The “+” symbols show the maxima of the Wilson ratio, which coincides with
the minima of specific heat (dark green line). The magnetization maximum determined from Eq. (3) (the crosses) shows an agreement with the
red line TM = μ/αM , with αM = 1.3118kB/(gμB ) [34]. (c) The cutoff string length nc vs the energy scale gμBH/(kBT ) at an accuracy of the
order 10−6. The cutoff nc shows stirlike features with respect to H at low temperatures. The inset shows three schematic spin configurations:
(i) Mz = 1 and 2 spinons; (ii) Mz = 0, ν2 = 1, and 2 spinons; and (iii) Mz = 1, ν2 = 1, and 4 spinons [34].

However, at finite temperatures and in the thermodynamic
limit, there are real and complex solutions describing the
different lengths of the bound states,

λn
j,� = λn

j + 1
2 i(n + 1 − 2�), (2)

with � = 1, . . . ,n, and j = 1, . . . ,νn. Here, λn
j and νn denote

the real part and the number of length-n strings, respectively
[2,21].

Building on such spin strings [21], the thermodynamics of
the system is determined by the TBA equations

ε+
n = ε0

n −
∑
m

Am,n ∗ ε−
m(λ), (3)

where ∗ denotes convolution, n takes positive integer values,
and ε±

n = ±T ln[1 + e±εn/T ] defines the dressed energy of
the length-n spin strings. The driving term is given by
ε0
n = −2πJan(λ) + nH , with the kernel function an(λ) =
1

2π
n

λ2+n2/4 . The function Am,n is given in Ref. [34]. The free

energy per unit length is given by f = ∑
n

∫
an(λ)ε−

n (λ)dλ.
Hereafter, all magnetic properties will be in the per unit length.

Spin strings and spin liquid. For low-lying excitations,
each magnon decomposes into two spinons, i.e., spin-1/2
quasiparticles [2,35–42]. The spectral weights of two-spinon
excitations have been experimentally confirmed through the
observation of the spin dynamic structure factor [9–13].
In order to calculate the spin string contributions to the
thermodynamics at different temperature scales, we rewrite
the free energy as f = ∑

n gn(λ) + ∑
n ε−

n (∞), where gn =∫
dλ an(λ)[ε−

n (λ) − ε−
n (∞)] counts the major contribution

from the length-n strings, besides their constant values ε±
n (∞),

to the free energy. Thus gn is very convenient for estimating
the cutoff string length nc [34] [see Fig. 1(c)].

Here, we observe that for a small value of H/T , a
large cutoff string length nc is needed in the calculation

of the thermodynamics. When T → ∞, full string patterns
are required, i.e., nc → ∞, so that the free energy reduces
to that of free spins, f = ∑

n ε−
n (∞). Moreover, for H ∼

0+ and T � 1, logarithmic temperature corrections to the
thermodynamical properties of the renormalization fixed point
effective Hamiltonian have been seen [7,43,44]. At T = 0,
all the λj take real values. In this case, one easily gets the
known magnetization critical exponent δ = 2 in the scaling
form 1 − Mz/Ms = D(1 − H/Hs)1/δ , with D = 4/π [34].
This gives a divergent spin susceptibility at the saturation point
Hs = 4J [45].

For T � H , the TLL feature is dominated by the exci-
tations close to the Fermi points of the length-1 strings ε1.
Such elementary excitations are described by particle-hole
excitations. From the TBA equations (3), the dressed energy
ε1 is given by ε1(λ) = ε

(0)
1 (λ) + η(λ) + O(T 3), where ε

(0)
1 (λ)

is given by the dressed energy equation (3) in the limit T = 0
and the leading order temperature correction is determined by
η(λ) = π2T 2

6t
[a2(λ + Q) + a2(λ − Q)] − a2 ∗ η(μ), with t =

dε1(λ)
dλ

|
λ=Q

. Here, Q is fixed by the external field through

ε
(0)
1 (±Q) = 0 (see Refs. [34,46]). For arbitrary H < Hs ,

we thus obtain the field theory result for the free energy,
f = f0 − πT 2/(6vs) + O(T 3), where f0 is the ground-state
energy and the sound velocity is given by vs = 1

2π

dε1(λ)/dλ

ρ0(λ) |
λ=Q

[34]. This free energy gives the relativistic behavior of phonons
[4], where the specific heat is cv/T = π/(3vs). This gives the
dynamic critical exponent z = 1 [3,4,48].

