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In the framework of Keldysh-Usadel kinetic theory, we study the temperature dependence of flux-flow
conductivity (FFC) in diffusive superconductors. By using self-consistent vortex solutions we find the exact values
of dimensionless parameters that determine the diffusion-controlled FFC both in the limit of the low temperatures
and close to the critical one. Taking into account the electron-phonon scattering, we study the transition between
flux-flow regimes controlled by either the diffusion or the inelastic relaxation of nonequilibrium quasiparticles.
We demonstrate that the inelastic electron-phonon relaxation leads to the strong suppression of FFC compared
to the previous estimates, making it possible to obtain numerical agreement with experimental results.
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I. INTRODUCTION

Vortex motion is an important process that determines
resistive properties of type-II superconductors in the flux-flow
regime. At magnetic fields B much weaker than the upper
critical one Hc2, the density of vortex lines is low, and the total
electric losses are given by the superposition of the individual
vortex contributions. In this regime, the flux-flow resistivity ρf

is proportional to the density of vortex lines, ρf ∼ B/Hc2, as
described by the general expression suggested by Bardeen and
Stephen [1]. The inverse quantity σf = 1/ρf , the flux-flow
conductivity (FFC), is therefore given by

σf /σn = βHc2/B, (1)

where σn is the normal-state conductivity and β is the
numerical coefficient which is determined by the particular
microscopic model.

For superconducting materials with a high rate of impurity
scattering, the numerical value of β ≈ 0.9 at low temperatures
has been reported by Gor’kov and Kopnin [2] (GK). This
value of the dimensionless parameter was obtained using
the approximate vortex solution found by Watts-Tobin and
Waterworth [3] and is discussed in detail below. To date the
exact value of β has been unknown, and it is reported in the
present paper based on the fully self-consistent vortex structure
calculations.

At elevated temperatures, two different regimes of the
vortex motion have been considered, depending on the
dominant mechanism of the relaxation [4]. One of them is
the diffusion-controlled flux flow when the generation of
nonequilibrium quasiparticles near the vortex line is balanced
by their diffusion to infinity. As the temperature approaches
Tc, this mechanism results in the divergent behavior of FFC
given by [4–6]

β ≈ β0(1 − T/Tc)−1/2, (2)

with temperature-independent β0. Qualitatively, this behavior
is explained by the vortex core size increase proportional to the
Ginzburg-Landau coherence length ξGL(T ) ∼ √

D/(Tc − T ),
where D is the diffusion coefficient. This dependence is in
qualitative agreement with experimental results [7] pointing
to the significant increase of β as temperature approaches

Tc. However, quantitative agreement is lacking. Initially, the
value of β0 ≈ 1.1 was reported [5], which by coincidence
was in good agreement with experiments [7]. However,
subsequently, this result was revised to β0 ≈ 4.04 by Larkin
and Ovchinnikov [4,6] (LO) which is several times larger than
the measured values in various superconductors [8–14].

When the temperature becomes sufficiently close to Tc

the relaxation is dominated by the inelastic electron-phonon
collisions. This regime is described by generalized time-
dependent Ginzburg-Landau theory (GTDGL), yielding the
FFC decreasing with temperature [4],

β ∼ (Tcτph)(1 − T/Tc)1/2, (3)

where τph is the electron-phonon relaxation time. In the limit
T → Tc the gapless superconducting state is realized. In this
case the decrease in β(T ) saturates at β = 1.45 [15].

The crossover between the two regimes described by
Eqs. (2) and (3) occurs at the temperatures τph(Tc − T ) ∼ 1
when the diffusion rate becomes of the order of the electron-
phonon relaxation rate, Dξ−2

GL ∼ τ−1
ph . That yields an estimation

of the maximal value max(β) ∼ √
Tcτph obtained from Eqs. (2)

and (3) at the upper and lower borders of their applicability,
respectively.

Although the estimations of max(β) obtained from Eqs. (2)
and (3) agree in order of magnitude, the temperature domains
where these equations are valid do not overlap. Therefore,
to find the behavior of β in the transition interval from
the diffusion-controlled regime to the GTDGL regime one
needs to improve the accuracy of the calculation taking into
account both mechanisms of relaxation. This is the problem
we address in the present paper. We study the linear-response
FFC of the sparse vortex lattices in a small magnetic field
by solving numerically kinetic equations describing nonequi-
librium states generated by moving isolated vortices. To find
kinetic coefficients and driving terms we use vortex structures
calculated self-consistently.

For the diffusion-controlled vortex motion, we calculate the
temperature dependence β = β(T ) and compare it with the in-
terpolation curve suggested in earlier works [4,7]. Taking into
account the electron-phonon scattering, we demonstrate that
it leads to significant suppression of the FFC at intermediate
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temperatures, τph(Tc − T ) ∼ 1, compared to the estimations
obtained from Eqs. (2) and (3). Using the electron-phonon
relaxation rate τ−1

ph as the fitting parameter, we obtain numeri-
cally accurate fits to the experimentally measured temperature
dependencies of FFC in Zr3Rh [14] and Nb-Ta [8,9].

The structure of this paper is as follows. In Sec. II
we introduce the Keldysh-Usadel description of the kinetic
processes in dirty superconductors. Here the basic components
of the kinetic theory are discussed, including kinetic equations,
self-consistency equations for the order parameter, and the
general expression for the viscous force acting on moving
vortices. Section III introduces the θ parametrization of the
theory. Calculated temperature dependencies of FFC are
reported in Sec. IV for different regimes. The diffusion-
controlled flux-flow is discussed in Sec. IV A, and the influence
of increasing electron-phonon relaxation rate is studied in
Sec. IV B. A summary is given in Sec. V.

II. KINETIC EQUATIONS AND THE FORCES ACTING
ON THE MOVING VORTEX LINE

The quasiclassical Green’s function (GF) is defined as

ǧ =
(

ĝR ĝK

0 ĝA

)
, (4)

where gK is the (2 × 2 matrix) Keldysh component and
ĝR(A) are the retarded (advanced) ones. The GF ǧ = ǧ(t1,t2,r)
depends on times t1,2 and a single spatial coordinate r . In dirty
superconductors ǧ obeys the Keldysh-Usadel equation

{τ̂3∂t ,ǧ}t = D∂̂r(ǧ ◦ ∂̂rǧ) + [Ĥ ,ǧ]t + Ǐ . (5)

Here τ̂0,1,2,3 are Pauli matrices in Nambu space, D is the
diffusion constant, and Ĥ (r,t) = i	̂−ieφτ̂0, where 	̂(t) =
i|	|τ̂2e

−iϕτ̂3 is the gap operator, ϕ is the gap phase, |	| is the
gap modulus, and φ is the electrostatic potential.

