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We consider the direct three-qubit parity measurement scheme with two measurement resonators, using circuit
quantum electrodynamics to analyze its functioning for several different types of superconducting qubits. We find
that for the most common, transmon-like qubit, the presence of additional qubit-state-dependent coupling terms
of the two resonators hinders the possibility of performing the direct parity measurement. We show how this
problem can be solved by employing the tunable coupling qubit (TCQ) in a particular designed configuration.
In this case, we effectively engineer the original model Hamiltonian by canceling the harmful terms. We further
develop an analysis of the measurement in terms of information gains and provide some estimates of the typical
parameters for optimal operation with TCQs.

DOI: 10.1103/PhysRevB.96.214511

I. INTRODUCTION

The circuit quantum electrodynamics (QED) architecture
is a promising platform for realizing small and large scale
quantum information processing [1,2]. Circuit QED arose as
an extension of cavity QED concepts to microwave circuits,
in which the role of atoms is played by electrical degrees of
freedom involving some nonlinearities, usually provided by
Josephson junctions. While in cavity QED the parameters of
the atom are taken as God given, in circuit QED we have
the possibility both to engineer these parameters and also to
actively tune them. In order to perform quantum information
processing we of course need the ability to perform high-
fidelity single- and two-qubit gates. But quantum measure-
ments are equally necessary, and to make quantum computing
fault tolerant, measurements associated with quantum error
correction codes are also essential [3,4].

The present paper tackles the analysis of direct multiqubit
measurements, but a major theme of this work is the larger
one of the design and analysis of couplings in multiqubit,
multiresonator systems. We will see that the structure of
interactions available in this system is not, at first sight, suitable
for accomplishing our measurement task. However, we will
show that a broader view, in which the definition of the qubit
itself is modified, in a way that is clearly experimentally
feasible, greatly broadens the set of available coupling schemes
that are available. In this broadened setting, we can come
very close to the ideal requirements for direct error-correction
measurements.

The measurements associated with all the important error-
correction codes, while they can be accomplished by single-
qubit measurements, are more fundamentally the detection of
parity properties of collections of qubits. The traditional way of
performing these so-called stabilizer measurements requires a
quantum circuit involving a sequence of CNOT gates, where the
code qubits are the controls and an ancilla qubit is the target.
Information about the stabilizer operator to be measured is
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thus encoded in the state of the ancilla, which is then read
out. In circuit QED this is usually done via a dispersive
measurement [1,5]. Although conceptually very simple, the
fact that we need to run a quantum circuit in order to perform
a stabilizer measurement means that the overall fidelity of
the measurement would depend on the overall fidelity of a
sequence of CNOT gates. The added overhead of the required
ancilla qubits is another deficiency of this paradigm. For this
reason the quest for alternative ways of performing stabilizer
measurements has become an active area of research [6–15].

This paper provides insights into the high-fidelity imple-
mentation of multiqubit parity measurements. Our approach
begins with the scheme originally proposed in [9] and further
analyzed in [10,11]. While this approach will work for any
number of qubits, we focus on the useful case [16] of three
qubits. The scheme is basically a direct three-qubit dispersive
readout in which, by using two readout resonators, and via
suitable choice of parameters, it is possible to set up conditions
in which the output field depends only on the parity and not
on the particular state of the three qubits. The idea is similar
to the one in [7], which provides a solution for performing a
two-qubit parity measurement with one readout resonator.

In previous works [9–11] it was simply assumed that a
simple coupling Hamiltonian could be achieved, in which
each resonator acquires a qubit-state-dependent dispersive
frequency shift from each qubit to which it is coupled. In
this case direct three-qubit measurement is possible, and the
conditions for this were identified. However, here we show
that, starting with realistic (Jaynes-Cummings) couplings, the
desired simple effective Hamiltonian is not straightforwardly
realized, because there arise to the same order (in the
Jaynes-Cummings parameter) qubit-state-dependent coupling
between pairs of resonators. Such a term has been previously
recognized and analyzed in the literature [17,18], where it
was referred to as the quantum switch, because it is able to
turn on and off the interaction between two cavity modes via
manipulation of the state of a coupling qubit. The rotating
wave approximation (RWA) would argue that these terms can
be neglected when the resonators’ frequencies are far detuned
from each other. Unfortunately, in the regime in which the
parity measurement works the RWA is definitely inapplicable,
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because in that case the resonators’ frequencies are constrained
to be close to each other.

Faced with this problem, this paper considers the strategy
of introducing a composite object to act as an effective qubit
whose form of couplings (with the resonators and with other
qubits) can be different. In fact we have not had to search far
to find such a construction: we find that the so-called tunable
coupling qubit (TCQ), which has been well studied since its
introduction in 2011 [19], can be adopted to produce exactly
the structure of couplings that we want in our application. The
TCQ simply consists of two ordinary qubits (of the transmon
type) with strong direct capacitive coupling between them. As
in previous work, a qubit can be defined in this multilevel
system as simply the two lowest energy states. A full analysis
given here shows that the quantum switch interaction can be
completely suppressed in this setting. We hope that this work
provides an example of using the remarkable flexibility of
circuit QED to arrive at a purpose-built design in which desired
multiqubit functionality is achieved.

The paper is organized as follows. In Sec. II, after
developing the general input-output theory for two resonators
coupled to a common bath of harmonic oscillators (which
would be a transmission line in our case), we apply it to obtain
the condition for obtaining a three-qubit parity measurement.
In Sec. III, we show that these conditions cannot be matched
for the case of the transmon qubit [20], and also in general
for a simple two-level system. The basic reason is that after
obtaining the effective Hamiltonian for the system by using
a Schrieffer-Wolff transformation [21], the quantum switch
coupling term cannot be freely chosen and is expressed as a
function of the dispersive shifts of the two resonators. In this
case, we cannot access the regime of parameters that allows
parity measurements with these kinds of qubits.

In Sec. IV, we show how this problem can be solved by
using TCQs [19], which is a more flexible effective qubit
than the transmon. In particular, we show how it is also
possible to cancel completely the quantum switch terms, while
still retaining qubit-state-dependent frequency shifts on both
resonators. In this way, the reduced Hamiltonian effectively
realizes the original model proposed in [9]. We also identify
the general condition for canceling the quantum switch terms
and show how this can be intuitively understood by looking
at the energy level diagram of the system. Building on this
intuition, this reasoning may be applied not only to the TCQ
but also to different systems.

In Sec. V, using Bayesian inference, and expanding the
discussion in [22] for the single-qubit case, we show how to
rigorously define information gain and rate of information gain
of the parity of the set of qubits, and provide some estimates
of the achievable parameters attainable using TCQs as qubits.
We finally draw the conclusions in Sec. VI.

II. DERIVATION OF THE PARITY CONDITION

In this section, we start by briefly reviewing the input-
output theory for a system of two resonators, or in general
two bosonic modes, coupled to the same transmission line.
Afterwards, we apply this theory to a system of three qubits
coupled dispersively to two resonators, in order to obtain the

condition that must be fulfilled for measuring only the parity,
and not the particular state, of the string of qubits.

A. Two-resonator input-output theory

In this subsection we closely follow standard references on
input-output theory [23,24]. We consider a system in which
there are two resonators coupled to the same transmission
line, which is modeled as a harmonic oscillator bath. The
Hamiltonian takes the form

H = Hsys + HB + Hint (1)

with the bath Hamiltonian HB and the interaction Hamiltonian
Hint defined as

HB =
∫ +∞

−∞
dωωb†(ω)b(ω), (2a)

Hint =
2∑

j=1

i

∫ +∞

−∞
dωκj (ω)[b†(ω)aj − b(ω)a†

j ], (2b)

where, as in the references, we have made the rotating
wave approximation (RWA), neglecting terms a

†
j b

†(ω) and
ajb(ω), and we have taken the lower limit of integration
to −∞ instead of 0. In addition, the bath operators satisfy
the continuous bosonic commutation relation [b(ω),b†(ω′)] =
δ(ω − ω′), while for the system’s annihilation and creation
operators [ai,a

†
j ] = δij . The system Hamiltonian Hsys is kept

completely generic for now; it can be the simple Hamiltonian
of two harmonic oscillators, or something more complicated in
which the bosonic modes are connected also to other systems,
as we will consider in the next subsection. The important thing
is that just the two bosonic modes are coupled directly to the
common bath.

