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Higher-order generalized hydrodynamics in one dimension: The noninteracting test
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We derive a dynamical equation that describes the exact time evolution in generic (inhomogeneous)
noninteracting spin-chain models. Assuming quasistationarity, we develop a (generalized) hydrodynamic theory.
The question at hand is whether some large-time corrections are captured by higher-order hydrodynamics.
We consider in particular the dynamics after two chains, prepared in different conditions, are joined together.
In these situations, a light cone, separating regions with macroscopically different properties, emerges from
the junction. In free fermionic systems some observables close to the light cone follow a universal behavior,
known as Tracy-Widom scaling. Universality means a weak dependence on the system’s details, so this is the
perfect setting where hydrodynamics could emerge. For the transverse-field Ising chain and the XX model,
we show that hydrodynamics captures the scaling behavior close to the light cone. On the other hand, our
numerical analysis suggests that hydrodynamics fails in more general models, whenever a condition is not

satisfied.
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Over the past few years, we have experienced increased in-
terest in the physics behind the nonequilibrium time evolution
of inhomogeneous states. An example is the time evolution of
two semi-infinite chains that are joined together after having
been prepared in different equilibrium conditions [1,2]. This
kind of setting allows one to investigate the transport properties
of quantum many-body systems even if the system is isolated
from the environment.

The first analytical results in this context were obtained in
noninteracting models [3-24]. There, under the assumption
of quasistationarity, a semiclassical picture applies where the
information about the initial state is carried by free stable
quasiparticles moving throughout the system. Similar results
were obtained in the framework of conformal field theory and
Luttinger liquid descriptions [25-37]. In the presence of in-
teractions the situation was less clear [38—47], but, eventually,
Refs. [48,49] showed that the continuity equations satisfied
by the (quasi)local conserved quantities are sufficient to
characterize the late-time behavior. The framework developed
in Refs. [48,49] is now known as generalized hydrodynamics
[48], where “generalized” is used to emphasize that integrable
models have infinitely many (quasi)local charges [50]. We will
generally omit “generalized” and refer to the system of equa-
tions derived in Refs. [48,49] as first-order hydrodynamics,
I®*GHD, to emphasize that it is a system of first-order partial
differential equations.

Within 1*GHD, it was possible to compute the profiles of
local observables [48,49,51-57], to conjecture an expression
for the time evolution of the entanglement entropy [58], and
to efficiently calculate Drude weights [59-63]. There are,
however, fundamental questions that cannot be addressed
within 1**GHD; diffusive transport [64—69] and large-time
corrections [20-23] are two of them. The importance of these
issues results in a considerable urge to fill these gaps [61],
passing through refinements and reinterpretations of the theory
[57,70-73].

In this Rapid Communication we carry out a preliminary
analysis of whether higher-order hydrodynamics gives access
to additional physical information. Since any refinement
to the equations governing the dynamics must be able to
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pass the noninteracting test, we focus on generic nonin-
teracting spin-chain models. We attack the problem in full
generality, deriving first a dynamical equation that describes
time evolution exactly. From that, we develop a “complete”
hydrodynamic theory, GHD, based on the single assumption
of quasistationarity. Within GHD, we compute some large-
time corrections and compare them with exact numerical
data. The result is puzzling: Higher-order hydrodynamics
reproduces known asymptotic behaviors in the X X model and
in the transverse-field Ising chain; the same hydrodynamic
description, however, seems to fail in generic noninteracting
models.

