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Current-carrying states in Fulde-Ferrell-Larkin-Ovchinnikov superconductors
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We show that nonuniform superconductors of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type conduct
electric current in a way which is very different from the usual case. We discuss both equilibrium and
nonequilibrium properties using a modified Ginzburg-Landau formalism. Among the novel features are the
existence of two different critical currents and two distinct stable states able to carry a given current, the
possibility of superconducting domain walls, and also a spontaneous supercurrent in a ring geometry.

DOI: 10.1103/PhysRevB.96.214501

I. INTRODUCTION

It has been known since the seminal works by Fulde and
Ferrell (FF) [1] and Larkin and Ovchinnikov (LO) [2] that
the competition between the pair condensation energy and
the “paramagnetic” pair breaking due to the spin splitting
of the electron bands can result in the formation of peculiar
nonuniform superconducting states, known as the FFLO (or
LOFF) states. In contrast to the standard Bardeen-Cooper-
Schrieffer (BCS) model, the Cooper pairs in an FFLO
superconductor have a nonzero center-of-mass momentum,
resulting in a spatial modulation of the order parameter. While
in the simplest case this modulation is described by a single
plane wave ψ(r) ∝ eiqr , which is known as the FF state, more
complicated structures, containing two or more plane waves,
such as the LO state with ψ(r) ∝ cos qr , are also possible.
Over the years, a number of superconducting materials have
been suggested as possible hosts of the FFLO state, see
Ref. [3] for a review, however a definitive experimental
confirmation is still lacking. More recently, alternative routes
to the FFLO state have been discussed in the broader context of
fermionic systems with a pairing instability and mismatched
Fermi surfaces, such as “cold” Fermi gases [4] and color
superconducting quark matter [5]. Most of the theoretical
studies of the FFLO state focused on the mean-field phase
diagram and the order parameter structure, but a number of
works have also looked at the effects of fluctuations, see
Refs. [6–9].

The goal of the present work is twofold. First, we investigate
how an FFLO superconductor actually conducts a constant
electric current. Surprisingly, this simple question seems to
have been largely overlooked in the literature. We would like
to mention Ref. [10], where a current-driven FFLO instability
was found in a superconductor with a nested Fermi surface,
and also Ref. [11], where the critical current in an LO-type
state was calculated. We focus on the quasi-one-dimensional
(1D) case, which can be realized in a wire whose transverse
dimension is less than both the superconducting coherence
length and the magnetic field penetration depth. The electron
spectrum in this system is assumed to be three dimensional,
but the order parameter depends only on the coordinate x

along the wire. Our second goal is to develop a theoretical
framework for studying the FFLO superconductors out of
equilibrium and apply it to some select problems. While the
nonequilibrium physics of the usual BCS superconductors is
rich and complicated, see Refs. [12,13], the analogous issues
in the FFLO case have remained essentially unexplored.

Properties of the FFLO superconductors, both equilibrium
and nonequilibrium, can be studied at the mean-field level
using a modification of the phenomenological Ginzburg-
Landau (GL) formalism. In contrast to the usual case, the
coefficient in front of the |∇xψ |2 term in the GL free
energy functional is negative, producing the superconducting
instability with a nonzero wave vector. Microscopic derivation
in the simplest model of a clean paramagnetically limited
isotropic superconductor shows that the gradient term indeed
changes sign in a sufficiently strong magnetic field, but it
does so simultaneously with the coefficient in front of the
|ψ |4 term. Therefore, in order to ensure stability, one has
to include higher-order terms, such as |∇2

xψ |2, |ψ |6, and
others [14]. Then the most stable state in 1D corresponds
to a nonlinear generalization of the LO state, with the gap
magnitude periodically modulated in space. On the other hand,
it has been shown that if one takes into account disorder and
the pairing anisotropy, then the |ψ |4 term can remain positive
while the |∇xψ |2 term changes sign, thus making the FF
state energetically more favorable than the LO state [15,16].
Motivated by this possibility as well as by the analytical
simplicity of the calculations, in this work we focus on the
properties of the FF superconducting state.