The Heisenberg equations of motion for bath and system
annihilation operators read

db(ω)

dt
= −iωb(ω) +

2∑
j=1

κj (ω)aj , (3a)

da1

dt
= −i[a1,Hsys] −

∫ +∞

−∞
dωκ1(ω)b(ω), (3b)

da2

dt
= −i[a2,Hsys] −

∫ +∞

−∞
dωκ2(ω)b(ω). (3c)

Viewing the system annihilation operators in Eq. (3a) as
forcing terms, and setting the initial condition at time t0 < t ,
we obtain the formal solution

b(ω; t) = e−iω(t−t0)b(ω; t0)

+
2∑

j=1

κj (ω)
∫ t

t0

dt ′e−iω(t−t ′)aj (t ′), (4)

and inserting this result into Eq. (3b) we get

da1

dt
= − i[a1,Hsys] −

∫ +∞

−∞
dωe−iω(t−t0)κ1(ω)b(ω; t0)

+
2∑

j=1

∫ +∞

−∞
dωκ1(ω)κj (ω)

∫ t

t0

dt ′e−iω(t−t ′)aj (t ′). (5)
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At this point, we are in a position to make the so-called first
Markov approximation, which consists of assuming that the
coupling coefficients κj (ω) vary only slowly with frequency.
In a field interpretation of the bath, this approximation is
equivalent to the locality of the interaction between the system
and the field [23]. Hence, we set

κ1(ω) =
√

κ1

2π
, κ2(ω) =

√
κ2

2π
, (6)

and within this approximation Eq. (5) becomes

da1

dt
= −i[a1,Hsys] − κ1

2
a1 −

√
κ1κ2

2
a2 − √

κ1bin, (7)

where we have defined the input field

bin = 1√
2π

∫ +∞

−∞
dωe−iω(t−t0)b(ω; t0), (8)

and used the properties

∫ +∞

−∞
dωe−iω(t−t ′) = 2πδ(t − t ′), (9a)

∫ t

t0

dt ′f (t ′)δ(t − t ′) = f (t)

2
. (9b)

The second property may look ambiguous since the singular
point of the delta function is at one extremum of the integral.
The reason why it holds is that the delta function introduced
here must always be defined as the limit of a sequence of even
functions in time [25].

Proceeding analogously with the Heisenberg equation of
motion involving the derivative of a2, we also get

da2

dt
= −i[a2,Hsys] −

√
κ1κ2

2
a1 − κ2

2
a2 − √

κ2bin. (10)

It is worth pointing out that the fact that the two bosonic
modes are interacting with the same bath manifests itself in
the bath-induced interaction between the modes, i.e., the terms
with coefficient

√
κ1κ2/2. This implies a correlated emission

of the resonators into the bath, which can give rise to the
phenomenon of resonator superradiance, in close analogy to
the standard atomic superradiance [26]. However, we will not
deal with any superradiance phenomena in this article.

If instead of the condition in the past at t0 < t , we specified
the future condition at time t1 > t , the formal solution of
Eq. (3a) would have read

b(ω; t) = e−iω(t−t1)b(ω; t1) −
2∑

j=1

κj (ω)
∫ t1

t

dt ′e−iω(t−t ′)aj (t ′).

(11)

Using this solution, and repeating the same calculations as
before, gives the following coupled equations for a1 and a2:

da1

dt
= −i[a1,Hsys] + κ1

2
a1 +

√
κ1κ2

2
a2 − √

κ1bout, (12a)

da2

dt
= −i[a2,Hsys] −

√
κ1κ2

2
a1 − κ2

2
a2 − √

κ2bout, (12b)

where we defined the output field as

bout(t) = 1√
2π

∫ +∞

−∞
dωe−iω(t−t1)b(ω; t1). (13)

Comparing Eqs. (3b) and (10) with Eqs. (12), we easily obtain
the input-output relation for this system:

bout(t) = bin(t) + √
κ1a1(t) + √

κ2a2(t). (14)

In the following, we will use this relation in order to obtain
the functional form of the output field for the system we want
to study.

B. Parity condition

We begin by introducing the generic Hamiltonian that we
are going to treat in this article, i.e., the dispersive Hamiltonian
of a system of three qubits coupled to two resonators. At the
beginning we will keep the discussion completely general,
neither specifying how this Hamiltonian can be obtained nor
assuming any constraints on the value of the parameters we
are going to introduce. These specific features will be treated
extensively in the following sections.

The model Hamiltonian reads

H =
3∑

i=1

�i

2
σ z

i +
(

ω1 + χ1

3∑
i=1

σ z
i

)
a
†
1a1

+
(

ω2 + χ2

3∑
i=1

σ z
i

)
a
†
2a2 + χ12

3∑
i=1

σ z
i (a1a

†
2 + a

†
1a2).

(15)

We see that in addition to the qubit-state-dependent dispersive
shifts χ1 and χ2 of the resonators’ frequencies, we also include
a qubit-state-dependent coupling of the two resonators with
parameter χ12. Such term comes up in the dispersive regime of
the multimode Jaynes-Cummings model, and in the literature
it has been proposed to use them as a quantum switch,
able to turn on and off the interaction between two cavity
modes [17,18]. For us this term will play a major role in our
parity measurement setup. In particular, we cannot neglect it
assuming that the resonators are far away in frequency and
thus employing a RWA. In fact, the measurement scheme
requires the resonators’ frequencies to be quite close to each
other, invalidating the RWA. We also notice that in our model
Hamiltonian Eq. (15), we require equal dispersive shifts and
equal quantum switch parameters for all qubits. This ensures
that the evolution of the resonators’ field amplitudes, and
accordingly also of the output field, depends only on the
Hamming weight hw (the number of ones of the three qubits),
and not on the particular state. Finally, we point out that in
Eq. (15) we neglected the qubit-qubit interaction mediated
by the resonators, which usually comes up in the dispersive
regime of cavity QED, assuming that the qubits’ frequencies
are far away from each other, and invoking a RWA.

The Hamiltonian Eq. (15) implies that the evolution of
the resonators’ annihilation operators is dependent on the
Hamming weight of the string of qubits. In particular, we
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have from Eqs. (7), (10)

da1,hw

dt
= −i[ω1 + χ1(3 − 2hw)]a1,hw

− χ12(3 − 2hw)a2,hw

− κ1

2
a1,hw

−
√

κ1κ2

2
a2,hw

− √
κ1bin, (16a)

da2,hw

dt
= −i[ω2 + χ2(3 − 2hw)]a2,hw

− χ12(3 − 2hw)a1,hw

− κ2

2
a2,hw

−
√

κ1κ2

2
a1,hw

, − √
κ2bin (16b)

with hw = {0,1,2,3}. In order to achieve a parity measure-
ment, we need to ensure that at the steady state the output

field, or equivalently the reflection coefficient, depends only
on the parity of the register, and not on the particular Hamming
weight. Let us thus obtain the generic expression for the
reflection coefficient, by Fourier-transforming Eqs. (16). In
particular, we define the Fourier transform of a generic operator
in the Heisenberg picture c(t) as

c[ω] = 1√
2π

∫ +∞

−∞
dteiωt c(t). (17)

This gives [
a1,hw

[ω]
a2,hw

[ω]

]
= A−1

[√
κ1√
κ2

]
bin[ω], (18)

where we defined the matrix

A =
[
i{	d1 − χ1(3 − 2hw)} − κ1

2 −iχ12(3 − 2hw) −
√

κ1κ2

2

−iχ12(3 − 2hw) −
√

κ1κ2

2 i{	d2 − χ2(3 − 2hw} − κ2
2

]
, (19)

where

	di = ω − ωi, i = 1,2, (20)

is the detuning between the frequency of resonator i and the drive frequency. Solving for a1,hw
[ω] and a2,hw

[ω], and using the
input-output relation Eq. (14), we can write the expression for the Fourier-transformed output field operator

bout[ω] = r(ω; hw)bin[ω], (21)

with the Hamming-weight-dependent reflection coefficient given by

r(ω; hw) = 1 − [{2[	d1κ2 + 	d2κ1 + (3 − 2hw)(κ1χ1 + κ2χ2 − 2
√

κ1κ2χ12)]}(	d1κ2 + 	d2κ1 + (3 − 2hw)

× (κ1χ1 + κ2χ2 − 2
√

κ1κ2χ12) + 2i{	d1	d2 + (3 − 2hw)[	d1χ1 + 	d2χ2 + (3 − 2hw)2(χ1χ2 − χ2
12)]})−1]. (22)

Notice that this reflection coefficient can be written for every
Hamming weight as r(ω; hw) = (ib − a)/(ib + a) with a,b ∈
R, satisfying the condition |r(ω; hw)| = 1, as one expects since
there are no lossy elements in the system.

At this point we look for specific values of the detunings
	d1 and 	d2 such that the reflection coefficient depends only
on the parity, and it also has different values between even and
odd parity. Namely, we would like r(ω; hw = 0) = r(ω; hw =
2) = reven, r(ω; hw = 1) = r(ω; hw = 3) = rodd, and reven �=
rodd. In particular, this last condition ensures that we can
distinguish between states of different parity. These conditions
are satisfied if

	d1 = ω − ω1 = ±
√

3

√
κ1

κ2

√
χ1χ2 − χ2

12, (23a)

	d2 = ω − ω2 = ∓
√

3

√
κ2

κ1

√
χ1χ2 − χ2

12. (23b)

Thus, by appropriately selecting the drive frequency ω

and the resonators’ frequencies ω1 and ω2, the reflection
coefficient would depend only on the parity of the state of
the qubits. Notice that this means that the output field, and
consequently both quadratures at the steady state, depend
only on the parity. This is indeed important, since one may
satisfy the parity condition for one quadrature, and measure

it via homodyne detection, but the conjugate quadrature may
still show a general Hamming weight dependence, which is
then information that gets lost into the environment causing
additional intraparity dephasing [10].