In Eq. (5) the commutator is defined as [X,g]t =
X(t1)g(t1,t2) − g(t1,t2)X(t2), with a similar definition for
the anticommutator {X,g}t ; in particular, {τ̂3∂t ,ǧ}t =
τ̂3∂t1 ǧ(t1,t2) + ∂t2 ǧ(t1,t2)τ̂3. The symbolic product operator
is given by (A ◦ B)(t1,t2) = ∫ ∞

−∞ dtA(t1,t)B(t,t2), and the
covariant differential superoperator is

∂̂rǧ = ∇ǧ − ie[τ̂3 A,ǧ]t . (6)

The collision integral in (5) is given by

Ǐ = i(ǧ ◦ �̌ − �̌ ◦ ǧ), (7)

where the self-energy �̌ may contain contributions from
different relaxation processes. Here we take into account only
the electron-phonon scattering, which plays an important role
in the energy relaxation.

The Keldysh-Usadel equation (5) is complemented by the
normalization condition (ǧ ◦ ǧ)(t1,t2) = δ̌(t1 − t2), which al-
lows us to introduce parametrization of the Keldysh component
in terms of the distribution function

ĝK (t1,t2) = (ĝR ◦ f̂ )(t1,t2) − (f̂ ◦ ĝA)(t1,t2), (8)

f̂ (t1,t2) = τ̂0fL(t1,t2) + τ̂3fT (t1,t2). (9)

The deviation of fL from the equilibrium distribution is related
to the effective temperature change, and fT is the charge
imbalance on the quasiparticle branch.

To proceed we introduce the mixed representa-
tion in the time-energy domain as follows: ǧ(t1,t2) =∫ ∞
−∞ ǧ(ε,t)e−iε(t1−t2)dε/(2π ), where t = (t1 + t2)/2.

The Keldysh-Usadel equation (5) can be simplified by using
the gradient approximation. In order to keep the resulting
kinetic equations gauge invariant we use the modified GFs
ǧnew(t1,t2) = Ŵ (t1,t)ǧ(t1,t2)Ŵ (t,t2), where the link operator

is given by Ŵ (t1,t2) = e
iτ̂3

∫ t2
t1

eφdt . This transformation leads to
the local chemical potential shift. To take this into account we
will use the substitution fT (ε,t) → fT (ε,t)+eφ∂εf0, where
f0(ε) = tanh(ε/2T ) is the equilibrium distribution function.
After this transformation fT (ε,t) denotes the deviation from
the local equilibrium distribution.

Then, keeping the first-order nonequilibrium terms, we
obtain the system of two coupled kinetic equations that
determine both the transverse and longitudinal distribution
function components fL,T = fL,T (ε,t) (a detailed derivation
is given in Appendix A):

∇(DT ∇fT ) + j e · ∇fL + 2iTr[(ĝR + ĝA)	̂]fT

= ∂εf0Tr[τ̂3∂̂t 	̂(ĝR + ĝA)], (10)

∇(DL∇fL) + j e · ∇fT + 2iTr[τ̂3(ĝR − ĝA)	̂]fT

= −∂εf0Tr[∂̂t 	̂(ĝR − ĝA)] − TrĴ , (11)

where the energy-dependent diffusion coefficients DT ,L and
the spectral charge current j e are given by

DT = DTr(τ̂0 − τ̂3ĝ
Rτ̂3ĝ

A), (12)

DL = DTr(τ̂0 − ĝRĝA), (13)

j e = DTr [τ̂3(ĝR∇̂ĝR − ĝA∇̂ĝA)]. (14)

In Eqs. (10), (11), and (14) we use the covariant time derivative
and spatial gradient defined by ∂̂t = τ̂0∂t + 2ieφτ̂3 and ∇̂ =
∇ − ieA[τ̂3,]. We omit the driving terms containing electric
field, which is justified in type-II superconductors with large
Ginzburg-Landau parameters. In such systems the dominating
driving terms are those containing order parameter gradients.

The electron-phonon collision integral on the right-hand
side of kinetic equation (11) is Ĵ = Î K − Î R ◦ f̂ + f̂ ◦ Î A,
where the components of Ǐ are given by Eq. (7) with electron-
phonon self-energies [16]

�̂R/A/K (ε) = − λph

56ζ (3)T 2
c

∫ ∞

−∞
dω�̃R/A/K (ω,ε),

�̃R/A(ω,ε) = DK (ω)ĝR/A(ε + ω) − DR/A(ω)ĝK (ε + ω),

�̃K (ω,ε) = DK (ω)ĝK (ε + ω) − DRA(ω)ĝRA(ε + ω). (15)

Here

DR/A(ω) = ±iω|ω|, (16)

DK (ω) = DRA(ω) coth
( ω

2T

)
(17)
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are the free-phonon propagators, DRA = DR − DA and
ĝRA = ĝR − ĝA. We parametrize the electron-phonon self-
energy by the dimensionless constant λph = (Tcτph)−1, where
τph is the electron-phonon relaxation time at T = Tc.

The force acting on the moving vortex line from the
dissipative environment can be calculated according to the
expression [4,17]

Fenv = ν

∫
d2r

∫ ∞

−∞

dε

4
Tr(ĝnst∂̂r	̂), (18)

where ν is the density of states and ĝnst is the nonstationary
Green’s function, which can be obtained by the gradient
expansion as follows:

ĝnst = − i

2
∂̂t (ĝ

R + ĝA)∂εf0

+ (ĝR − ĝA)(fL − f0) + (ĝRτ̂3 − τ̂3ĝ
A)fT . (19)

Here fT denotes the deviation from the local equilibrium, as
discussed above.

In Eq. (18) we neglect the contribution from the normal
component of the charge current. This assumption is well
justified for the small magnetic fields compared to the upper
critical one [18].