The rest of the paper is organized as follows. In Sec. II we
study the current-carrying FF states in equilibrium, discussing,
in particular, the critical currents, the stability issues, the
topological defects (superconducting domain walls), and also
the FF states in a ring geometry. In Sec. III we look into
some nonequilibrium properties of the current-carrying states,
using a modified time-dependent GL formalism. Section IV
concludes with a summary of our results. Throughout the paper
e denotes the absolute value of the electron charge.

II. EQUILIBRIUM PROPERTIES

Formation of a nonuniform FFLO state in a thin super-
conducting wire of length L can be described by a modified
GL functional F = ∫ L

0 Fdx, with the Helmholtz free energy
density given by

F = α|ψ |2 + β

2
|ψ |4 + K|∇xψ |2 + K̃

∣∣∇2
xψ

∣∣2
, (1)

where α = a(T − Tc,0), a > 0, and Tc,0 is the critical temper-
ature of the transition into a uniform superconducting state.
In the 1D case, the order parameter depends only on x and
the orbital effects of magnetic field can be neglected. In the
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analysis below, we neglect the boundaries and effectively
consider an infinitely long wire (with the exception of
Sec. II D). In order for the instability with a finite wave vector
to occur, one has to assume K < 0, while the last term, with
K̃ > 0, is needed to stabilize the order parameter modulation.

The critical temperature of a nonuniform superconducting
state is found by solving the linearized GL equation

αψ − K∇2
xψ + K̃∇4

xψ = 0. (2)

The particular solution is a plane wave ψ(x) ∝ eiqx , and
the wave vector corresponding to the maximum critical
temperature Tc = Tc,0 + K2/4aK̃ is given by

|q| = q0 =
√ |K|

2K̃
. (3)

The actual state that is realized below Tc is determined by the
higher-order terms in the GL energy functional. As mentioned
in the Introduction, with β > 0 the single-plane-wave state
(the FF state)

ψ(x) ∝ e±iq0x (4)

has lower energy than the LO state ψ(x) ∝ cos(q0x), see the
Appendix A.

The supercurrent can be obtained from Eq. (1) in the stan-
dard fashion, by introducing the gauge-covariant derivative
∇x → ∇x + i(2e/h̄c)Ax , varying the free energy with respect
to the vector potential Ax , and subsequently setting Ax = 0,
with the following result:

js = −4e

h̄
Im

{
Kψ∗∇xψ + K̃

[
(∇xψ)∗∇2

xψ − ψ∗∇3
xψ

]}
.

(5)

It is easy to see that the state (4) carries zero current. However,
by connecting the wire to an external source one can pass a
nonzero supercurrent through the wire, which means that, in
general, thermodynamics of the system should be analyzed
taking into account the fixed current constraint, see below.

It is convenient to introduce the dimensionless order
parameter ψ̃ and coordinate x̃ according to

ψ = ψ0ψ̃, x = ξ x̃, (6)

where ψ0 = √|α|/β and the characteristic length ξ =√|K|/|α| is defined similarly to the usual GL correlation
length. Then we obtain for the free energy density and the
supercurrent:

F = α2

β
F̃ , js = 4e

h̄

|K|ψ2
0

ξ
j̃s, (7)

where F̃ and j̃s are dimensionless. Omitting the tildes, we
arrive at the dimensionless form of Eq. (1):

F = −|ψ |2 + 1
2 |ψ |4 − |∇xψ |2 + ζ

∣∣∇2
xψ

∣∣2
, (8)

where

ζ = |α|K̃
K2

> 0. (9)

The free energy minimization with respect to ψ∗ produces the
following modified GL equation:

ζ∇4
xψ + ∇2

xψ + ψ(|ψ |2 − 1) = 0, (10)

while the supercurrent (5) in the dimensionless notation takes
the form

js = Im
{
ψ∗∇xψ − ζ

[
(∇xψ)∗∇2

xψ − ψ∗∇3
xψ

]}
. (11)

Note that this last expression can also be obtained by replacing
∇x → ∇x + iA in Eq. (8) and varying the resulting free energy
with respect to the dimensionless vector potential A as follows:

js(x) = −1

2

δF
δA(x)

∣∣∣∣
A=0

. (12)

The corresponding equations in the usual (non-FFLO) case
are recovered if K > 0 and K̃ = 0, i.e., by setting ζ = 0
while simultaneously reversing the signs in front of the second
derivative term in Eq. (10) as well as that of js .