If we set χ1 = χ2 = χ and χ12 = 0, the parity condition
Eqs. (23) reduces to the one reported in [10,11]. However, we
see the important role that the quantum switch coefficient χ12

plays in these equations. In particular, if χ2
12 is larger than the

product χ1χ2, we cannot match the parity condition since this
would require complex detunings, which is clearly absurd.
As we will show this is indeed the case if we try to obtain
the effective Hamiltonian Eq. (15) using a simple two-level
system and also transmon qubits, in which also the second
excited level must be taken into account in order to get the
correct dispersive shifts [20].

III. QUANTUM SWITCH TERM FOR A TRANSMON

We start by deriving the functional form of the χ12 for the
case of the transmon qubit. In this derivation, we will consider
only one transmon linearly coupled to two resonators. We
approximate directly the transmon as a Duffing oscillator with
Hamiltonian [20]

Hduff = ωtb
†b + δ

2
b†b†bb, (24)
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where b† and b are creation and annihilation operators for
the transmon satisfying the commutation relation [b,b†] = 1.
In addition, the frequency ωt and the anharmonicity δ in
Eq. (24) are a function the Josepshon energy EJ and charging
energy EC . In particular, ωt = √

8ECEJ − EC and δ = −EC .
Coupling the transmon linearly to two resonators we obtain
the following total Hamiltonian of the system

H = Hduff +
2∑

i=1

ωia
†
i ai + gi(aib

† + H.c.), (25)

with the gi the linear coupling constant between the resonators
and the transmon. We leave the value of these parameters
completely generic, but real, without loss of generality. Notice
however that in Eq. (25) we are invoking immediately a RWA
neglecting terms aib and a

†
i b

†, which would be present in the
general case.

We are interested in obtaining an effective dispersive
Hamiltonian that describes accurately the system when only
the ground state |g〉 and the first excited state |e〉 of the
transmon are populated. However, as shown in [20] for the
single-resonator case, in order to get the correct result it is
necessary to consider also the second excited level |f 〉 of the
transmon before carrying out the dispersive transformation.
The basic reason is that the coupling part of the Hamiltonian
Eq. (25) is able to cause transitions |g〉 ↔ |e〉 and |e〉 ↔ |f 〉,
so that when adiabatically eliminated both transitions would
contribute to the energy shift of state |e〉. The other levels
do not contribute, since the transition diagram for a transmon

coupled linearly to a resonator has a ladder-like structure, as
immediately seen from Eq. (25).

Hence, we project the Hamiltonian (25) on the subspace
spanned by the first three levels of the transmon obtaining

H = �e |e〉 〈e| + �f |f 〉 〈f | +
2∑

i=1

ωia
†
i ai

+ gi(|e〉 〈g| ai + H.c.) +
√

2gi(|f 〉 〈e| ai + H.c.),

(26)

with �e = ωt and �f = 2ωt + δ.
Assuming that both interactions of the transmon with the

resonators are in the dispersive regime, which mathematically
means |gi/(�e − ωi)| = |gi/	i | � 1, |√2gi/[(�f − �e) −
ωi]| = |√2gi/(	i + δ)| � 1, the generator S of the first-order
Schrieffer-Wolff unitary transformation D = exp[S − S†] that
removes the interaction between the transmon and the res-
onators is found to be [21,27]

S =
2∑

i=1

gi

	i

|e〉 〈g| ai +
√

2gi

	i + δ
|f 〉 〈e| ai. (27)

Applying this transformation to the Hamiltonian Eq. (25) and
retaining only terms up to order (gi/	i)2 and [gi/(	i + δ)]2,
we obtain the effective Hamiltonian

Heff = DHD† =
(

�e +
2∑

i=1

g2
i

	i

)
|e〉 〈e| +

(
�f +

2∑
i=1

2
g2

i

	i + δ

)
|f 〉 〈f |

+
2∑

i=1

{[
ωi + g2

i

	i

(|e〉 〈e| − |g〉 〈g|) + 2
g2

i

	i + δ
(|f 〉 〈f | − |e〉 〈e|)

]
a
†
i ai + 1√

2

(
g2

i

	i + δ
− g2

i

	i

)
(|f 〉 〈g| aiai + H.c.)

}

+ g1g2

2

[
2

(
1

	1 + δ
+ 1

	2 + δ

)
(|f 〉 〈f | − |e〉 〈e|) +

(
1

	1
+ 1

	2

)
(|e〉 〈e| − |g〉 〈g|)

]
(a1a

†
2 + H.c.)

+ g1g2√
2

(
1

	1 + δ
+ 1

	2 + δ
− 1

	1
− 1

	2

)
(|f 〉 〈g| a1a

†
2 + H.c.). (28)

The two-photon transition terms |f 〉 〈g| aiaj , which are
present also in the dispersive transformation for the transmon
coupled to a single resonator, can safely be neglected, since
they are in turn far off-resonant. Finally, projecting onto
the subspace spanned by |g〉 and |e〉 and introducing the
Pauli operators |e〉 〈e| = (1 + σ z)/2, |g〉 〈g| = (1 − σ z)/2, we
obtain the effective dispersive Hamiltonian for the first two
levels of the transmon:

Hd = �̄

2
σ z +

2∑
i=1

(ω̄i + χiσ
z)a†

i ai

+ (χ̄12 + χ12σ
z)(a†

1a2 + H.c.), (29)

where the effective qubit frequency is given by �̄ = �e +∑2
i=1 g2

i /	i , while the effective resonator frequencies are

ω̄i = ωi − g2
i /(	i + δ). In addition, we defined the following

parameters in Eq. (29):

χi = g2
i

	i

− g2
i

	i + δ
, (30a)

χ12 = 1

2

(
g2

g1
χ1 + g1

g2
χ2

)
, (30b)

χ̄12 = −g1g2

2

(
1

	1 + δ
+ 1

	2 + δ

)
, (30c)

i = {1,2}. Notice that in the limit of anharmonicity that goes
to infinity, we recover the parameters that we would obtain in
the case in which we started directly with a two-level system in
place of a transmon. In this limit, we get ω̄i → ωi and χ̄12 → 0.
Thus, the presence of a qubit-state-independent frequency
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shift of the resonators and coupling of the resonators is a
consequence of the finite anharmonicity of the transmon.

Compared to the model Hamiltonian Eq. (15) we treated in
Sec. II, we see that each transmon will cause a modification
of the resonators’ frequencies, leading to two new effective
frequencies of the resonators. Moreover, we also get a qubit-
state-independent coupling of the resonators. Including this
term in the input-output theory developed in Sec. II would
give actually a modified parity condition compared to Eq. (23),
which however still relies on the assumption χ2

12 > χ1χ2.
As one can readily check from Eqs. (30), this condition is
never satisfied for a transmon and consequently it cannot
be employed directly for the dispersive three-qubit parity
measurement described in Sec. II. The main problem is
basically that the χ12 parameter is not a free parameter and
it is connected to the values of χ1 and χ2. In the next section
we will show how this problem can be solved, by using a
system that is closely related to the transmon, but allows a
more flexible tuning of the parameters.

IV. QUANTUM SWITCH TERM FOR A TCQ

In this section we show how it is possible to tackle the
problem of the quantum switch term that was raised in Sec. III
using the so-called tunable coupling qubit (TCQ) in a particular
configuration. We start by briefly reviewing the TCQ and then
discuss its potential application for the implementation of the
direct three-qubit parity measurement. In particular, we will
show how the harmful quantum switch term can be set ideally
to zero, while still retaining a qubit-state-dependent dispersive
shift on each resonator. In addition, we will also explain the
general idea for the elimination of the quantum switch term,
so that the same reasoning will also be potentially applicable
to different systems and not only a TCQ.

A. Review of the TCQ

The TCQ, originally proposed by Gambetta et al. in [19],
is essentially a system made up of two transmons that are
coupled strongly by a capacitance, as shown in Fig. 1. The
basic idea is that by encoding the qubit in the first two energy
levels of this coupled system we can obtain a more flexible
qubit, compared to a simple transmon, while still retaining a
similar charge noise insensitivity. In particular, in the original
paper it was shown how the TCQ [19], when coupled to a
single resonator, can be operated in a configuration in which
it is protected from the Purcell effect, but nonetheless still
measurable via the standard dispersive readout technique.
The independent tunability of the frequency of the TCQ and

FIG. 1. Basic circuit of the TCQ. The Josephson junctions can be
substituted by flux-tunable SQUID loops allowing for the control of
the Josephson energies EJ±.

the coupling constant with the resonator via flux bias was
more specifically analyzed in [28], while coherent control was
shown in [29]. Recently, also the suppression of photon shot
noise dephasing in a TCQ was demonstrated [30]. In addition,
a similar system employing inductive coupling between the
transmons was proposed in [31,32].