The system. We consider an infinite spin-% chain described
by a Hamiltonian of the form [74]

H=Y"%" > Jhotli,of  +Y Jioi, (1)

teZ neNy a,fex,y LeZ

o : : z  _ TTétn-1 _z z s
where o are Pauli matrices, IT; , = l_[j=e+1 o (IT;  is the

identity I), Z is the set of all the integers, and Ny is its
non-negative subset. This class includes several paradigmatic
models, as the transverse-field Ising chain [75] and the
XY model [76]. Under the Jordan-Wigner transformation
ary_| = Hj<e aj‘.azf, ay = l_[j<1z ojio?, the Hamiltonian is
mapped into a chain of noninteracting Majorana fermions
({as,a,} = 284,1, where {-,-} is the anticommutator, and &,
is the Kronecker delta)

1

H= ZL%Z a’Hpa,. )

Here, H is an infinite [77] purely imaginary antisymmetric
matrix. Being quadratic, H is diagonal in a basis of Slater
determinants. These are states |I") completely characterized
(up to a phase) by the fermionic two-point functions, which
can be organized in a purely imaginary antisymmetric matrix
I', known as a “correlation matrix,”

Lo = 80n — (F|a€an|r> . (3)

Thermal states are Slater determinants as well; the ground
state, however, is not always a Slater determinant, as a
symmetry could be spontaneously broken.
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Quadratic operators are closed under commutation, so a
Slater determinant that time evolves under a Hamiltonian of
the form (1) remains a Slater determinant. Specifically, the
time-evolving state is as follows,

e*th |1’1> — e*iy, |€7thFeth> , (4)

where e~ is a phase.

The symbol. Let M be an infinite purely imaginary
antisymmetric matrix with elements decaying sufficiently fast
to zero the farther they are from the main diagonal. For a given
positive integer «, we define the (2«)-by-(2k) symbol 7, (e'?)
of M in such a way that

T dp
MZKEK +i2kne+j =

el be=np ip

e [t ssnc €P)] 50 (5)
where i,j =1,...,2¢, and £;,n, € Z. This is a natural
generalization of the standard definition of symbols of block-
Toeplitz or block-circulant matrices [78], for which 7, (e’?)
is independent of x. More generally, #i,(e'?) enters (5) only
with x € %Z, where %Z is the set of all the integers and the
half integers. In addition, if x is an integer (a half integer),
the equation only fixes the m-periodic (antiperiodic) part
of i (e’?) with respect to p. The undefined parts of the
symbol are irrelevant and can be chosen arbitrarily. It is
convenient to require the symbol to be Hermitian and to satisfy
[ (eP)]" = —if,(e~'P), where t denotes transposition. We
can then extend its definition in a smooth way so as to allow
for real x € R.

The reader can picture the symbol as the Fourier transform,
in the direction of the antidiagonals, of a smooth function
that matches the matrix block elements at the vertices of
a square lattice. In the present context, the meaning of the
symbol becomes more transparent when 7, (e'?) has a weak
dependence on x. For example, if the Hamiltonian is invariant
under a shift by « sites, its symbol can be chosen to be
independent of x,h,(e'?) = h(e'?); then, it turns out that the
excitation energies ¢,(p) are the eigenvalues of fz(ei”), in
the sense that /i(e'?) = 3% _, £,(p)Pu(p) — x(—p)P'(—p),
where P,(p) and P! (—p) are projectors orthogonal to one
another. Analogous relations can be found considering the
symbol [, (e’?) of the correlation matrix of a locally quasista-
tionary state [S51], which is a state that, in a sufficiently small
space-time interval, resembles a steady state. Specifically, the
eigenvalues of [, (¢'P) can be interpreted [79] (up to additive
constants and multiplicative factors) as the densities of the
excitations over the ground state; they are also known as “root
densities.”

The equations governing the dynamics. We find that the
degrees of freedom in the definition of the symbol can be used
to recast time evolution (4) in the form of a Moyal dynamical
equation [80]

13,0, ,(e7) = h(eP) x [y () — Ty (€)% hy(e?).  (6)

Here, » denotes the Moyal star product [81], defined as
A . Jdgdx—dpdy A . . L.
fo(eP)x g, (e'?) = ¢ e (e'")g,(e'?)] 4= This is a fun-

damental equation for noninteracting systems in infinite spin—%
chains.
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If the Hamiltonian is invariant under a shift by « sites, (6)
can be solved; its solution reads

A < dydg . .

b P A . I YRIEE )
N ith(e )Fy’o(elp)ezth(e ).