An important insight can be obtained by representing
the order parameter in the amplitude-phase form ψ(x) =
�(x)eiθ(x). Then the free energy F becomes a functional of �,
θ , and the vector potential A, the last two fields entering only
via their gauge-invariant combination

vs = ∇xθ + A, (13)

which is nothing but the dimensionless superfluid velocity.
Since, according to Eq. (12),

δF
δθ

= − d

dx

[
∂F

∂(∇xθ )
− d

dx

∂F

∂
(∇2

x θ
) + · · ·

]

= − d

dx

[
∂F

∂A
− d

dx

∂F

∂(∇xA)
+ · · ·

]
= − d

dx

δF
δA

= 2
djs

dx
,

(14)

the minimization of F with respect to θ reproduces the current
conservation condition djs/dx = 0. Therefore, in equilibrium
we have

js = const = I. (15)

This conclusion is completely general and is valid for any form
of the GL functional.

We assume that the value of the current I is fixed by an
external source. If I = 0, then δF/δA = 0, i.e., the zero-
current state corresponds to a minimum of the Helmholtz
free energy with respect to the vector potential. However,
if I �= 0, then the equilibrium state does not correspond to
a minimum of F . It has long been understood in the usual
(non-FFLO) case that the current-biased superconducting
states are obtained by minimizing a different thermodynamic
potential called the Gibbs free energy [17,18]. In our case, the
dimensionless gauge-invariant Gibbs energy density is given
by G = F + 2Ivs , therefore

G = F + 2I

∫ L

0
(∇xθ + A) dx. (16)

The current I is regarded as an independent variable, while
the phase difference between the ends of the wire becomes a
dependent variable and is determined by I . The equations
for the order parameter obtained from G and F are the
same, δG/δψ∗ = δF/δψ∗ = 0, and it follows from Eqs. (12)
and (15) that δG/δA = δF/δA + 2I = 0. Therefore, the
equilibrium current-carrying states indeed correspond to the
minima of G.
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-qmax -q0 0 q0 qmaxq
0

Δ0

Δq

FIG. 1. The gap magnitude in the FF state as a function of the
wave vector q. The maximum gap (�0 = �±q0 ) corresponds to the
zero-current FF state.

In the gauge A = 0, which is assumed henceforth, the GL
equation takes the form (10). It has a simple exact solution

ψ(x) = �qe
iqx, (17)

with �2
q = 1 + q2 − ζq4, which describes a current-carrying

FF state. The corresponding Gibbs energy density is given by

G(q) = − 1
2�4

q + 2Iq, (18)

while the substitution of the FF solution into Eq. (11) produces
the following expression for the supercurrent:

js(q) = �2
q(1 − 2ζq2)q. (19)

The solution (17) exists only at

|q| � qmax =
√

1 + √
1 + 4ζ

2ζ
.

Plots of �q and js(q) are shown in Figs. 1 and 2. It should be
noted that our results do not qualitatively depend on the value
of ζ , and we use ζ = 0.5 in all plots.

We see that the way the FF superconductor responds to an
externally applied current is very different from the textbook
case of a BCS superconductor, see, e.g., Ref. [17]. The

q

js
qc,2

0

jc,2

-qc,1 qmax

jc,1

qc,1-qc,2

q0
-qmax -q0

FIG. 2. The critical values of supercurrent js carried by the FF
state, see Eq. (19).

supercurrent has two critical values, given by

jc,1 = ±js(±qc,1), jc,2 = ∓js(±qc,2), (20)

where

q2
c,1 =

√
11 + 28ζ

7ζ
cos

(
γ − 2π

3

)
+ 5

14ζ
,

q2
c,2 =

√
11 + 28ζ

7ζ
cos γ + 5

14ζ
, (21)

and

γ = 1

3
arccos

4(5 + 28ζ )

(11 + 28ζ )3/2
.