The Hamiltonian of the circuit in Fig. 1 can be obtained via
standard circuit quantization techniques [33,34] as

HT CQ =
∑
±

4EC±(n± − ng±)2 −
∑
±

EJ± cos(ϕ±)

+ 4EI (n+ − ng+)(n− − ng−), (31)

where in the case in which all the capacitances are symmetric,
i.e., do not depend on the subscript ±, EC+ = EC− = EC =
e2(CI + C�)/[2(C2

� + 2CIC�)] and EI = −2ECCI/(CI +
C�), with C� = C + Cg . Thus, EI can be varied from
0 to −2EC by varying the interaction capacitance CI . In
Eq. (31) we also introduced the reduced gate charges ng± =
−Cg±Vg±/(2e). If the ratios EJ±/EC± are sufficiently large
we expect the energy levels of the TCQ to be basically
independent of the parameters ng±, i.e., to show charge noise
insensitivity, as with the transmon. This is shown explicitly
in Fig. 2. When we operate the TCQ in this regime we can
effectively neglect the reduced gate charges in the Hamiltonian
Eq. (31). In addition, we can also expand each Josephson
potential up to fourth order in ϕ± [19] [as in Eq. (24)].
After introducing annihilation and creation operators for each
transmon mode b± and b

†
± and neglecting fast-rotating terms,

we obtain the effective Hamiltonian of the TCQ as two coupled

FIG. 2. First 6 energy levels of the TCQ Hamiltonian Eq. (31)
as a function of the offset charges ng+ and ng− (m = {0,1,2,3,4,5}).
The zero of the energy is taken to be in each plot the minimum
of the energies of the lowest level. The transmons are considered
symmetric in this case and EI/EC = −0.5. The plots are obtained by
direct numerical diagonalization of HT CQ by writing it in the charge
basis and truncating the Hilbert space.
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Duffing oscillators:

HT CQeff =
∑
±

ω±b
†
±b± + δ±

2
b
†
±b

†
±b±b±

+ J (b+b
†
− + b

†
+b−), (32)

with ω± = √
8Ej±EC± − EC±, δ± = −EC±, J = 1/(

√
2)EI

(EJ+/EC+)1/4(EJ−/EC−)1/4, and commutation relations
[b±,b

†
±] = 1. The Hamiltonian Eq. (32) can be approximately

diagonalized via the unitary transformation

UT CQ = exp[λ(b+b
†
− − b

†
+b−)], (33)

with

λ = 1/2 arctan(−2J/ζ ), (34)

where we defined ζ = ω+ − ω− − 2(δ+ − δ−). Applying this
transformation to each of the annihilation operators we get [35]

UT CQb+U
†
T CQ = cos(λ)b̃+ + sin(λ)b̃−, (35a)

UT CQb−U
†
T CQ = − sin(λ)b̃+ + cos(λ)b̃−, (35b)

from which we obtain the Hamiltonian

H̃T CQeff = UT CQHT CQU
†
T CQ

≈
∑
±

ω̃±b̃
†
±b̃± + δ̃±

2
b̃
†
±b̃

†
±b̃±b̃

†
± + δ̃cb̃

†
+b̃+b̃

†
−b̃−,

(36)

where ω̃± = (ω+ + ω−)/2 ± (ω+ − ω−) cos(2λ)/2 ∓ J sin
(2λ),δ̃± = (δ+ + δ−)[1 + cos2(2λ)]/2±(δ+−δ−) cos(2λ)/2,
and δ̃c = (δ+ + δ−) sin2(2λ)/2. In this procedure, we have
assumed |δ±/(ω̃+ − ω̃−)| � 1.

B. TCQ coupled to two resonators

To return to our parity-measurement setup, we now analyze
the case in which each transmon mode composing the TCQ
is coupled linearly to two bosonic modes. This means that by
modeling the TCQ directly as two coupled Duffing oscillators
the total Hamiltonian would read

H = HT CQeff +
2∑

i=1

ωia
†
i ai +

2∑
i=1

∑
±

gi±(aib
†
± + H.c.),

(37)

FIG. 3. Energy levels and transition diagrams for the TCQ. The
first two levels in red are those in which we encode the qubit. The
green and orange arrows denote respectively transitions that might be
caused by resonator 1 and 2. The solid arrows denote “+” transitions,
while the dashed arrows “−” transitions.

where for now we treat the bare coupling coefficients gi± as
free real parameters. Applying the unitary transformation in
Eq. (33) to this Hamiltonian we finally get

H̃ = UT CQHU
†
T CQ

≈ H̃T CQeff +
2∑

i=1

ωia
†
i ai

+
2∑

i=1

∑
±

g̃i±(ai b̃
†
± + H.c.), (38)

where now in this new basis we have effective coupling
parameters that are a linear combination of the bare ones.
In particular

g̃i± = gi+ cos(λ) ∓ gi− sin(λ). (39)

This is one of the central features of the TCQ, and the one that
we will exploit. We see in Fig. 3 the first six levels of the TCQ
and the possible transitions that might be induced the linear
interaction with the resonators. Clearly, in the general case,
the two resonators can cause exactly the same transitions, but
we will be interested in a more particular configuration.

At this point we want to proceed like we did for the
transmon, obtaining an effective Hamiltonian for the first
two levels of the TCQ, namely |0+0−〉 and |1+0−〉, in the
dispersive regime of the qubit-resonator interactions. We start
by projecting the Hamiltonian Eq. (38) onto the subspace
spanned by the first six levels of the TCQ. These are the
relevant states that one must consider in order to get the correct
dispersive shifts for the first excited manifold, namely |0+1−〉
and |1+0−〉. We get

H̃p = ω̃+ |1+0−〉 〈1+0−| + ω̃− |0+1−〉 〈0+1−| + (2ω̃+ + δ̃+) |2+0−〉 〈2+0−| + (2ω̃− + δ̃−) |0+2−〉 〈0+2−|

+ (ω̃+ + ω̃− + δ̃c) |1+1−〉 〈1+1−| +
2∑

i=1

ωia
†
i ai +

2∑
i=1

{g̃i+[ai(|1+0−〉 〈0+0−| + |1+1−〉 〈0+1−|

+
√

2 |2+0−〉 〈1+0−| + H.c.)] + g̃i−[ai(|0+1−〉 〈0+0−| + |1+1−〉 〈1+0−| +
√

2 |0+2−〉 〈0+1−| + H.c.)]}. (40)
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The procedure is now similar to what has been carried out in Sec. III. First of all let us define the detunings 	̃±i = ω̃± − ωi . Then,
we consider all the interactions to be in the dispersive regime, which amounts to assuming |g̃i±/	̃±i | � 1, |√2g̃i±/(	̃± + δ̃±)| �
1, and |g̃i±/(	̃± + δ̃c)| � 1. The generator S of the Schrieffer-Wolff transformation D = exp[S − S†] that removes the interaction
between the TCQ and the resonators is found to be

S =
2∑

i=1

ai

(
g̃i+
	̃+i

|1+0−〉 〈0+0−| + g̃i+
	̃+i + δ̃c

|1+1−〉 〈0+1−| +
√

2g̃i+
	̃+i + δ̃+

|2+0−〉 〈1+0−|

+ g̃i−
	̃−i

|0+1−〉 〈0+0−| + g̃i−
	̃−i + δ̃c

|1+1−〉 〈1+0−| +
√

2g̃i−
	̃−i + δ̃−

|0+2−〉 〈0+1−|
)

. (41)

The result of this transformation is given in Eq. (A1) in Appendix A. Projecting Eq. (A1) onto the two-dimensional subspace
spanned by {|0+0−〉 , |0+1−〉}, which thus encodes our qubit, we obtain

H̃ = �̃− |0+1−〉 〈0+1−| +
2∑

i=1

[ωi + χi,0+1− |0+1−〉 〈0+1−| − χi,0+0− |0+0−〉 〈0−0+|]a†
i ai

+ [χ12,0+1− |0+1−〉 〈0+1−| − χ12,0+0− |0+0−〉 〈0+0−|](a1a
†
2 + H.c.), (42)

where we denoted by χi,0+1− and χi,0+0− the dispersive shifts of
the frequency of resonator i caused by state |0+1−〉 and |0+0−〉,
respectively. In addition, χ12,0+1− represents the coupling
coefficient between the two resonators when the qubit is in
the state |0+1−〉, while χ12,0+0− if the state is |0+0−〉. These
parameters are given by the formulas