Quantum criticality of spinons. In this spin-1/2 chain, the
determination of the phase boundary of the TLL is still in
question. In experiments [25,26], the magnetization maximum
was regarded as the, as yet unjustified, TLL phase boundary
[27,28]. In Figs. 1(a) and 1(b), we demonstrate that the
maximum positions of the specific heat (circles) fanning out
from the Hs coincide with the phase boundaries determined by
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FIG. 2. (a) Numerical [symbols from (3)] and analytical [solid
lines from (5)] specific heat vs magnetic field in the same setting as
that of Fig. 1. The double peaks (circles) fanning out from the Hs =
13.9941 (T) mark the crossover temperatures separating the three
regions: the TLL, the QC, and the FM (see Fig. 1). The inset shows
a comparison between the results of the TBA and the free fermions
[34]. (b) A numerical plot of the WR at different temperatures, which
collapse to the Luttinger parameter curve of 4Ks calculated using (3),
indicating the TLL nature. The inset shows the dimensionless scaling
behavior of the WR at low temperatures.

the WR and the analytical crossover temperatures Eq. (8). The
extrema of the WR and specific heat coincide with each other
and thus both the WR and specific heat well capture the critical
phenomenon. We observe that the magnetization maximum
deviates significantly from the true TLL phase boundary as
determined by the WR and the maxima in specific heat [see
Fig. 1(b)]. This is mainly because the magnetization peaks
almost lie in the center of the QC cone, where the susceptibility
is divergent as 1/

√|H − Hs |. Such critical behavior was
also discussed from the Grüneisen parameter [49,50], which
indicates the change of spectra in the vicinity of the critical
point.

Figure 2(a) shows the double-maxima structure of the
specific heat, indicating energy fluctuations in three different
regions: Quantum and thermal fluctuations reach an equal foot-
ing (TLL); thermal fluctuations strongly coupled to quantum
fluctuation in the quantum critical (QC) region; and dilute
magnons dominate the fluctuations (FM). We show that there
exists an intrinsic connection between the WR and Luttinger
parameter Ks for the TLL phase,

RW = 4Ks. (4)

A similar relation was recently found in spin ladder compounds
and Fermi gases [51–54]. Thus the WR elegantly quantifies the
TLL regardless of the microscopic details of the underlying
quantum system. This elegant relation (4) is confirmed by the
numerical solutions of the TBA equations (3) [see Fig. 2(b)].

We further show that the length-1 spin strings dominate the
quantum criticality of the spinons and magnons in the vicinity
of the critical point [34]. We prove that the vanishing Fermi
point gives rise to a universality class of free-fermion criti-
cality, i.e., the dilute magnons. By developing the generating
function of free fermions in the TBA equations (3) [34], we
obtain the free energy

f ≈ − 2

π
b1 + 8

π
b2 (5)

near Hs , where b1 = −
√

πT
3
2

4
√

J
Li 3

2
(−e

A
T ) and b2 =

− 1
2

√
πT

5
2

(16J )
3
2

Li 5
2

(−e
A
T ), with A = 4J − H − b1

π
+ b2

π
. This

simple result gives very accurate thermal and magnetic
properties for the field near the saturation field [see
Fig. 2(a)]. The polylog function Li3/2(x) appearing in
b1 indicates that dilute magnons are similar in nature to
free fermions [20,27,28,48]. Here, T → 0, the magnon
density nmagnon = Ms/N − Mz =

√
2m∗T
π

∫ ∞
0

dx

e
x2− μ

T +1
can

be obtained from (5) in the vicinity of the critical point,
where the effective mass of the magnon is given by
m∗ ≈ 1

2J
(1 − T 1/2√

πJ

∫ ∞
0

dx

e
x2− μ

T +1
), with the effective chemical

potential μ = Hs − H . The second term in the effective
mass manifests a deviation from the mass of the free fermion
m∗ = 1/(2J ) as the magnetic field moves away from the
critical point [see the inset of Fig. 2(a)].

For the region beyond the TLL, i.e., T 
 Hs − H > 0,
one can obtain entire scaling functions for the per unit length
magnetization and the susceptibility,

Mz = 1
2 + λ0T

1
2 f s

1
2
, χ = −λ0T

− 1
2 f s

− 1
2
, (6)

where λ0 = 1/(2
√

πJ ) and f s
n = Lin (−e

μ

T ). From the mag-
netization, we thus obtain its maximum TM = μ/αM , with
αM = 1.3118kB/(gμB), which agrees with the free-fermion
theory [48]. These analytical scaling functions signify the free-
fermion nature of the spinons and correspond to a dynamical
critical exponent z = 2 and a correlation length exponent
ν = 1/2, covering the prediction from the zero-scale factor
universality hypothesis [55]. In particular, the magnetization
(Ms/N − Mz)/H ∝ T β determines the exponent β = 1/2 in
the critical region. The scaling function of the specific heat in
QC is given by

cv =
√

T

πJ

[
−3

8
f s

3
2
+ 1

2

μ

T
f s

1
2
− 1

2

(μ

T

)2
f s

− 1
2

]
. (7)

We see that cv/T ∝ T −α , with α = 1/2. From the maxima of
(7), we determine the two crossover temperatures for dilute
magnons and spinons,