The upper critical current jc,2 corresponds to the maximum
current that can be passed through the system, an analog of
the BCS depairing current. One can show that jc,1 < jc,2 for
all ζ . In the limit ζ 	 1 [according to Eq. (9), this is realized
at K → −0, i.e., in the vicinity of the FF tricritical point],
Eq. (21) yields qc,1 
 (6ζ )−1/2 and qc,2 
 (7ζ/3)−1/4.

According to Eq. (15), the wave vector q of the FF state
depends on the applied current and is found by solving the
equation js(q) = I . At zero current, there are two degenerate
states with q = ±q0, where

q0 = 1√
2ζ

, (22)

cf. Eq. (3), with the gap magnitude �0 ≡ �±q0 = √
1 + 1/4ζ .

In general, as evident from Fig. 2, the equation js(q) = I has
two solutions at jc,1 < |I | < jc,2 and four solutions at |I | <

jc,1, which suggests that there are multiple superconducting
states able to sustain the given current. However, not all these
states are stable, see the next subsection.

A. Stability analysis

The local stability of the current-carrying FF states found
above can be investigated using the approach similar to
Ref. [19]. We consider the solution (17) subject to a small
complex-valued perturbation δ� as follows:

ψ(x) = [�q + δ�(x)]eiqx . (23)

Substitution of this into Eqs. (16) and (8) yields G = G0 + δG,
where G0 is the Gibbs energy density of the unperturbed FF
state, see Eq. (18), and δG is the correction, in which we retain
only the terms quadratic in δ� and its derivatives.

Expressing the order parameter deformation in terms of its
real and imaginary parts δ�(x) = f1(x) + if2(x), we obtain
δG = f �L̂q f , where f = (f1,f2)� and

L̂q

=
(

ζ∇4
x+(1−6ζq2)∇2

x+2�2
q −4ζq∇3

x+2q(2ζq2−1)∇x

4ζq∇3
x−2q(2ζq2−1)∇x ζ∇4

x+(1−6ζq2)∇2
x

)
.

The eigenfunctions of the matrix operator L̂q are plane waves
∝eikx , with the eigenvalues given by

λ±
q (k) = ζk4 + (6ζq2 − 1)k2 + �2

q

±
√

�4
q + 4q2k2[2ζ (q2 + k2) − 1]2, (24)
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q

js
qc,2

qc,1

q

js

FIG. 3. Stable and unstable branches of the current-carrying FF
states. The solid regions of the curve correspond to the locally stable
solutions, while the dashed regions correspond to unstable solutions.
The usual BCS case is shown in the inset for comparison (recall that
the electron charge is −e, therefore js is negative at q > 0).

at given q. Note that λ−
q (0) = 0, which describes the Goldstone

mode corresponding to a uniform phase rotation of the FF state.
The Gibbs energy has a stable minimum if λ±

q (k) > 0 for all
k �= 0. A straightforward inspection of Eq. (24) shows that this
last condition is satisfied if

qc,1 � |q| � qc,2, (25)

i.e., the regions of local stability of the current-carrying states
are bounded by the critical points of the supercurrent js(q), see
Eq. (21). This is shown in Fig. 3, along with the corresponding
plot in the usual BCS case.

The stability condition (25) can also be understood using
a simple general argument, which works for an arbitrary
structure of the gradient energy. Assuming that the equilibrium
current-carrying solution to the GL equations as well as
its small perturbations are represented by plane waves, we
consider the order parameter of the form ψ(x) = �eiqx , where
� and q are real constants. Then the corresponding Gibbs
energy density becomes a function of � and q, so that

G(�,q) = F (�,q) + 2Iq, (26)

see Eq. (16). We do not specify here the dependence of the
free energy on � and q. Minimization of Eq. (26) at given I

produces two equations:

∂G

∂�
= 0, (27)

which yields the magnitude �q of the solution, and ∂G/∂q =
0, which is used to find the wave vector q(I ).