χi,0+1− = g̃2
i−

	̃i−
− (

√
2g̃i−)2

	̃i− + δ̃−
− g̃2

i+
	̃i+ + δ̃c

, (43a)

χi,0+0− = g̃2
i+

	̃i+
+ g̃2

i−
	̃i−

, (43b)

χ12,0+1− = g̃1−g̃2−
2

(
1

	̃1−
+ 1

	̃2−

)

− (
√

2g̃1−)(
√

2g̃2−)

2

(
1

	̃1− + δ̃−
+ 1

	̃2− + δ̃−

)

− g̃1+g̃2+
2

(
1

	̃1+ + δ̃c

+ 1

	̃2+ + δ̃c

)
, (43c)

χ12,0+0− = g̃1+g̃2+
2

(
1

	̃1+
+ 1

	̃2+

)

+ g̃1−g̃2−
2

(
1

	̃1−
+ 1

	̃2−

)
, (43d)

i = 1,2. Finally, expressing the projectors in terms of the
Pauli σ z operator, namely |0+1−〉 〈0+1−| = (1 + σ z)/2 and
|0+0−〉 〈0+0−| = (1 − σ z)/2, we rewrite the Hamiltonian
Eq. (42) as

H̃ = �̃−
2

σ z +
2∑

i=1

(ωi + χiσ
z)a†

i ai

+ [χ̄12 + χ12σ
z](a1a

†
2 + H.c.), (44)

which is essentially the same as Eq. (29) obtained for the
transmon, but with modified parameters

ω̄i = ωi + χi,0+1− − χi,0+0−

2
, (45a)

χi = χi,0+1− + χi,0+0−

2
, (45b)

χ̄12 = χ12,0+1− − χ12,0+0−

2
, (45c)

χ12 = χ12,0+1− + χ12,0+0−

2
, (45d)

i = 1,2.
From the previous formulas it is clear how the TCQ offers

more freedom in the choice of the parameters compared to
the standard transmon. In particular, it is possible to cancel
the interaction between the resonators mediated by the qubit,
while still retaining a qubit-state-dependent frequency shift
on both resonators. This condition is achieved in the situation
in which g̃1− = 0 and g̃2+ = 0 (or symmetrically g̃1+ = 0
and g̃2− = 0) for which both χ̄12 and χ12 given in Eqs. (45)
are clearly zero. Nevertheless, χ1 and χ2 are not zero and
given by

χ1 = g̃2
1+
2

δ̃c

	̃1+(	̃1+ + δ̃c)
, (46a)

χ2 = g̃2
2−

δ̃−
	̃2−(	̃2− + δ̃−)

. (46b)

The energy levels and transition diagram for this configuration
is shown in Fig. 4, from which we also understand the reason
why the resonators do not interact with each other via the
TCQ. In fact, in this case resonator 1 is able to generate
only “+” transitions, while resonator 2 only “−” transitions.
Consequently, resonator 1 and 2 are not capable of causing
simultaneously the same transition and therefore the exchange
of a photon between the resonators via a “virtual” transition
of the TCQ cannot happen. This reasoning is actually general
and not limited to the TCQ. Thus, any system in which two
bosonic modes cannot cause the same transitions would not
produce an interaction between the resonators (at least in the
dispersive regime). Another candidate system for satisfying
this condition might be the trimon [36], which in turn can be
viewed as an evolution of the TCQ. In addition, as we see
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FIG. 4. Energy levels and transition diagram for the case g̃1− =
0 and g̃2+ = 0. The green and orange arrows denote respectively
transitions that might be caused by resonator 1 and 2. Since the two
resonators cannot excite the same transitions they do not interact with
each other in the dispersive regime of the interactions.

from Eqs. (46) that the anharmonicities δ̃− and δ̃c guarantee
a nonzero dispersive shift for both resonators. This would not
be true for a system of two transversally coupled two-level
systems in which also these dispersive shifts would be zero
[37]. Finally, we point out that in the configuration shown in
Fig. 4 the TCQ would not be Purcell protected, since it can
decay via the interaction with resonator 2.

A possible implementation of this condition might be to set
λ = π/4, which means that the coupling coefficient between
the bare transmons J is much larger than their detuning.
Additionally, we require the bare gi± coupling coefficients
to have a sign flip; that is to say, we set

g1+ = −g1− = g1, (47a)

g1+ = +g2− = g2, (47b)

from which we readily obtain the effective coefficients in the
diagonalized basis g̃1− = g̃2+ = 0 and g̃1+ = √

2g1, g̃2+ =√
2g2.
Implementing this sign flip might not be trivial and it is the

topic of the next subsection.

C. Achieving zero χ12

We here tackle the problem of achieving the sign flip of the
bare coupling coefficients described in the previous subsection,
in order to cancel the quantum switch term. In order to do this,
we need to exploit the distributed character of a resonator.
In particular, we will consider the usual case in which the
resonator is implemented as a coplanar waveguide resonator,
which is the original proposal for the circuit QED architecture
[1]. This allows an analytical treatment and conveys the main
idea for canceling the χ12 term. However, similar reasonings
apply also to other kinds of nonlumped resonators, such as 3D
microwave cavities.

In Appendix B we obtain the generic coupling coefficient
of a transmon capacitively coupled to a transmission line
resonator of length L at a certain position xj . Considering

(a)

(b)

FIG. 5. (a) Possible circuit implementation of the sign flip of the
coupling parameters with the transmons composing the TCQ coupled
to two transmission line resonators of length L. (b) Qualitative sketch
of the circuit realization. Notice that we are using the same color
coding as Fig. 3 and Fig. 4.

only the second mode of the resonator, we obtain the coupling
coefficient to be of the form

g(xj ) = gmax cos

(
2π

L
xj

)
, (48)

where the coupling parameter gmax to a generic resonator mode
is given in detail in Eq. (B25). Hence, we see that depending
on the position of the transmon we can access regions with
positive and negative signs of the coupling parameter. In
Fig. 5 we see how building on this intuition we can conceive
a configuration that implements the sign flip described by
Eqs. (47).The bare transmons composing the TCQ are coupled
at the same location (or close to each other) to resonator 1 while
at locations separated by approximately half a wavelength
to resonator 2. This idea is somehow similar to what has
been proposed in [38] for implementing a giant atom coupled
at different locations of a transmission line, although in a
different context compared to the problem we are tackling
here and most of all considering a simple transmon, and not
a TCQ.

To close this subsection, we point out that the circuit in
Fig. 5 implements only one TCQ. Thus, we need to add two
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further TCQs coupled in a similar way to both resonators in
order to implement our parity measurement scheme.

V. INFORMATION GAIN IN DISPERSIVE
PARITY MEASUREMENT

We now turn our attention to the problem of how to
characterize our parity measurement scheme in terms of
information gains. Our approach will basically expand from
the one in [22] and [39], in which this problem was treated for
the single-qubit dispersive measurement. In our case, based
on an information theoretical approach, we define what it is
meant by information gain about a specific observable of the
system.

We consider the ideal case in which there is neither
relaxation nor dephasing of the qubits. Like we assumed so far,
the dispersive shifts χ1 and χ2 and the qubit-state-dependent
coupling of the resonators χ12 are matched, meaning that they
are equal for all qubits. Within these assumptions the time
evolution of the resonators’ degrees of freedom depends only
on the Hamming weight of the three qubits, and consequently
also the output signal shows the same dependence. The
Hamming weight can assume values hw = {0,1,2,3}. The
information about the state of the qubits is encoded in the
integrated signal of homodyne detection, which we call I .
In particular, in the assumption of a strong local oscillator
this signal turns out to be Gaussian distributed with the
mean depending on the particular Hamming weight, which
we generally write as

Ihw
(τ ) =

∫ τ

0
dt
[
βout,hw

(t)e−iφ + β∗
out,hw

(t)eiφ
]
, (49)

with φ the phase of the local oscillator, and variance equal
to τ (the measurement time) [40]. The Hamming-weight-
dependent average of the output field βout,hw

(t) is obtained
by averaging the input-output relation Eq. (14), assuming
a specific initial Hamming weight of the qubits. Thus, the
probability density for the random variable I conditioned on
a certain Hamming weight hw at a certain measurement time
τ is

p(I |hw)(τ ) = 1√
2πτ

exp

[
− [I − Ihw

(τ )]2

2τ 2

]
. (50)

In order to define the information gain, let us consider the
following scenario. Before the measurement we have complete
ignorance about the state of the system. From our point of view
the Hamming weight of the qubits can be whatever of the four
possible values with equal probability 1/4. Accordingly, we
also assign uniform probability to the parity, which can be even
or odd with probability 1/2. At this point we measure and we
“learn” more about the state of the system via the observation
of a certain realization of I (τ ), which is our only information
channel. Thus, the question we ask ourselves is, “What is the
probability that a certain property of the system has a certain
value, given the fact that we observed I (τ )?” For instance,
considering the Hamming weight we would like to obtain
p(hw|I ). We can obtain this conditional probability using
Bayes’ theorem

p(hw|I ) = p(hw)p(I |hw)

p(I )
, (51)

where p(I ) is given by the sum of the probabilities of mutually
exclusive events

p(I ) =
3∑

i=0

p(I |hw = i)p(hw = i). (52)