III. θ PARAMETRIZATION

In general, the normalization condition allows one to
parametrize GF by complex variables θ and ϕ̃. For the axially
symmetric vortices the latter coincides with the vortex phase
ϕ̃ = ϕ. In this case we have

ĝR = τ̂3 cosh θ + iτ̂2e
−iτ̂3ϕ sinh θ, (20)

ĝA = −τ̂3 cosh θ∗ − iτ̂2e
−iτ̂3ϕ sinh θ∗. (21)

The complex parameter θ = θ (r), depending only on the
distance to the vortex center r , is given by the solution of the
Usadel equation

∇2
r θ − sinh 2θ

2r2
+ 2i

D

[(
ε + i

2τ

)
sinh θ − |	| cosh θ

]
= 0,

(22)

where ∇2
r = ∂2

r + r−1∂r (see Appendix C). The boundary
conditions for Eq. (22) read

θ (0) = 0, (23)

sinh θ (∞) = 	0/

√
[ε + i/(2τ )]2 − 	2

0, (24)

where 	0 = |	(r = ∞)|. Electron-phonon scattering with
characteristic time τ in Eqs. (22)–(24) regularizes spectral
functions near the gap edge singularity. At low temperatures
electron-phonon scattering does not affect the calculation
results. In the vicinity of Tc, its value is important since
the inelastic relaxation dominates the dissipation. To describe
the effects of electron-phonon scattering on the relaxation
we calculate τ self-consistently within the relaxation-time

approximation described in Appendix B. In this approach

1

τ
= λph cosh ε

2T

14ζ (3)T 2
c

∫ ∞

−∞

ω|ω|dωRe cosh[θ (ε + ω)]

sinh ω
2T

cosh ε+ω
2T

. (25)

To determine the gap profile, we use a stationary self-
consistency equation written in the form

|	| ln(T/Tc) = 2πT
∑

n

(
sin θM

n − |	|/ωn

)
. (26)

Here the summation runs over Matsubara frequencies ωn =
(2n + 1)πT , n = 0, . . . ,∞, and the angle θM

n (r) parametrizes
the imaginary-frequency GF obtained by the transformation
θ → −iθM

n from Eqs. (20) and (21) in the upper and lower
half planes, respectively. To obtain θM

n (r) we solve the Usadel
equation (22) with θ → −iθM

n and ε → iωn. We assume
that the condition ωnτ 
 1 is always satisfied and neglect
the relaxation time correction while solving Eq. (22) for
the imaginary frequencies. The boundary conditions read
θM
n (0) = 0 and

θM
n (∞) = sin−1

[
	0/

√
	2

0 + ω2
n

]
. (27)

The driving terms in kinetic equations (10) and (11) are
given by the time derivatives of the order parameter, which for
the steady vortex motion can be written as ∂t 	̂ = −vL · ∇	̂,
where vL is the vortex velocity. For the axially symmetric
vortex, this form of driving terms allows for the separation of
the variables using the ansatz

fL − f0 = vLf̃L∂εf0 cos ϕ, (28)

fT = vLf̃T ∂εf0 sin ϕ. (29)

Here the amplitudes f̃L,T = f̃L,T (r) are defined by Eqs. (10)
and (11), which can be written in the compact form as follows:

∂r (rDT ∂r f̃T ) − (DT − 8|	|r2 cosh ϑ sin η)
f̃T

r

= 4|	| cosh ϑ sin η − DL sinh(2ϑ) tan η
f̃L

r
, (30)

∂r (rDL∂r f̃L) − DL

f̃L

r
= DT tanh ϑ sin(2η)

f̃T

r

− 4r sinh ϑ cos η∂r |	|
+ rf̃Lνout − rjin, (31)

where ϑ = Reθ and η = Imθ . For a detailed derivation see
Appendix C. The last two terms in Eq. (31) describe scattering-
out and scattering-in contributions to the inelastic relaxation
of the nonequilibrium longitudinal imbalance. The integrals
are given by

νout = 2λph cos η

7ζ (3)T 2
c

∫ ∞

−∞
dωω|ω| cos[η(ε + ω)]

× cosh[ϑ(ε) − ϑ(ε + ω)][1/f0(ω) − f0(ε + ω)], (32)

jin = 2λph cos η

7ζ (3)T 2
c ∂εf0

∫ ∞

−∞
dωω|ω| cos[η(ε + ω)]f̃L(ε + ω)

× cosh[ϑ(ε) −ϑ(ε+ω)]∂εf0(ε+ω)[f0(ε) + 1/f0(ω)].

(33)
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Kinetic equations (30) and (31) are solved numerically
within the interval 0 � r � rc, where rc is the cell radius. For
the regime of diffusion-controlled dissipation we choose an
interval large enough that the result is not sensitive to rc. When
discussing the crossover to the inelastic relaxation-driven
dissipation, we set the interval to be larger than the inelastic
relaxation length

√
Dτ , which determines the decay of f̃L at

large distances. We use the following boundary conditions:

f̃T (r = 0) = f̃L(r = 0) = 0,

f̃T (r = rc) = 1/2rc,

∂r f̃L(r = rc) = 0. (34)

Here the condition at r = 0 in Eq. (34) follows from the
regularity of the solutions at the origin, while the condition
at rc provides the disappearance of the charge imbalance and
the absence of the heat flow into the bulk.

The viscous friction force acting on an individual moving
vortex can be written as Fenv = −�vL. We present the
viscosity coefficient in the form � = πh̄ν(α + γ ), separating
the contributions of the driving terms related to the gap
modulus and phase gradients (see Appendix C). In general
the flux-flow conductivity can be expressed through the vortex
viscosity as follows [5]:

σf = �/(Bφ0), (35)

where φ0 is the magnetic flux quantum. Taking into account
the normal-state Drude conductivity, σn = 2e2νD, we write
the FFC in the form (1) with

β = c(α + γ )/(2eDHc2). (36)

The upper critical field Hc2 is determined by the Maki equa-
tion [19], ln(T/Tc) + ψ[1/2 + eHc2D/(2πcT )] = ψ(1/2),
where ψ is the digamma function. The low-temperature
limit gives Hc2 = φ0Tc/(2Dγ0), where γ0 = 1.781. Close to
the critical temperature one obtains Hc2 = φ0/(2πξ 2

GL), and
ξGL = √

πDh̄/8(Tc − T ) is the Ginzburg-Landau correlation
length.