The stability of the equilibrium state is determined by the
signature of the matrix of the second derivatives of G evaluated
at � = �q and q = q(I ) (the Hessian matrix). Namely, the
solution becomes unstable when the determinant of this matrix
changes sign. The Hessian determinant is given by

D(q) = G��Gqq − G2
�q, (28)

q

js 0

I

q+-q-

 ψ− ψ+

FIG. 4. The locally stable FF states, Eqs. (32) and (33).

where GXY (q) = (∂2G/∂X∂Y )|�=�q
, which can be calculated

as follows. From the expression for the supercurrent,

js(q) = −1

2

∂F

∂q

∣∣∣∣
�=�q

,

and Eq. (26) we obtain

djs

dq
= −1

2

(
G�q

d�q

dq
+ Gqq

)
. (29)

On the other hand, it follows from Eq. (27) that

G��

d�q

dq
+ G�q = 0. (30)

Using Eqs. (29) and (30), the Hessian determinant (28) can be
written in the following form:

D(q) = −2G��

djs

dq
= −2

(
∂2F

∂�2

)
�=�q

djs

dq
. (31)

At |q| < qmax, this last expression passes through zero only
when djs(q)/dq = 0, at which point a plane-wave-like super-
conducting state becomes unstable. Thus the condition (25) is
reproduced.

B. Electric current in the FF state

At small applied currents |I | < jc,1, there exist two locally
stable FF states:

ψ+(x) = �+eiq+x (32)

and

ψ−(x) = �−e−iq−x, (33)

where �+ ≡ �q+ , �− ≡ �−q− = �q− , and q± are found by
solving the equation js(q) = I , see Fig. 4. At jc,1 < I < jc,2,
the current is carried by the state (33), while at −jc,2 < I <

−jc,1, the current is carried by the state (32). The dependence
of the gap magnitude of the states (32) and (33) on I is shown
in Fig. 5.

Calculating the Gibbs free energy, Eq. (18), for the states
(32) and (33) and introducing the notation

�G = G(q+) − G(−q−),
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-jc,1 jc,1-jc,2 jc,20
I

Δ

 ψ− ψ+

FIG. 5. The gap magnitudes of the FF states (32) and (33), as
functions of the applied current.

we arrive at the following picture. At I = 0, the two FF
states have the same Gibbs energy (which is equal to the free
energy). At 0 < I � jc,1, we have �G > 0, therefore ψ+ is
metastable. At −jc,1 � I < 0, we have �G < 0, therefore ψ−
is metastable. This is shown in Fig. 6. We see from Fig. 5 that
the state with the larger gap magnitude is always more stable.
At small currents, we have q± 
 q0 ∓ I/2�2

0 and the energy
difference is given by �G 
 4q0I .

The existence of two distinct superconducting states avail-
able to conduct a given current can lead to a characteristic
“branch switching,” which might be observed in experiment.
Suppose that at zero applied current the superconducting wire
is in the state ψ+ (the possibility of a coexistence of ψ+
and ψ− separated by a domain wall will be discussed in the
next subsection). Increasing the current, i.e., at 0 < I � jc,1,
this state becomes metastable and can decay into ψ− by a
first-order transition. During the transition, a localized nucleus

-jc,1 0 jc,1-jc,2 jc,2
I

G

 ψ− ψ+

FIG. 6. The Gibbs free energies of the FF states (32) and (33), as
functions of the applied current.

of ψ− appears as a fluctuation, which would eventually grow
to fill the whole system. The probability of this activation
process is determined by the energy barrier separating ψ+
and ψ−. While a quantitative theory, in particular, calculating
the height of this barrier, is beyond the scope of the present
work, we note that the mechanism of the switching between
the two current-carrying states may be qualitatively similar
to the formation of a phase slip center in a non-FFLO
superconducting wire [18–20].

C. Domain walls

In addition to the single-plane wave states (32) and (33), the
GL equations have more complicated solutions with a finite
energy. For instance, the FF states at zero current ψ±(x) =
�0e

±iq0x are degenerate and can therefore be separated by a
stationary domain wall. To find the corresponding solution,
we substitute the general form of the order parameter ψ(x) =
�(x)eiθ(x) in Eqs. (10) and (11), and obtain

ζ (∇x + ivs)
4� + (∇x + ivs)

2� + (�2 − 1)� = 0, (34)

where vs = ∇xθ , see Eq. (13), and

js = �2vs + ζ
[
�2∇2

xvs − 2�2v3
s + 4�

(∇2
x�

)
vs

+ 2�(∇x�)(∇xvs) − 2(∇x�)2vs

]
. (35)