Notice that for notational simplicity we are omitting to write
explicitly the dependency on the measurement time τ . Thus,
since p(hw = i) = 1/4 ,∀i,

p(hw|I ) = p(I |hw)∑3
i=0 p(I |hw = i)

. (53)

At this point, we define the information gain about the
Hamming weight given a certain realization of the current I as
the difference between the final, conditional Shannon entropy
and the initial one:

Ihw
(I ) = log2 4 +

3∑
i=0

p(hw = i|I ) log2[p(hw = i|I )]

= 2 +
3∑

i=0

p(hw = i|I ) log2[p(hw = i|I )]. (54)

The average information gain about the Hamming weight is
then defined as

Ihw
=
∫ +∞

−∞
dIp(I )Ihw

(I ). (55)

We can also define the Hamming weight measurement rate
�m,hw

as the derivative of Ihw
with respect to the measurement

time τ

�m,hw
= dIhw

dτ
. (56)

Ihw
can then be written as

Ihw
=
∫ τ

0
dt�m,hw

(t). (57)

According to our definition �m,hw
has the units of number of

“Hamming weight bits” per unit of time. Since we need two
bits in order to determine the Hamming weight the maximum
measurement gain is 2 bits.

We can actually repeat the previous discussion for any
observable. In particular, we are interested in defining an
average information gain about the parity P of the three
qubits. In this case we would be interested in the conditional
probability that the parity P is either even (e) or odd (o) given
a certain realization of the current I at a certain measurement
time. These probabilities are given by

p(P = e|I ) = p(hw = 0|I ) + p(hw = 2|I )

= 1

p(I )
[p(hw = 0)p(I |hw = 0) + p(hw = 2)

×p(I |hw = 2)], (58a)

p(P = o|I ) = p(hw = 1|I ) + p(hw = 3|I )

= 1

p(I )
[p(hw = 1)p(I |hw = 1)

+p(hw = 3)p(I |hw = 3)]. (58b)
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We define the information gain about the parity given I as the
difference between the final conditional Shannon entropy and
the initial one, i.e., a uniform distribution with p(P = e) =
p(P = o) = 1/2:

IP (I ) = log2 2 +
∑
l=e,o

p(P = l|I ) log2 p(P = l|I )

= 1 +
∑
l=e,o

p(P = l|I ) log2 p(P = l|I ). (59)

The average information gain about the parity is

IP =
∫ +∞

−∞
dIp(I )IP (I ). (60)

We define a parity measurement rate �m,P as the derivative of
the IP with respect to the measurement time

�m,P = dIP

dτ
, (61)

which has units of “parity bits” per unit of time. The average
parity information gain can then be written as

IP =
∫ τ

0
dt�m,P (t). (62)

Since we need one bit in order to determine the parity of the
three qubits the maximum parity information gain is 1 bit.

In order to compute these information gains, we have to
solve the evolution equations for the field amplitudes of the
two resonators depending on the Hamming weight of the
three qubits. From these we can obtain the Hamming-weight-
dependent output field amplitude and thus the integrated signal
from Eq. (49). The evolution equations we have to solve are
the following:

dα1,hw

dt
= −i[	d1 + χ1(3 − 2hw)]α1,hw

− χ12(3 − 2hw)α2,hw

− κ1

2
α1,hw

−
√

κ1κ2

2
α2,hw

− i
√

κ1βin(t), (63a)

dα2,hw

dt
= −i[	d2 + χ2(3 − 2hw)]α2,hw

− χ12(3 − 2hw)α1,hw

− κ2

2
α2,hw

−
√

κ1κ2

2
α1,hw

− i
√

κ2βin(t), (63b)

from which we obtain the output field amplitude as βout,hw
=

βin(t) + √
κ1α1,hw

+ √
κ2α2,hw

. βin(t) is the drive in this case,
i.e., the average of the input field bin comparing to Eq. (14).
The detunings between the resonator frequencies and the drive
frequency, 	d1 and 	d2, are chosen like in Eqs. (23) so that
the output field depends only on the parity at the steady state.
We will focus on the case in which κ1 = κ2 = κ , and we will
report results using κ as the unit of frequency. We also consider
the case in which we are able to set χ12 = 0. As in [11], we
consider a realistic piecewise pulse

βin(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t < ton,
εss

2

{
1 − cos

[
π
σ

(t − ton)
]}

, ton � t < ton + σ,

εss, ton + σ � t < toff,
εss

2

{
1 + cos

[
π
σ

(t − toff)
]}

, toff � t < toff + σ,

0, t � toff + σ.

(64)

(a)

(b)

FIG. 6. (a) Average parity information gain for a measurement
time τκ = 28 as a function of χ1/κ and χ2/κ . The measured
quadrature of the output field is always chosen to be the one that
maximizes the information content about the state of the system.
(b) Difference between information gain about the Hamming weight
and parity on a log10 scale. We point out that the fine structure that
can be noticed in this figure is an artifact of numerical interpolation.

We take a total measurement time τ = 28/κ [41] and
the following parameters of the pulse: εss = 0.5/

√
κ,σ =

4/28τ,ton = 1/28τ,toff = 16/28τ .
In Fig. 6 we clearly see that the measurement provides (to a

good approximation) only information about the parity. Specif-
ically, in Fig. 6(a) we see that there are regions of parameters
in which we gained essentially complete information about the
parity. In Fig. 6(b) we note that the difference between Ihw

and
IP , 	I, is always quite small, except in the region of small
χ1/κ and χ2/κ . This means that only the information about the
parity of the Hamming weight is learned and not information
about the additional bit. Analyzing Figs. 6(a) and 6(b) together,
we realize that the optimal situation is the one in which we
have approximately one bit of information about the parity,
but very small difference between Hamming weight and parity
information gain. In particular, if we consider the symmetric
case χ1 = χ2 = χ , we notice that we have maximum parity
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FIG. 7. Missing parity information on a log10 scale for the
symmetric case χ1 = χ2 (blue solid line) and the asymmetric case
in which χ2 = 0.3κ (orange dashed line). In both cases, we see a
minimum of the missing information (maximum information gain) at
χ1 ≈ κ/2. The parameters are the same as in Fig. 6.

information gain at χ ≈ κ/2, which is the usual condition
reported in the literature for maximizing the information gain
in the standard single-qubit dispersive readout [5]. We see
this more clearly in Fig. 7, in which we plot the missing
parity information as a function of χ1/κ at the end of the
measurement for the symmetric case and asymmetric case
with χ2 = 0.3κ . Even if the symmetric case gives a lower
minimum, the asymmetric case might also be an interesting
option when using a TCQ. In fact, if the TCQ is operated in the
condition described in Sec. IV C, it will experience a Purcell
decay due only to resonator 2. This means that we would like
to have a small χ2, given by Eq. (46b), in order to have a small
g2 and consequently a small Purcell effect.

Estimates of TCQ parameters

Here we give some quantitative rough estimates of
typical parameters that may be achievable using TCQs for
our dispersive three-qubit parity measurement scheme. We
consider directly the ideal configuration in which we are able
to set χ12 = 0 for all TCQs. This means that we assume
Eqs. (47) to hold for each TCQ. We denote the three TCQs
by {a,b,c}. We take equal photon decay rates for the two
resonators κ1 = κ2 = κ , with κ/2π = 5 MHz and set also
χ1 = χ2 = χ = −κ/2 [42]. In this way, we achieve the
optimal situation considered in the main part of this section,
which is also the model studied in [10,11] via a stochastic
master equation approach. The coupling parameter J is
also assumed for simplicity to be equal for all TCQs and
in particular J/2π = −400 MHz. The energy difference
between first excited state and ground state, i.e., the levels
that will form the qubit, are chosen as ω̃−a/2π = 6000 MHz,
ω̃−b/2π = 5600 MHz, and ω̃−c/2π = 5200 MHz. In this
way, the qubits are sufficiently detuned so that we can neglect
the resonator-mediated interaction between them. The two
transmons composing each TCQ are assumed to be almost
resonant, so that, from Eq. (34), we can approximate for all
TCQs λ ≈ π/4. Using this assumption ω̃+α = ω̃−α − 2J

with α = {a,b,c}. The anharmonicities are also taken to be
all equal to δ/2π = −Ec/2π = −300 MHz. The frequencies
of the resonators are chosen ω1/2π = 7500 MHz and

ω2/2π = ω1 + 2
√

3χ in order to match the parity condition.
With these parameters we obtain the following bare coupling
parameters: g1a/2π = 106.6 MHz, g2a/2π = 76.4 MHz,
g1b/2π = 132.5 MHz, g2b/2π = 113.3 MHz, g1c/2π =
158.4 MHz, g2c/2π = 150.0 MHz. We can also estimate the
Purcell relaxation time for all TCQs as [19]

Tp,α =
[
κ

( √
2g1,α

ω̃−α − ω1

)2]−1

, (65)

α = {a,b,c}. In particular, we get Tp,aκ = 100.1, Tp,bκ =
103.7, and Tp,cκ = 106.2. Comparing to the typical measure-
ment time considered in the main part of the section τκ = 28
we see that the typical Purcell time is approximately between
3 and 4 times the measurement time for the symmetric case.
As we mentioned in the main part of this section, longer
Purcell times could be achieved in the condition χ1 = −κ/2
and χ2 = −0.3κ . In this case, proceeding as before we would
get Purcell times Tp,aκ = 166.8, Tp,bκ = 172.8, and Tp,cκ =
177.0. Notice that from Fig. 7 this case is characterized
by a higher missing information gain. Thus, we identify a
tradeoff between information gain and Purcell relaxation time.
However, the Purcell relaxation time may be additionally
increased in both cases by means of Purcell filtering [43–45].