@)

This can be interpreted as an exact Wigner description [82]
of the dynamics in noninteracting spin-chain models. The
solution (7) applies to any Slater determinant time evolving
under any homogeneous noninteracting Hamiltonian.

We point out that connections between matrix multiplica-
tion and Moyal star product have been already established
(see, e.g., Ref. [83]). Since the formalism in terms of symbols
is not used much in the present context, (6) and (7) are not
widely known; nevertheless, their structure can be recognized
in equations emerging within semiclassical approximations, as
in Refs. [84,85].

Hydrodynamics. Equation (6) is a useful tool, but it cannot
be easily generalized to interacting models. In addition, even
when (7) applies, the explicit calculation of the integrals, but
also their numerical evaluation, can be difficult. Notwithstand-
ing, one is often interested in particular aspects of the dynamics
that are not expected to depend on all the system’s details. For
these two reasons, we pivot to a description that, a priori, is
only an approximation; we develop a hydrodynamic theory.

To that aim, we add the hypothesis of quasistationarity:
We assume that |T") ~ | is a locally quasistationary state at
every time (from now on, the superscripts h and h; stand for
“within GHD” and “within jth-order GHD”). If H is invariant
under a shift by « sites, this is equivalent to asking for the
symbol of the correlation matrix to locally commute with the
symbol of the Hamiltonian, i.e., [f‘i‘7t(ei”),ﬁ(eip)] = 0. This
condition can be enforced on (6) by extracting the diagonal
part of (6) in a basis that diagonalizes fz(e”’ ); we then find

dqgd
i, () = /f LI giat=

((h( i(p+4 )) ]fl( I(P—%))»(eil?)f*;t(eil’),
3

where ((a(e'*)))(e'?) denotes the diagonal part of a(e'r).
This is a complete (generalized) hydrodynamic equation
that includes all the contributions from arbitrarily high-order
spatial derivatives. In fact, (8) can be put in a more familiar
form if « + 1 is not smaller than the range [86] of the
Hamiltonian. In that case (8) reads [87]

000 (P) + (PPl s () = 0h 1 (D] =0, )
wheren =1, ... ,«, p};;x(p) are the root densities, and v, (p) =
e, (p) are the velocities of the excitations. The first-order
hydrodynamic equation is recovered in the limit of weak
inhomogeneity, which allows one to expand the last two
terms of (9) about x, ignoring the contributions from spatial
derivatives higher than the first. That is the equation that
Refs. [48,49] generalized to interacting integrable models.
Incidentally, if we apply it to (9) the same prescription that
lifted its first-order approximation to a theory for interacting
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integrable models, we obtain

h h
n;x+% ’On;x+%,z

—ohph =0. (10)

afpl};;x.f tv nix—3Pnx—1t

Here, the velocity depends on x (and, in turn, it is affected by
the assumption of quasistationarity) because it is dressed by
the interaction [88].

At this stage, (10) is nothing but a speculation; we must
first understand what physical information is contained in (9)
in the very noninteracting case. Indeed, (9) is based on the
assumption of quasistationarity, which is known to be exact
only in particular limits when (9) reduces to its first-order ap-
proximation [80]. The main goal of this Rapid Communication
is to assess whether the hypothesis of quasistationarity, which
leads to (8) and (9), has a validity that goes beyond the regime
identified in Refs. [48,49].

Dynamics close to the light cone. Let us imagine to prepare
two semi-infinite chains in different stationary conditions, for
example, at different temperatures. Let us then join the chains
together so as to form a single infinite chain. The state is let
to evolve under the merged Hamiltonian, which we assume to
be homogeneous. Qualitatively, a light cone, which separates
regions with macroscopically different properties, emerges
from the junction. 1**GHD turns out to capture the limit of large
time at any position. On the other hand, large-time corrections
are generally beyond its capabilities.