IV. RESULTS

A. Diffusion-controlled flux flow

When the temperature is sufficiently far from the critical
one, the electron-phonon relaxation terms νoutf̃L and jin in
the kinetic equation (31) can be neglected because they
are much smaller than the diffusion one. Qualitatively, this
approximation means that the nonequilibrium quasiparticles
generated near the vortex can drift to infinity at a rate
exceeding that of inelastic relaxation. This regime is called
the diffusion-controlled flux flow, and it is realized in the
temperature domain (Tc − T )τph 
 1. Below we analyze this
scenario separately for different temperature intervals.

1. Low-temperature limit

At low temperatures, the sizable quasiparticle density exists
only inside vortex cores where the superconducting order
parameter is suppressed. In this case, it is sufficient to consider
only the zero-energy GF for which parameter θ is purely
imaginary, ϑ = 0. The dissipation is dominated by the charge

relaxation processes described by the distribution function fT .
The effective temperature change described by the distortion
of fL can be neglected. Then Eq. (30) can be written as follows:

∇2
r f̃T −

(
1

r2
− 2|	|

D
sin η

)
f̃T = |	|

Dr
sin η. (37)

As a result, the coefficients that determine FFC in Eq. (36)
are given by

α = −
∫ ∞

0
rdr∂r |	|∂r sin η,

γ =
∫ ∞

0
dr|	|(2f̃T − 1/r) sin η. (38)

Previously, the value of β ≈ 0.9 was reported by GK [2].
The calculation was based on the approximate vortex solution
taken from Ref. [3]. This vortex structure was obtained by
solving iteratively the self-consistency equation (26). Each
iteration step was performed as follows. First, for a given
vortex profile the GFs at each Matsubara frequency were
determined by solving the Usadel equation. Then these GFs
were substituted into the self-consistency equation in order
to calculate the updated order parameter distribution. The
iteration procedure used in Ref. [3] started from the gap
function, which is also known as the Clem ansatz [20].
However, instead of taking a sufficient number of iterations
to reach self-consistency, only a single iteration step was
performed in Ref. [3]. In this way the approximate vortex
profile was obtained, which was used later to calculate the
flux-flow conductivity at low fields [2].

To get the correct order parameter distribution we have
performed a sufficient number of iterations to ensure that the
order parameter changes with each update become negligible.
With the help of the fully self-consistent vortex structure
obtained in this way we found that β = 0.77. The previously
reported value of 0.9 is overestimated by 17%. The disparity
between the initial gap distribution and the one obtained after
the first iteration and the exact gap function together with
corresponding values of β are shown in Fig. 1.

2. High-temperature limit

For elevated temperatures still in the diffusive-controlled
limit (Tc − T )τph 
 1, the nonequilibrium states are domi-
nated mostly by the change in the number of quasiparticles
determined by the fL mode, while the charge imbalance
fT yields the subdominant contribution. In this regime the
FFC was calculated within the local-density approximation
for the spectral functions [4,6]. This approximation results
in expression (2) with β0 = 4.04 (see Appendix D for the
calculation details).

The local-density approximation is well justified in the
limit T → Tc. However, to stay in the diffusion-controlled
regime the temperature cannot be taken infinitesimally close
to the critical one. Thus, it is interesting to improve the
accuracy of the β calculation for small but finite values of
Tc − T . For this purpose we found the order parameter solving
the self-consistency equation (26) numerically. After that we
considered Eq. (22) for the spectral functions, where the
small parameter 1/τ regularizes the gap edge singularities.
We fixed the value λph ∼ 10−6 so that the relaxation time τ
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FIG. 1. (a) Single-vortex solution of the self-consistency equation
solved by iterations at T/Tc = 0.05. The initial-guess distribution
given by the Clem ansatz (black dashed line) and the first iteration
(red solid line) used in Ref. [2] are compared to the fourth (green solid
line) and fortieth (blue solid line) iterations. (b) and (c) Values of the
angle η = Im θ and distribution function f̃T calculated based on gap
profiles shown in (a). (d) The flux-flow conductivity slope β depicted
as a function of iteration number. Values of β which correspond to
the gap distributions shown in (a) are indicated by the dots with
corresponding color. The notation GK refers to the result calculated
by Gor’kov and Kopnin [2].

appears to be sufficiently large and diffusion-controlled FFC
remains unaffected up to the temperatures 1 − T/Tc ∼ λph. By
starting with initial distributions for ϑ and η, we calculated the
relaxation time τ according to Eq. (25) and then solved Eq. (22)
numerically to get the new functions ϑ and η. By repeating
this procedure iteratively, we found spectral functions with
sufficient accuracy. By using these solutions, we calculated the
relaxation rate νout for nonequilibrium longitudinal imbalance,
Eq. (32), and solved the kinetic equations (30) and (31) by
omitting the scattering-in term jin.

Inclusion of finite relaxation time here is the technical trick
needed to solve the equation for the fL mode at subgap energies
numerically. Without relaxation, fL diverges exponentially as
the function of the distance from the vortex core due to the
conservation of the heat flow and exponential decay of the
density of states far from the vortex. To find fL numerically, we
remove its divergent behavior by electron-phonon relaxation.
Note that FFC is not affected by the divergent asymptotic of
fL since the latter is compensated by the decay of the density
of states, e.g., in the expression for the force acting on the
vortex (C6).

Figure 2 demonstrates the exactly calculated ϑ and η

and the distribution function f̃L compared to those obtained
within the local-density approximation. With these functions
we calculated integrals α and γ [see expression (C7)]. As a
result, we obtained the divergent behavior (2) with the di-
mensionless parameter β0 ≈ 3.7. Therefore, the local-density
approximation overestimates β0 by 9%.
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FIG. 2. ϑ = Re θ (red) and η = Im θ (blue) as functions of
distance for the energies below (a) and above (b) the bulk gap
	0 and temperature T/Tc = 0.99. Dashed curves represent solu-
tions obtained within the local-density approximation used by LO.
(c) and (d) The logarithm of f̃L (solid black) for the same energies. The
dashed black curve in (c) corresponds to the distribution function used
by LO [see Eq. (D1)]. The vertical line in (c) points to the distance
where energy equals the local-density value, ε = |	|. Note that for
ε > 	0 the difference between exact numerics and the local-density
approximation is rather small.