VI. CONCLUSIONS

Beyond the specific analysis of direct multiqubit parity
measurements, this paper provides a general analysis based
on input-output theory for a system of two resonators coupled
to the same transmission line; we expect these to be more
applications for this general analysis. By identifying the
general condition for obtaining a direct measurement of the
parity of the string of qubits, we clarify the role of transient
ring-up and ring-down signals in the collection of parity-only
information; they are generally deleterious, but to a degree that
depends on the exact choice of system parameters.

Our formal analysis provides an example of the necessity
of going beyond the RWA in some parts of the analysis,
quite crucial in our case in properly assessing the role of
the quantum switch term. We feel that in the future, highly
accurate modeling must go beyond the RWA in other ways, to
assess a potential myriad of small effects; Ref. [46] provides an
excellent example of developing such analysis in the context
of a very different effective coupling scheme involving a
multiqubit, multiresonator device.

Returning to our specific results, we have identified the main
problem in implementing the direct multiqubit parity scheme
in the presence of qubit-state-dependent coupling of the two
resonators, emerging from the dispersive transformation of
the Hamiltonian. We have shown that this problem can be
solved by using a modified effective qubit, with the TCQ, a
system of just double the complexity of an ordinary transmon,
giving exactly the necessary greater flexibility to achieve
the desired dispersive-coupling parameters. In particular, the
harmful quantum switch term is ideally canceled using a
TCQ as a qubit. To achieve this condition, it is essential that
the sign of the bare Jaynes-Cummings coupling parameters
be selectively flipped. This leads to the nonobvious strategy
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of coupling the transmons composing the TCQ to different
locations of the transmission line resonators.

By uncovering the reason why this cancellation can
happen, we are optimistic that the same reasoning may be
applied to other systems beyond our TCQ-based approach.
Our information-gain analysis of the parity measurement
scheme, permitting us to quantify both the amount of extra
parity information learned during the measurement as well
as the typical time needed to complete the measurement,
makes possible the determination of concrete optimal design
parameters. The limitation due to Purcell relaxation is also
straightforwardly assessed.

A fair comparison between direct and ancilla-based parity
measurement is difficult to establish, and beyond the scope of
this paper. However, we review some previous results and we
also examine some further considerations based on our present
work. In the context of quantum error correction a first attempt
to compare the two approaches was made in [16], in which
two different and simplified error models were considered for
the direct and ancilla-based parity measurement. Although the
direct parity measurement showed a better error threshold, it
was pointed out that the two estimated thresholds were not
comparable, since the noise models were different, which
is fundamentally a consequence of the different way of
performing the measurement. Reference [16] shows also
that weight-three stabilizer measurements are sufficient for
achieving fault-tolerant universal quantum computation. In
our previous work [11], we also attempted a qualitatively
similar analysis by obtaining the error rate that an ancilla-based
measurement should have in order to match the estimated
fidelity for the direct measurement.

It is also interesting to compare the total measurement times
for the two approaches. For the direct parity measurement the
total measurement time is just the time needed to complete the
readout, which we estimated to be in the range of 1–2 μs. A
similar measurement time is required for the single-qubit read-

out of an ancilla qubit. However, in the ancilla-based approach,
we have to consider the additional time required to perform
the intermediate CNOTs. With the current implementation via a
cross-resonance gate the duration of a CNOT is on the order of
0.3–1 μs [47], while in the gmon architecture the reported gate
time is shorter and approximately equal to 40 ns [48]. These
considerations show that the total time required to perform
a stabilizer measurement is of the same order of magnitude
for the two approaches. In addition, practical considerations
must be taken into account in the comparison. While the direct
approach has the great advantage of not requiring any active
control with a considerable hardware simplification, it relies
on the experimental ability of tuning the parameters and also
requires, as we have seen, more complicated qubits than the
simple transmon.

To conclude, we hope that this work will permit the
community to objectively and systematically determine the
best way forward towards fault-tolerant, circuit-QED-based
quantum computing. The parameter space is vast, so we expect
that the kind of complete design analysis provided here will
be essential for plotting our course into the future.
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APPENDIX A: DISPERSIVE HAMILTONIAN
FOR THE TCQ

For the sake of completeness we report here the result for
the dispersive Hamiltonian obtained for the first six levels of
the TCQ:

H̃pd = DH̃pD† = H0 +
2∑

i=1

{
g̃2

i+
	̃i+

|1+0−〉 〈1+0−| + g̃2
i−

	̃i−
|0+1−〉 〈0+1−| + 2g̃2

i+
	̃i+ + δ̃+

|2+0−〉 〈2+0−|

+ 2g̃2
i−

	̃i− + δ̃−
|0+2−〉 〈0+2−| +

(
g̃2

i+
	̃i+ + δ̃c

+ g̃2
i−

	̃i− + δ̃c

)
|1+1−〉 〈1+1−|

}

+
2∑

i=1

{
g̃2

i+
	̃i+

(|1+0−〉 〈1+0−| − |0+0−〉 〈0+0−|) + g̃2
i−

	̃i−
(|0+1−〉 〈0+1−| − |0+0−〉 〈0+0−|)

+ 2g̃2
i+

	̃i+ + δ̃+
(|2+0−〉 〈2+0−| − |1+0−〉 〈1+0−|) + 2g̃2

i−
	̃i− + δ̃−

(|0+2−〉 〈0+2−| − |0+1−〉 〈0+1−|)

+ g̃2
i+

	̃i+ + δ̃c

(|1+1−〉 〈1+1−| − |0+1−〉 〈0+1−|) + g̃2
i−

	̃i− + δ̃c

(|1+1−〉 〈1+1−| − |1+0−〉 〈1+0−|)
}
a
†
i ai

+
{

g̃1+g̃2+
2

(
1

	̃1+
+ 1

	̃2+

)
(|1+0−〉 〈1+0−| − |0+0−〉 〈0+0−|) + g̃1−g̃2−

2

(
1

	̃1−
+ 1

	̃2−

)

× (|0+1−〉 〈0+1−| − |0+0−〉 〈0+0−|) + 2g̃1+g̃2+
2

(
1

	̃1+ + δ̃+
+ 1

	̃2+ + δ̃+

)
(|2+0−〉 〈2+0−| − |1+0−〉 〈1+0−|)
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+ 2g̃1−g̃2−
2

(
1

	̃1− + δ̃−
+ 1

	̃2− + δ̃−

)
(|0+2−〉 〈0+2−| − |0+1−〉 〈0+1−|)

+ g̃1+g̃2+
2

(
1

	̃1+ + δ̃c

+ 1

	̃2+ + δ̃c

)
(|1+1−〉 〈1+1−| − |0+1−〉 〈0+1−|)

+ g̃1−g̃2−
2

(
1

	̃1− + δ̃c

+ 1

	̃2− + δ̃c

)
(|1+1−〉 〈1+1−| − |1+0−〉 〈1+0−|)

}
(a1a

†
2 + H.c.), (A1)

where for simplicity we directly omitted the two-photon
transition terms, which can be neglected with the same
argument as for the transmon.

APPENDIX B: TRANSMON COUPLED
TO A TRANSMISSION LINE RESONATOR

In this Appendix we study a system made up of a transmon
[20] capacitively coupled to a transmission line resonator
of length L. Our goal is to obtain the generalized Jaynes-
Cummings parameter as a function of the position of the
transmon. This transmon can be one of those composing a
TCQ for instance, and as we analyzed in Sec. IV B, we need to
understand how the sign of the Jaynes-Cummings parameter
of the bare transmons composing the TCQ behaves. A similar
analysis is carried out in [49].