We wonder whether some corrections can still be computed
within GHD. Since off-diagonal contributions are neglected, it
is not reasonable to expect hydrodynamics to capture generic
corrections. It could be effective, however, for corrections
exhibiting universal properties, such as the ones studied
in Ref. [20]. There, the time evolution of a domain-wall
state under a free fermionic Hamiltonian (XX model) was
considered. The authors were able to establish a connection
between the probability distributions of particular observables
close to the light cone and the distribution functions of the
largest eigenvalues of the Gaussian unitary random matrix
ensemble [89]. In particular, the two-point functions of the
fermions lying in a region, around the edge, scaling as t%,
have corrections that decay as 73, and they can be written in
terms of the so-called Airy kernel,

Ki(u,v) = [Ai(u)AT' (v) — Ai(v)Ai'(w)]/(u — v). (11

An analogous behavior was observed years before [5], study-
ing the transverse-field Ising chain, and, recently, Refs. [22,23]
pointed out that, also in that case, the large-time corrections
are characterized by the Airy kernel.

The presumptive universality of these corrections makes
them a perfect candidate to test GHD. As a first step, we
argue that, if the scaling behavior close to the light cone can
be described by complete hydrodynamics, then it can also be
described by hydrodynamics at the third order. The latter is
obtained by expanding at the third order, either the integrand
in (8) about p, as if ¢ were close to zero, or, equivalently,
the last two terms of (9) about x. For the sake of simplicity,
we assume that the Hamiltonian is one-site shift invariant. For
« = 1, third-order hydrodynamics reads

3,0 (p) + v(p)d () + [w(p)/24102 p2,(p) = 0, (12)
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where w(p) will be reported in (15) [if the couplings are nearest
neighbor, w(p) = v(p)]. The solution to (12) is

[o.¢]
o= [ DAY e (9
where Ai(y) is the Airy function. We focus on the situation
where v(p) has a unique global maximum at p = p and v”(p)
is nonzero. The maximal velocity v(p) determines the speed at
which the light cone propagates to the right. A sketch of a proof
of the equivalence between (13) and complete hydrodynamics
is reported in the Supplemental Material [90].

By Wick’s theorem, the expectation value of any observable
can be written in terms of the correlation matrix I' (3). In the
hypothesis of quasistationarity, we apply (8), and I is replaced
by the following correlation matrix,

b2

Fg{+i,2m+j(t) = 2/

-7

1
dp (pium (p) — 4—>{cos[<e —m)p]
2 T

x A; j(p) +isin[({ —m)p]B; j(p)}. (14)

Here, A(p) = Z22CP and B(p) =1+ Z22CL with
&(p) = sgn{h(e’?) — Lulh(e'P)]}; the dispersion relation is
e(p) = tr[@ﬁ(e"”)], and the velocity is v(p) = &'(p); the
function w(p) appearing in (12) can be written as

w(p) = —v"(p) — 30, {e2(p) det[d,6 (p)1}/[2ec(p)], (15)

where e.(p) = [e(p) + e(—p)]/2. We parametrize the root
density at the initial time as p,o(p) = pH(p) + [p~(p) —
o7 (P)On(—x), where 0y is the Heaviside step function,
and p~ and p* are the root densities describing the states
of the two original semi-infinite chains [92]. We consider
observables that lie close to the light cone. These observables
can be fully described by the reduced density matrix of a spin
block consisting of the sites S ={r,r +1,...,r + S| — 1}
lying around the edge. The reduced density matrix is a Slater
determinant with the following block correlation matrix,

h(S) h
[Fe,m ]l_ j(t) = Dotrti2mtr 4 (0 (16)

where ¢,m =0,...,|S|—1 and i,j =1,2. Following
Ref. [20], we consider the scaling limit where the time is
large and both r — v(p)t and the subsystem’s length |S| are
proportional to 3. Assuming the various functions to be
sufficiently smooth around p = p, we find

1
20or| \?
0 ~ 0 +ar(250) 107 - 5 K

_l_}”
x {cos[(¢ —m)p]A +isin[(£ —m)p1B}, (17)