The real and imaginary parts of Eq. (34) are given by

ζ
(
R̂2

1 − R̂2
2

)
� + R̂1� + (�2 − 1)� = 0 (36)

and

ζ {R̂1,R̂2}� + R̂2� = 0, (37)

respectively. Here R̂1 = ∇2
x − v2

s , R̂2 = {∇x,vs}, and the curly
brackets denote the anticommutator of two operators. It is
straightforward to check that ∇xjs is equal to the left-hand
side of Eq. (37) multiplied by �, therefore ∇xjs = 0 at all x

and the current conservation, Eq. (15), is reproduced.
Possible nonuniform textures of the order parameter at

given I can be found by solving the coupled equations
(36) and (35), with the constraint js = I . Focusing on the
domain wall state at zero current, we impose the boundary
conditions �(x → ±∞) = �0 and vs(x → ±∞) = ±q0. We
seek an approximate solution with �(x) = �0 everywhere.
Then, Eq. (35) yields the following equation for the superfluid
velocity:

ζ
d2vs

dx2
− 2ζv3

s + vs = 0,

which has the first integral of the form

1

2

(
dvs

dx

)2

− 1

2
v4

s + 1

2ζ
v2

s = C. (38)

Here C = 1/8ζ 2, according to the boundary conditions. From
Eq. (38) we obtain

vs(x) = 1√
2ζ

tanh

(
x√
2ζ

)
, (39)

therefore θ (x) = ln[2 cosh(x/
√

2ζ )]. The domain wall profile
is shown in Fig. 7.
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q0 x

vs

-q0

q0

FIG. 7. Domain wall connecting the degenerate FF states (32)
and (33) at zero applied current.

We now calculate the energy cost of the domain wall.
Observing that at zero current G = F and using Eq. (38) we
obtain

F = −1

2
�4

0 + 2ζ�2
0

(
dvs

dx

)2

.

The last term here represents the extra gradient energy due to
the order parameter variation. Substituting Eq. (39), we arrive
at the following expression for the domain wall energy:

εDW = 2ζ�2
0

∫ ∞

−∞
dx

(
dvs

dx

)2

= 4

3
√

2ζ

(
1 + 1

4ζ

)
. (40)

It should be noted that the constant-magnitude approximation
is valid only at ζ 	 1, which corresponds to a “wide” domain
wall. One can see from Eq. (36) that in this limit �(x) =
�0 + δ�(x), where δ� ∝ O(ζ−1).

At I �= 0, the FF states (32) and (33) are no longer
degenerate. A domain wall between these states is still
possible, but it cannot exist as a stationary defect and will move
towards the state with the lower Gibbs energy. According to
Fig. 6, it will move towards ψ− if I > 0, and towards ψ+
if I < 0. The domain wall motion may result in a nonzero
voltage across the wire.

D. FF state in a ring

We have shown above that, despite the spatial modulation
of the order parameter phase, an FF superconducting wire
carries zero supercurrent, unless it is connected to an external
current source. In this subsection we consider a wire subject
to periodic boundary conditions, i.e., closed into a loop,
and argue that the FF state in this geometry can generate
a spontaneous supercurrent. This system also exhibits some
unusual properties due to superconducting fluctuations, see
Ref. [21].

The properties of the FF state in a ring of radius R are
obtained by minimizing the modified Helmholtz free energy
of the form

F = −|ψ |2 + 1

2
|ψ |4 − 1

M2

∣∣∇φψ
∣∣2 + ζ

M4

∣∣∇2
φψ

∣∣2
, (41)

cf. Eq. (8). Here 0 � φ < 2π is an angular coordinate along the
ring, M = R/ξ , and we used the same dimensionless notations

5 10 15 20
M

-1

-0.5

0

0.5

js

FIG. 8. The spontaneous supercurrent generated by the FF state
in a ring, as a function of the radius of the ring (M = R/ξ ).

as above, see Eqs. (6) and (7). The nonlinear GL equation that
follows from Eq. (41) has an exact solution ψm(φ) = �meimφ ,
where m = 0, ± 1, ± 2, . . . , and