Let us consider a transmission line resonator of length L

with a transmon capacitively coupled at a certain position xj . In
order to obtain the Lagrangian and then the Hamiltonian of this
circuit it is appropriate to consider the discrete version of the
circuit and afterwards take the continuous limit. The discrete
circuit is shown in Fig. 8. Following standard references on
circuit quantization [33,34], and taking the continuous limit
introducing the flux field φ(x,t), the Lagrangian reads

L =
∫ L

0
dx

{
c

2

(
∂φ

∂t

)2

− 1

2�

(
∂φ

∂x

)2
}

+ CJ

2
φ̇2

J + EJ cos

(
2πφJ

φ0

)

+
∫ L

0
dx

Ccδ(x − xJ )

2

(
∂φ

∂t
− φ̇J

)2

. (B1)

Assuming that the coupling capacitance is smaller than the
total capacitance of the line cL, which is a first weak coupling
approximation, we can neglect its effect on the transmission

FIG. 8. Discrete circuit of a transmon capacitively coupled to a
transmission line resonator. The spanning tree is depicted in red.
The transmon is coupled capacitively at a certain position kj	x with
kj = 1,2, . . . ,n − 2,n − 1, and 	x = L/n. In the limiting procedure
we will assume that the transmon is coupled at the desired position,
i.e., for n → +∞, kj	x → xj .

line part of the Lagrangian and write

L =
∫ L

0
dx

{
c

2

(
∂φ

∂t

)2

− 1

2�

(
∂φ

∂x

)2
}

+ C�

2
φ̇2

J + EJ cos

(
2πφJ

φ0

)
− Ccφ̇J

∂φ

∂t

∣∣∣∣
x=xJ

, (B2)

with C� = CJ + Cc. Within this weak coupling assumption,
we can obtain the normal modes of the transmission line; we
will take open circuit boundary conditions [39]. We can write
the flux φ(x,t) in terms of normal modes as

φ(x,t) =
+∞∑
n=0

√
2 cos

(
πn

L
x

)
φn(t). (B3)

Introducing this expansion in the Lagrangian Eq. (B2), we get

L = 1

2
Lc

{+∞∑
n=0

φ̇2
n − ω2

nφ
2
n

}

+ C�

2
φ̇2

J + EJ cos

(
2πφJ

φ0

)
− φ̇J

nc∑
n=0

Cnφ̇n, (B4)

where the mode frequencies are given by ωn = πn/(
√

�cL)
and we defined the coupling capacitances to the nth mode

Cn = Cc

√
2 cos

(
πn

L
xJ

)
. (B5)

In Eq. (B4), we have introduced a phenomenological cutoff
number nc ∈ N and thus an associated cutoff frequency ωc.
This means that the modes with frequency higher than ωc do
not couple to the transmon. Although our original model does
not give this cutoff, it is actually physically motivated. In fact,
we have assumed that the coupling capacitance is a lumped
element; i.e., the capacitance per unit of length is proportional
to a delta function. This is actually never the case and in general
we should treat also the coupling capacitance as a distributed
element. This means that when we consider modes whose
associated wavelength is smaller than the typical length of the
coupling capacitance, the quickly oscillating cosine functions
tend to average out the effective coupling capacitance to the
mode, and consequently decouple the mode from the transmon.
Here, in order to keep the discussion simple, we just introduced
a cutoff frequency, above which the modes do not couple to
the transmon.

In order to obtain the Hamiltonian, we first introduce the
conjugate variables of the mode fluxes φn and the transmon
flux φJ :

qn = ∂L
∂φ̇n

= Lcφ̇n − Cnφ̇J [1 − �(n − nc)], (B6a)
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qJ = ∂L
∂φ̇J

= −
nc∑

n=0

Cnφ̇n + C�φ̇J , (B6b)

with �(x) the Heaviside step function, which we here define
to have value 1 at x = 0. The Hamiltonian is then obtained as
the Legendre transform of the Lagrangian:

H = qJ φ̇J +
+∞∑
n=0

qnφ̇n − L. (B7)

In order to write the Hamiltonian in terms of the conjugate
variables we have to express the derivatives of the fluxes in
terms of the conjugate variables. In particular, we have trivially

φ̇n = qn

Lc
, n > nc. (B8)

For n � nc, we can write Eqs. (B6) in matrix form as

⎡
⎢⎢⎢⎢⎣

q0

q1
...

qnc

qJ

⎤
⎥⎥⎥⎥⎦ = C

⎡
⎢⎢⎢⎢⎢⎣

φ̇0

φ̇1
...

φ̇nc

φ̇J

⎤
⎥⎥⎥⎥⎥⎦, (B9)

where we defined the capacitance matrix

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

Lc 0 . . . −C0

0
. . . −C1

...
...

−Cnc

−C0 −C1 . . . −Cnc
C�

⎤
⎥⎥⎥⎥⎥⎥⎦

. (B10)

The problem is basically translated into the inversion of this
matrix. We can carry out this matrix inversion via block matrix
inversion. In particular, we write our matrix in the following
way:

C =
[

A B
BT D

]
, (B11)

where A is the square matrix

A = Lc Inc+1, (B12)

with Inc+1 the (nc + 1) × (nc + 1) identity matrix; B is the
vector

B =

⎡
⎢⎢⎣

−C0

−C1
...

−Cnc

⎤
⎥⎥⎦, (B13)

and BT its transpose; finally D is the scalar

D = C�. (B14)

The inverse of the capacitance matrix can be obtained as

C−1 =
[

A−1 + A−1B(D − BT A−1B)−1BT A−1 −A−1B(D − BT A−1B)−1

−(D − BT A−1B)−1BT A−1 (D − BT A−1B)−1

]
, (B15)

from which we get

C−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Lc

(
1 + C2

0
�

)
1
Lc

C0C1
�

. . . C0
�

1
Lc

C0C1
�

. . . C1
�

...
...

Cnc

�

C0
�

C1
�

. . .
Cnc

�
Lc
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B16)

where we define

� = Lc C� −
nc∑

n=0

C2
n. (B17)

Notice that without introducing the cutoff frequency the sum
in Eq. (B17) would be a nonconvergent series, although
convergence would still be guaranteed in the more realistic
model of a distributed coupling capacitance per unit of length.
The problem of divergences in circuit QED has recently been
tackled in [50].

At this point, we make again a weak coupling assump-
tion approximating � ≈ Lc C� and neglecting all terms
CkCl/(Lc C�) in the inverse of the coupling capacitance. Thus,
we approximate

C−1 ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
Lc

0 . . . C0
Lc C�

0
. . . C1

Lc C�

...
...

Cnc

Lc C�
C0

Lc C�

C1
Lc C�

. . .
Cnc

Lc C�

1
C�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B18)

which basically means that we can write

φ̇n = 1

Lc
qn + Cn

LcC�

qJ , n = {0,1, . . . ,nc}, (B19a)

φ̇J =
nc∑

n=0

Cn

LcC�

qn + 1

C�

qJ . (B19b)

Substituting Eqs. (B19) into the Hamiltonian Eq. (B7), and
again neglecting terms CkCl/(Lc C�), we finally obtain the
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Hamiltonian

H =
+∞∑
n=0

q2
n

2Lc
+ 1

2
Lcω2

nφ
2
n

+ q2
J

2C�

− EJ cos

(
2πφJ

φ0

)
+

nc∑
n=0

Cn

LcC�

qjqn.

(B20)

We point out that so far everything is classical. We now
promote the flux variables and the related conjugate variables
to operators imposing the usual commutation relations. In
addition, we introduce annihilation and creation operators for
the harmonic oscillator modes, i.e., n � 1, as

φn =
√

h̄

2Lc ωn

(an + a†
n), (B21a)

qn = i

√
h̄L c ωn

2
(a†

n − an), (B21b)

and approximating the transmon as a Duffing oscillator, with
Hamiltonian given by Eq. (25), we also introduce annihilation
and creation operators for the transmon [20],

φJ = h̄

2e

(
2EC

EJ

)1/4

(b + b†), (B22a)

qJ = i2e

(
EJ

32EC

)1/4

(b† − b). (B22b)

We finally write the quantum Hamiltonian as

H = q2
0

2Lc
+

+∞∑
n=1

ωna
†
nan + Hduff + C0

(Lc)2
qJ q0

− 2e

nc∑
n=1

Cn

C�

Vrms,n

(
EJ

32EC

)1/4

(b† − b)(a†
n − an),

(B23)

with Vrms,n = √
h̄ωn/(2Lc). Performing a RWA, neglecting

fast-rotating terms b†a†
n and ban, we finally end up with a gen-

eralized multimode Jaynes-Cummings model with interaction
Hamiltonian

Hint = +2e

nc∑
n=1

Cn

C�

Vrms,n

(
EJ

32EC

)1/4

(b†an + ba†
n), (B24)

where we identify the generalized Jaynes-Cummings coupling
parameter to mode n as a function of the position xJ of the
transmon as

gn(xJ ) = 2e
Cc

C�

Vrms,n

√
2 cos

(
πn

L
xJ

)
, (B25)

with 1 � n � nc.
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