I
where f stands for f(p); o = sgn(u"))(‘_iv!,)z, and we intro-
duced the rescaled variables

j — Ut
x; zz%u- (18)

— ;
— "%t

the kernel K, (u,v) is defined as follows,

Ko(u,v) = 23 / dy Ai[sgn(a)2§ (y 4 er ”)}
0

x sin[oe(u — v)/y1/[oem (U — v)]. (19)
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FIG. 1. The connected two-point function of s° as a function of
the rescaled positions x,y (18). The symbols are exact numerical
data (in a chain with 1801 spins) at three different times, (a)
t = 60,150,300 and (b) t = 60,150,380; after that, a thermal state
with inverse temperature 8 = 1 is put in contact with the infinite-
temperature state. The lines are the predictions (20). (a) is for a
generalized XY model with J{ = —1, J§ = =2, J} = —0.0796,
and J;} & 0.3294 [see (1)], for which & =~ 1. (b) is for an XY model
with J;'§ = 0.15, J;)§ = —1.15,and J; = —2, for whicha ~ 0.8. (a)
unveils an excellent agreement between data and predictions. On the
other hand, in (b) the data do not seem to approach the predictions as
the time is increased.

Using a representation of the product of two Airy functions
derived in Ref. [93], it is simple to show that, if &« > 0, K, (u,v)
can be expressed in terms of the Airy kernel (11) as K, (u,v) =
Kl(#u + I’T"‘v,%v + 1’T"‘u). In the transverse-field Ising
chain and in the X X model, the parameter « is equal to unity,
and we recover (11).

It is worth noting that (17) describes the asymptotic
behavior only if (i) the difference in the root densities at
the initial time is nonzero at p = p, and (ii) the expectation
value of the observable does not accidentally zero the term.
The former case is closely related to the situation studied in
Ref. [53] for a similar protocol in the X X Z model; the latter
case is discussed in Ref. [22] considering the critical Ising
model.

A comparison with Ref. [23] shows that, in the transverse-
field Ising chain, GHD gives the correct asymptotic behavior.
The same conclusion can be drawn for the XX model.
For more general systems, we have analyzed the behavior
close to the light cone numerically. Figure 1 shows the edge
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profile of the connected two-point function of §* = %az, ie.,
Ce,. = (87418me1) — (8741) (85,41, after putting in contact

a thermal state at inverse temperature S with the infinite
temperature state. In that case we have (x # y)

2

cz, 25 —[2;1 cos d tanh (%)Ka(x,y) ) %] . (20)
In Fig. 1(a) we report data for an “ornate” generalized XY
model with nonzero coupling constants also between next-
nearest-neighbor spins. The agreement between (20) and the
numerical data is excellent. This example is representative of
all the models with o = 1, for which GHD seems to capture
the behavior close to the light cone. In Fig. 1(b) we report data
for an XY model for which « ~ 0.8. The predictions are only
in fair agreement with the numerical data, and we do not see
a substantial reduction of the discrepancy when the time is
increased. In fact, it seems that the data always approach (17)
if « is replaced by 1. This indicates that GHD fails whenever
o # 1.

Summary and discussion. We have derived a Moyal dynam-
ical equation that describes the exact time evolution in nonin-
teracting spin-chain models. Assuming quasistationarity, we
developed a higher-order generalized hydrodynamic theory.
We identified the neighborhood of the light cone (emerging
from the junction of two steady states) as a region where
higher-order hydrodynamics could improve on the first-order
theory. In the XX model and in the transverse-field Ising
chain, our expectations are met. In more general systems, we
report a discrepancy every time a particular condition on the
velocity of the quasiparticle excitations is not satisfied. Our
key finding is that higher-order generalized hydrodynamics
does not generally describe the system better than the first-
order theory. This null result undermines the validity of the
quasistationarity assumption beyond the regime identified in
Refs. [48,49]. It does not rule out, however, the possibility of
a second-order hydrodynamic theory which is different from
the first-order one only in the presence of interactions.
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