Tmagnon = − μ

α1
, Tspinon = μ

α2
, (8)

whereas the specific heat dip determines the maximum value of
the Wilson ratio TRW

= μ/α3. Here, α1,2,3 = y1,2,3kB/(gμB),
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FIG. 3. (a) Susceptibility vs magnetic field at T = 0.08 K. The
numerical [red dots (3)] and analytical [yellow triangles (5)] results
agree well with the experimental measurement (black squares) for
the 1D spin-1/2 antiferromagnet CuPzN [25] with the same setting
used in Fig. 1. The inset shows the exponential decay of the
susceptibility, as compared with Eq. (9), when the field slightly
exceeds the saturation field Hs . (b) and (c) show the scaling laws
of the magnetization and specific heat vs temperature, where the red
dots and yellow triangles denote the numerical TBA (3) result and
the analytical scalings Eqs. (6) and (7), which agree well with the
experimental data (black squares).

with y1 = 1.5629, y2 = 3.6205, and y3 = 0.4284, which agree
quite well with the numerical TBA result (see Fig. 1). The
two crossover temperatures (8) are also valid for the 1D Bose
gas [56]. For H � Hs , the ferromagnetic ordering leads to a
gapped phase where the susceptibility decays exponentially,

χ = 1

2
√

πJT
e−
g/T , 
g = 4J − H, (9)

illustrating the universal behavior of the dilute magnons [see
Fig. 3(a)].

By definition, the WR in the critical region satisfies the

scaling behavior RW ≈ ( 4πkB

3gμB
)
2
f s

−1/2/f
s
3/2 as H → Hs . It

follows that the WR curves at low temperatures intersect,
where the slopes are proportional to 1/T [see the inset of
Fig. 2(b)]. So far, we have analytically obtained all critical
exponents in QC,

α = β = 1/2, δ = 2, z = 2, ν = 1
2 . (10)

They satisfy the pronounced relation α + β(1 + δ) = 2.
Application to the spin material. The analytical results

obtained here for the quantum scaling functions (6)–(10)
provide a precise understanding of the quantum criticality of
the ideal spin-1/2 antiferromagnet CuPzN [25], on which high-
precision measurements of the thermal magnetic properties
have been made. Here, the best fit of magnetic properties

FIG. 4. (a) Experimental magnetization Mz/H vs temperature at
various fields (symbols) for the antiferromagnet CuPzN [25]. The
red dots show the TBA numerical result with the same setting used
in Fig. 1. For the case H = 1.0 T, we considered n = 120 spin
strings in order to reach a stable numerical accuracy. (b) shows the
magnetization for low temperatures (T � 1.5 K) and for magnetic
fields near Hs , comparing the numerical result (red dots) with the
experimental data (symbols). (c) Specific heat vs temperature for
CuPzN [35] with different magnetic fields. The symbols and solid
red lines stand for the experimental and TBA numerical results from
(3) with the cutoff string nc = 30. Here, the phonon contribution is
included. The inset shows the linear T -dependent signature within
the curves as T → 0.

determines the coupling constant 2J = 10.81 K, Landé factor
g = 2.3, and the saturation field Hs = 13.9941 (T) which only
slightly differ from the experimental values 2J = 10.8(1) K,
g = 2.3(1), and Hs = 13.97(6) (T), respectively. Figure 3(a)
shows excellent agreement between our theoretical results for
the susceptibility and the experimental data for the CuPzN
in the measured region. In particular, one can identify dilute
magnon behavior for magnetic fields exceeding Hs [see the in-
set of Fig. 3(a)]. Indeed, the scaling forms of the susceptibility
(6) and specific heat (7) fit quite well with the experimental data
[see Figs. 3(b) and 3(c)]. However, we mention a small discrep-
ancy between the theoretical result and experimental data for
the susceptibility in a narrow window around the critical point.
This is due to a three-dimensional (3D) coupling effect, which
has also been noted in spin ladder compounds [26,57,58].

In Figs. 4(a) and 4(b), we have compared our theoretical
calculations with experimental measurements for the mag-
netization of the CuPzN subjected to both weak and strong
magnetic fields. There was no theoretical examination on
the magnetization data measured in this experiment [25].
Although there is overall agreement between our results
and the data, an obvious discrepancy between theory and
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experiment was observed for H ∼ J ′ or Hs − H ∼ J ′ due to
3D interchain coupling. For this model, J ′ ≈ 0.046 K [see the
magnetization curves at H = 14.0, 13.9, 13.8 T in Fig. 4(b)].
In addition, by properly choosing the cutoff string nc, we
can analyze the full thermodynamics of the model in the
entire temperature regime by solving the TBA equation (3).
Figure 4(c) shows an excellent agreement between the TBA
result and experimental data for the specific heat.
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