3. Intermediate temperatures

For the temperatures within the broad range between
limiting cases considered above, the contributions of both
the fL and fT modes are generically of the same order of
magnitude. Therefore, in order to calculate the FFC it is
necessary to solve the system of coupled kinetic equations (30)
and (31). This can be done only numerically, and the exact
temperature dependence β = β(T ) in the diffusion-controlled
regime has never been calculated before. Previously, only
the interpolation curve between the GK and LO results was
suggested [4]. Below we compare this interpolation curve with
the result of an exact numerical calculation which is done in
the same way as discussed in Sec. IV A 2 by repeating all steps
at different temperatures.

Shown by the red curve in Fig. 3 is the obtained temper-
ature dependence β = β(T ), which is qualitatively similar to
the interpolation curve (black line) suggested previously in
Ref. [4]. Both dependencies feature the gradual increase from
the Bardeen-Stephen limit, β ∼ 1, at small temperatures to the
large values of β at high temperatures due to the decrease in the
diffusion relaxation rate. However, the calculated dependence
β(T ) is significantly lower than the interpolation curve known
from the literature.

B. Effects due to inelastic relaxation

Inelastic electron-phonon scattering provides an additional
relaxation mechanism which affects FFC. This relaxation
channel plays an important role at temperatures close to the
critical one when the spatial gradients of the distribution
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FIG. 3. Diffusion-controlled flux-flow conductivity parameter
β (36) as a function of temperature. The black line is the interpolation
curve between GK and LO limits taken from Ref. [4] (their Fig. 13.1).
The red line is a result of numerical calculation.

functions become small due to an increase in the correlation
length and the superconducting energy gap is suppressed.

1. Suppression of FFC

The crossover between diffusion-controlled and inelastic
relaxation-controlled branches of the β(T ) dependence oc-
curs at temperatures τph(Tc − T ) ∼ 1, where none of these
approximations can be applied. The behavior of β(T ) in
this region of parameters has not been studied before. To
analyze the interplay between the two relaxation regimes we
calculate numerically FFC for different inelastic scattering
rates determined by the value of the parameter λph. We apply
the same numeric procedure as discussed in Sec. IV A 2.

Figure 4 shows the result of the calculation. Inelastic
electron-phonon scattering suppresses the maximal value of
FFC and smears the crossover from solely diffusion driven

0

5

10

15

0 0.2 0.4 0.6 0.8 1

β

0

2

4

0.96 0.98 1

λph = 0.1

T/Tc

λph = 10−6

10−2

10−1

T/Tc

FIG. 4. Left: FFC as the electron-phonon relaxation rate deter-
mined by λph increases (solid curves). Experimental data are shown
for Zr3Rh [14] (blue circles) and Nb0.5Ta0.5 [8,9] (black triangles).
Dashed curves represent FFC calculated by means of distribution
functions corrected by the scattering-in contribution to the collision
integral (see text). Right: FFC calculated in the limit T → Tc by
neglecting the nonequilibrium transverse imbalance mode (black
curve). The red curve is the Tinkham contribution to FFC in the
GTDGL theory, and the star corresponds to its limiting value,
β ≈ 0.81, in the gapless regime. Note that total FFC due to Tinkham
and Bardeen-Stephen mechanisms is β ≈ 1.45 at Tc. The dashed
vertical line is defined by the condition h̄D/ξ 2

GL = Tcλph, and the
dotted one is defined by h̄D/ξ 2

GL = 0.1Tcλph.

to inelastic relaxation-controlled regimes. Such behavior is
caused by suppressed generation of nonequilibrium quasipar-
ticles due to the presence of the electron-phonon relaxation
channel, so that nonequilibrium longitudinal imbalance be-
comes weaker. This follows from kinetic equation (31), where
electron-phonon relaxation tends to suppress the source term
determined by the density gradient.

To demonstrate the consistency of our numerics we first
estimated the effect of the scattering-in contribution to the
collision integral in kinetic equation (31). To do this we
solved kinetic equations without the scattering-in term for
the energies in the interval [−20	0, . . . ,20	0] and then
calculated collision integral (33). By using its value we solved
the kinetic equations again and obtained corrected distribution
functions together with more accurate values of FFC, shown
in the left panel of Fig. 4 by dashed curves. The effect of
scattering-in term is rather small.

Next, we calculated FFC at elevated temperatures close to
Tc. In this limit, we can compare our numerics with the results
of GTDGL theory [21], which yields the decreasing behavior
of β with increasing temperature. The transition to this
scenario is demonstrated by the lower curve in the left panel
of Fig. 4, where β passes through the maximum. However,
our description is not very accurate in the limit of T → Tc

because we do not take into account the order parameter
modification by nonequilibrium effects. Such nonequilibrium
self-consistency is needed to describe the screening of electric
field by the Cooper pairs. Without including these effects,
the contribution of the charge imbalance mode to FFC near
Tc becomes inaccurate. Therefore, to make a comparison
with GTDGL theory we neglect the fT mode in kinetic
equations (30) and (31) and the first term in the viscous friction
force (C6). The remaining contribution to β determined by the
fL mode is shown in the right panel of Fig. 4. One can see
that it gradually approaches the Tinkham contribution to β

obtained within the GTDGL model.
The right panel in Fig. 4 demonstrates also that the

crossover towards the electron-phonon relaxation-controlled
regime and the GTDGL theory takes place very close to the
critical temperature where the electron-phonon relaxation rate
is at least ten times larger than the one for the diffusion.
The opposite condition h̄D/ξGL = 10Tcλph is satisfied at the
temperature T/Tc = 0.6 for λph = 0.1, and below this limit
FFC is well approximated by only the diffusion mechanism
(see Fig. 4). This suggests that the temperature interval where
FFC is characterized by the coexistence of diffusion-driven
and inelastic scattering-controlled mechanisms of relaxation
can be quite wide, and neither of estimations (2) and (3) can
give an adequate description in this region.

2. Comparison with experiments

The numerical value of λph specific to the concrete
superconductor can be directly obtained from the value of
the conductivity parameter β in the limit T → Tc. However,
for these large temperatures experimental studies of the vortex
motion are challenging [7], and the behavior of FFC in this
regime has not been studied in detail.

Above we demonstrated significant modifications of FFC
caused by electron-phonon scattering, which allows us to
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obtain good numerical agreement with experimental data
using the inelastic relaxation rate λph = (τphTc)−1 as the fitting
parameter. In real superconducting systems, FFC is strongly
affected by electron-phonon relaxation so that applicability
of Eqs. (2) and (3) appears to be very limited. In this case,
the overall temperature behavior of FFC can be found only
numerically due to the multicomponent mechanism of the
nonequilibrium quasiparticle relaxation during the motion of
the vortices.

In Fig. 4 we compare numerically calculated curves with
experimental data for Na-Ta system [8,9] and the amorphous
superconductor Zr3Rh [14]. For the former case, a good fit
is achieved for the value λph = 0.1, which corresponds to the
electron-phonon relaxation time of about 10−11 s. This value
agrees by the order of magnitude with ones reported previously
for niobium [22,23]. For the system Zr3Rh, good fit is found
for λph = 0.01 which corresponds to the electron-phonon
relaxation time about 10−10 s.

V. SUMMARY

To summarize, we have calculated the FFC in diffusive su-
perconductors for small magnetic fields and arbitrary temper-
atures, taking into account the electron-phonon relaxation and
using the self-consistent vortex solutions. First, we obtained
the exact value of the dimensionless parameter β = 0.77 which
determines the FFC in the low-temperature limit T → 0.
Second, we calculated the overall temperature dependence
of β in the domain of the diffusion-controlled flux flow,
that is, at τph(Tc − T ) 
 1. Significant deviations from the
previously reported interpolation curve are obtained. Finally,
we studied the crossover between the diffusion-controlled
and GTDGL regimes which occurs at τph(Tc − T ) ∼ 1. The
maximal value of β obtained in this region is much smaller
than expected from the estimations based on Eqs. (2) and (3)
at the border of their applicability. Consequently, we obtained
significant suppression of FFC near Tc by changing the
electron-phonon relaxation rate and achieved better agreement
with the experimental data.
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APPENDIX A: DERIVATION OF KINETIC EQUATIONS

The quasiclassical GF matrix defined in Eq. (4) obeys the
Usadel equation

{τ̂3∂t ,ǧ}t = D∂̂r(ǧ ◦ ∂̂rǧ) + [Ĥ ,ǧ]t + Ǐ , (A1)

where Ĥ (r,t) = i	̂ − ieφτ̂0, 	̂(t) = i|	|τ̂2e
−iϕτ̂3 is the gap

operator and Ǐ = i(ǧ ◦ �̌ − �̌ ◦ ǧ) is the collision integral
due to relaxation processes described by the self-energy
�̌. Equation (A1) is complemented by the normalization
condition, and the parametrization of the Keldysh component
is introduced in (8). Throughout the derivation we assume
kB = h̄ = c = 1.

The diagonal elements of matrix equation (A1) give
equations for ĝR/A which have the same form as (A1)
with Î R/A = i(ĝR/A ◦ �̂R/A − �̂R/A ◦ ĝR/A) substituted into
it. The nondiagonal element reads

{τ̂3∂t ,ĝ
K}t = D∂̂r(ǧ ◦ ∂̂rǧ)K + [Ĥ ,ĝK ]t + Î K, (A2)

where

Î K = i(ĝR ◦ �̂K + ĝK ◦ �̂A−�̂R ◦ ĝK−�̂K ◦ ĝA),

∂̂r(ǧ ◦ ∂̂rǧ)K = ∂̂r(ĝR ◦ ∂̂rĝ
K + ĝK ◦ ∂̂rĝ

A)

= ∂̂r(∂̂rf̂ − ĝR ◦ ∂̂rf̂ ◦ ĝA) + ĝR ◦ ∂̂rĝ
R ◦ ∂̂rf̂

− ∂̂rf̂ ◦ ĝA ◦ ∂̂rĝ
A + ∂̂r(ĝR ◦ ∂̂rĝ

R) ◦ f̂

− f̂ ◦ ∂̂r(ĝA ◦ ∂̂rĝ
A). (A3)

To obtain last relation we substituted the parametrization (8)
and used the associative property of differential superoperator
∂̂r(g1 ◦ g2) = ∂̂rg1 ◦ g2 + g1 ◦ ∂̂rg2. To get rid of the last two
terms we subtract the spectral components of Eq. (A1) to
obtain, finally, the equation

ĝR ◦ {τ̂3∂t ,f̂ }t − {τ̂3∂t ,f̂ }t ◦ ĝA

= D∂̂r (∂̂r f̂ − ĝR ◦ ∂̂r f̂ ◦ ĝA)

+D(ĝR ◦ ∂̂rĝ
R ◦ ∂̂r f̂ − ∂̂r f̂ ◦ ĝA ◦ ∂̂rĝ

A)

+ ĝR ◦ [Ĥ ,f̂ ]t − [Ĥ ,f̂ ]t ◦ ĝA + Ĵ , (A4)

where Ĵ = Ẑ ◦ ĝA − ĝR ◦ Ẑ and Ẑ = i(�̂R ◦ f̂ − f̂ ◦ �̂A −
�̂K ). In our consideration, the collision integral describes
only the electron-phonon scattering channel. This term is
responsible for establishing equilibrium in the system.

To proceed we introduce the mixed representa-
tion in the time-energy domain as follows: ĝ(t1,t2) =∫ ∞
−∞ ĝ(ε,t)e−iε(t1−t2) dε

2π
, where t = (t1 + t2)/2. To keep the

gauge invariance we introduce the modified GF ĝnew =
Ŵ (t1,t)ĝ(t1,t2)Ŵ (t,t2), where the link operator is defined in
the text. This transformation removes the scalar potential term
from the kinetic equations and adds the chemical potential shift
eφ. We absorb this shift by substituting fT → fT + eφ∂εf0,
where f0(ε) = tanh[ε/(2T )] is the equilibrium distribution,
so that fT hereafter denotes the deviation from the local
equilibrium. Then keeping the first-order terms in frequency,
we get the gradient approximation

[Ĥ ,ĝ]t = [Ĥ ,ĝ] − i{∂t Ĥ ,∂εĝ}/2,

[Aτ̂3,ĝ]t = A[τ̂3,ĝ] − i∂t A{τ̂3,∂εĝ}/2,

∂̂rf̂ (ε,t) = ∇(fLτ̂0 + fT τ̂3) + eEτ̂3∂εf0, (A5)

where E = −∇φ − ∂t A is the electric field.
Here we assume first order in the deviation from equilib-

rium, so that the equilibrium distribution f0 is substituted in
the last term in (A5). With the same accuracy we obtain

∂̂r(∂̂rf̂ − ĝR ◦ ∂̂rf̂ ◦ ĝA)

= ∇̂(∇̂f̂1 − ĝR∇̂f̂1ĝ
A) + e∂εf0∇ · [E(τ̂3 − ĝRτ̂3ĝ

A)],

(A6)

where f̂1 = (fL − f0)τ̂0 + τ̂3fT is the deviation from the local
equilibrium and ∇̂ = ∇τ̂0 − ieA[τ̂3,] is the gauge-covariant
gradient. In (A6) we keep only terms which contribute to the
kinetic equations.
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In the mixed representation the kinetic equation (A4) has
the following gauge-invariant form:

D∇(∇f̂1 − ĝR∇f̂1ĝ
A) + D(ĝR∇̂ĝR∇f̂1 − ∇f̂1ĝ

A∇̂ĝA)

+ ĝR[Ĥ ,f̂1] − [Ĥ ,f̂1]ĝA − i∂εf0(ĝR∂̂t Ĥ − ∂̂t Ĥ ĝA)

+ eD∂εf0∇ · [E(τ̂3 − ĝRτ̂3ĝ
A)]

+ eD∂εf0 E · (ĝR∇̂ĝRτ̂3 − τ̂3ĝ
A∇̂ĝA) + Ĵ = 0. (A7)

Here we took into account only first-order terms in the
deviation from equilibrium and introduced the gauge-covariant
time derivative ∂̂t = τ̂0∂t + 2ieφτ̂3.

To obtain Eqs. (10) and (11) in the main text we trace
Eq. (A7) with Nambu matrices τ̂0 and τ̂3, respectively. Here we
take into account that Tr(ĝRτ̂3ĝ

A) = 0 because of the relation
ĝA = −τ̂3ĝ

R+τ̂3 and the general form of the equilibrium
spectral function ĝR = g3τ̂3 + g2τ̂2e

−iϕτ̂3 . Then we neglect
the driving terms with electric field and electron-phonon
relaxation of the charge imbalance to get Eq. (10). We keep
the electron-phonon collision integral in Eq. (11), which plays
an important role in vortex dynamics being the only energy
relaxation channel.

APPENDIX B: COLLISION INTEGRALS

We consider small nonstationary corrections to the GF in
the form ĝR/A = ĝR/A + ĝ

R/A
nst and ĝK = ĝRAf0 + ĝnst, where

ĝR/A 
 ĝ
R/A
nst and ĝnst defined in Eq. (19). Here we use the

notation XRA = XR − XA for X = ĝ. Then the stationary
parts of the inelastic electron-phonon self-energy (15) read

�̃R/A = 2iω|ω|
{
ĝR/A(ε + ω)

[
1

f0(ω)
− f0(ε + ω)

]

+ f0(ε + ω)

2
[ĝR(ε + ω) + ĝA(ε + ω)]

}
,

�̃K = 2iω|ω|ĝRA(ε + ω)[f0(ε + ω)/f0(ω) − 1]. (B1)

We are mostly interested in the self-energies at ε ∼ 	0, while
the dominant contribution to the integral (15) comes from the
region ω 
 	0. Since for higher energies ĝR + ĝA � ĝR/A

and ĝR/A ≈ τ̂3g
R/A, the second contribution to �̃R/A in

Eq. (B1) can be neglected, and the self-energy can be presented
in the relaxation-time approximation, i�̂R/A = ±τ̂3/(2τ ),
where τ is the energy-dependent inelastic electron-phonon
collision time defined by

1

τ
= λph cosh ε

2T

14ζ (3)T 2
c

∫ ∞

−∞

ω|ω|dωgR(ε + ω)

sinh ω
2T

cosh ε+ω
2T

. (B2)

This expression coincides with the formula used by Watts-
Tobin et al. [21]. In Eq. (B2), relaxation time τ can contain an
imaginary part due to complex gR . Usually, this contribution
is absorbed by renormalizing the chemical potential. Note that

near the critical temperature, where gR ≈ 1 and ε � ω ∼ Tc,
the inelastic electron-phonon collision time approaches the
value τph = 1/(λphTc).

Next, we express nonstationary contributions to self-
energies via ĝ

R/A
nst and ĝnst and derive the mixed representation

for Ẑ = i(�̂R ◦ f̂ − f̂ ◦ �̂A − �̂K ). The latter quantity does
not contain stationary terms. For the collision integral Ĵ = Ẑ ◦
ĝA − ĝR ◦ Ẑ in the mixed representation we obtain with the
help of the GF in Nambu space TrĴ = −(fL − f0)νout + Jin,
where

νout = λph

28ζ (3)T 2
c

∫ ∞

−∞
dωω|ω|{2gRA(ε)gRA(ε + ω)

− f RA(ε)f R+A+(ε + ω) − f R+A+(ε)f RA(ε + ω)}
× [1/f0(ω) − f0(ε + ω)], (B3)

Jin = λph

28ζ (3)T 2
c

∫ ∞

−∞
dωω|ω|{2gRA(ε)gRA(ε + ω)

− f RA(ε)f R+A+(ε + ω) − f R+A+(ε)f RA(ε + ω)}
× [fL(ε + ω) − f0(ε + ω)][f0(ε) + 1/f0(ω)]. (B4)

Here we used the notation f R+A+ = f R+ − f A+. In expres-
sions (B3) and (B4) the dominant contribution to the integrals
comes from high energies. Since fL − f0 is significant only at
low energies, the scattering-in term Jin appears to be a small
correction to the collision integral. Note that νout → 2gRA/τ

if the temperature approaches the critical one.

APPENDIX C: θ PARAMETRIZATION

The Usadel equation for equilibrium spectral functions has
the form

D∂̂r(ĝR/A∂̂rĝ
R/A) + [iετ̂3 + i	̂ − i�̂R/A,ĝR/A] = 0. (C1)

By deriving this equation, we took into account that in the
mixed representation {τ̂3∂t ,ĝ}t = −iε[τ̂3,ĝ] and the scalar
potential is neglected at equilibrium.

By using parametrizations (20) and (21) one finds in
cylindrical coordinates

[	̂ + ετ̂3 + iτ̂3/(2τ ),ĝR]

= 2{[ε + i/(2τ )] sinh θ − |	| cosh θ}τ̂1e
−iτ̂3ϕ,

∇(ĝR∇ĝR) = [∇2
r θ − sinh(2θ )/(2r2)

]
τ̂1e

−iτ̂3ϕ, (C2)

where ∇2
r = ∂2

r + r−1∂r . By taking into account that self-
energy �̂R/A in Eq. (C1) corresponds to the stationary
contribution, 2i�̂R/A = ±τ̂3/τ (see Appendix B), we obtain
Eq. (22) for θ (r).

It is convenient to split θ into the real and imaginary parts,
ϑ = Reθ and η = Imθ , which satisfy the following equations:

∇2
r ϑ − sinh(2ϑ) cos(2η)

2r2
= 2

D

(
ε cosh ϑ sin η + 1

2τ
sinh ϑ cos η − |	| sinh ϑ sin η

)
,

∇2
r η − cosh(2ϑ) sin(2η)

2r2
= 2

D

(
|	| cosh ϑ cos η − ε sinh ϑ cos η + 1

2τ
cosh ϑ sin η

)
, (C3)

supplemented by the boundary conditions (23).

214507-8



SELF-CONSISTENT CALCULATION OF THE FLUX-FLOW . . . PHYSICAL REVIEW B 96, 214507 (2017)

With the help of parametrizations (20) and (21), the kinetic equation can be simplified due to the following identities:

DT = 2D[1 + cosh(2ϑ)],

2iTr[(ĝR + ĝA)	̂] = 8|	| cosh ϑ sin η,

Tr[τ̂3∂t 	̂(ĝR + ĝA)] = −4(vL · ∇ϕ)|	| cosh ϑ sin η,

DL = 2D[1 + cos(2η)], (C4)

Tr[τ̂3(ĝR − ĝA)	̂] = 0,

Tr[∂t 	̂(ĝR − ĝA)] = 4(vL · ∇|	|) sinh ϑ cos η,

j e = −2D sinh(2ϑ) sin(2η)∇ϕ,

where we took into account that for the vortex moving with constant velocity ∂t	 = −vL · ∇	. By construction, the spectral
current is conserved, ∇ · j e = 0. Taking into account that vL · ∇ϕ = −vL sin ϕ/r and vL · ∇|	| = vL cos ϕ∂r |	|, we arrive at
Eqs. (30) and (31), where the collision integral TrĴ = −(fL − f0)νout + Jin (see Appendix B) is substituted. After that, we used
the θ parametrization to obtain

2gRA(ε)gRA(ε′) − f RA(ε)f R+A+(ε′) − f R+A+(ε)f RA(ε′) = 8 cos[η(ε)] cos[η(ε′)] cosh[ϑ(ε) − ϑ(ε′)] (C5)

and renormalized the scattering-in part, namely, Jin = vLjin cos ϕ∂εf0.
To calculate the force Fenv (18) we use the expansion (19) and the spectral functions in the form (20) and (21). Using the

ansatz (28), we get an expression for the force in the form

Fenv = νvL

2

∫
d2rdε∂εf0{sin ϕ cosh ϑ sin η|	|(2f̃T − 1/r)∇ϕ

+ cos ϕ[∂r (cosh ϑ sin η) − 2f̃L sinh ϑ cos η]∇|	|}. (C6)

After integration, this can be written as Fenv = −�vL, where the viscosity coefficient is given by � = πh̄ν(α + γ ) and

α =
∫ ∞

0
rdr∂r |	|

∫ ∞

0
dε∂εf0[2f̃L sinh ϑ cos η − ∂r (cosh ϑ sin η)],

γ =
∫ ∞

0
dr|	|

∫ ∞

0
dε∂εf0 cosh ϑ sin η(2f̃T − 1/r). (C7)

Here we have taken into account that f̃T and η are even, while f̃L and ϑ are odd functions of energy ε.

APPENDIX D: DERIVATION OF THE LO RESULT

Following LO [6], the analytical result for diffusion-driven
FFC can be obtained by noticing that near Tc the diffusion
terms in the Usadel equation (22) are much smaller than the
gap field. As a result, the local-density approximation can
be implemented, where ϑ and η are determined by their
homogeneous expressions with bulk gap substituted by the
local value of gap field.

To calculate conductivity contributions (C7), it is con-
venient to consider energetic integration in the domains
[0, . . . ,|	(r)|] and [|	(r)|, . . . ,∞] separately. The former
gives a negligible contribution close to Tc and can be omitted.
In the latter case, the energetic integration variable exceeds
the local gap value, and local approximation results in η = 0
and sinh ϑ = |	(r)|/

√
ε2 − |	(r)|2. In this case, f̃T = γ = 0,

and kinetic equation (31) is satisfied by the solution
[6]

f̃L = 1

rh̄D

∫ r

0
dr1r1[

√
ε2 − |	|2 − C(ε)]. (D1)

The condition for the vanishing heat current ∂r f̃L = 0 in the
bulk defines the constant C =

√
ε2 − 	2

0 ≡ C1 at large ener-
gies ε > 	0. For the subgap region ε < 	0, LO used a bound-
ary condition with zero heat current at the interface r = rε de-
fined by ε = |	(rε)|. This determines the integration constant
for ε < 	0 in the form C = − 2

r2
ε

∫ rε

0 rdr
√

ε2 − |	(r)|2 ≡ C2.
The dominant contribution to viscosity (C7) stems from

integration over the ε-r domain enclosed by r = 0 and ε =
|	(r)| curves. One obtains α = α1 + α2, where

α1 = 2

h̄D

∫ ∞

	0

dε∂εf0

∫ ∞

0
drr[

√
ε2 − |	|2 − C1(ε)]2,

α2 = 2

h̄D

∫ 	0

0
dε∂εf0

[∫ rε

0
drr(ε2 − |	|2) + r2

ε

2
C2(ε)2

]
.

(D2)

By finding the gap profile near Tc numerically, we
calculated these integrals and obtained α1,2 ≈ (0.409;
0.496)ξ 2

GL	3
0/(h̄DTc). As a result, β = β0

√
Tc/(Tc − T ),

where β0 = 4.01.
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