�2
m = 1 + m2

M2
− ζ

m4

M4
. (42)

This superconducting state has the free energy density Fm =
−�4

m/2 and carries the supercurrent

js,m = �2
m

(
1 − 2ζ

m2

M2

)
m

M
, (43)

cf. Eq. (19). The results obtained earlier in this section for
an infinite wire are recovered by taking the limit M → ∞,
in which q = m/M becomes a continuous variable. Note that
we have neglected the magnetic field energy created by the
supercurrent due to the self-inductance of the ring. In the
presence of a perpendicular (Aharonov-Bohm) magnetic flux
�, either self-induced or external, Eqs. (42) and (43) would
be modified by replacing m → m + ν, where ν = �/�0 and
�0 = πh̄c/e is the magnetic flux quantum.

At given M , the free energy has to be minimized to
determine the optimal phase winding number, which is then
substituted in Eq. (43). It is easy to see that, remarkably, the
supercurrent is nonzero, in general. This is due to the fact
that, in contrast to the non-FFLO case, the minimum of the
free energy (or the maximum of the gap) does not occur at
m = 0. Instead, Fm has a minimum at nonzero values of the
winding number m = ±m0, which do not necessarily result
in the vanishing of the expression (43). The minimum is
degenerate, with the states ψm0 and ψ−m0 carrying opposite
supercurrents of the same magnitude. In Fig. 8 we plotted the
spontaneous supercurrent for the state ψm0 . The magnitude of
the current decreases as the size of the ring increases and the
continuous limit is approached.

III. NONEQUILIBRIUM PROPERTIES

In this section we develop the time-dependent Ginzburg-
Landau (TDGL) formalism for the FFLO superconductors
and discuss some of its applications. The TDGL equation can
be obtained phenomenologically by assuming a relaxational

214501-6



CURRENT-CARRYING STATES IN FULDE-FERRELL- . . . PHYSICAL REVIEW B 96, 214501 (2017)

dynamics of the order parameter driven out of an equilibrium
state and has the following form [13]:

−�
∂ψ

∂t
= δF

δψ∗ , (44)

where � > 0 is a real constant. Note that, although the
equilibrium in the presence of an external current corresponds
to a minimum of the Gibbs free energy G, instead of the
Helmholtz free energy F , the variational derivatives of the
two thermodynamic potentials with respect to ψ∗ are the same,
which allows us to use the TDGL equation in the form (44). In
the standard fashion, the formalism is made explicitly gauge
invariant by including the electric scalar potential ϕ(x,t) as
follows:

−�

(
∂ψ

∂t
− i

2e

h̄
ϕψ

)
= δF

δψ∗ . (45)

The total current density j now comprises of both the
supercurrent js as well as the normal contribution jn. The
latter is given by Ohm’s law:

jn = −σn

∂ϕ

∂x
, (46)

where σn is the normal state conductivity. Using Eqs. (1) and
(5), we arrive at the following system of equations, which
determine the time evolution of both the order parameter and
the electric field in an FFLO superconducting wire:

−�

(
∂ψ

∂t
− i

2e

h̄
ϕψ

)

= αψ + β|ψ |2ψ − K
∂2ψ

∂x2
+ K̃

∂4ψ

∂x4
, (47)

j = −σn

∂ϕ

∂x
− 4e

h̄

× Im

[
Kψ∗ ∂ψ

∂x
+ K̃

(
∂ψ∗

∂x

∂2ψ

∂x2
− ψ∗ ∂3ψ

∂x3

)]
, (48)

with K < 0 and K̃ > 0. The corresponding equations in the
non-FFLO case are obtained by setting K > 0 and K̃ = 0.

In the nonequilibrium theory, there is an additional char-
acteristic length—the electric field penetration depth. To
understand this, we consider the static case in a half-infinite
geometry, with the superconductor at x > 0. Multiplying
Eq. (45) by ψ∗ and taking the imaginary part, we obtain

2e�

h̄
|ψ |2ϕ = Im

(
ψ∗ δF

δψ∗

)
. (49)

Using the amplitude-phase representation of the order param-
eter ψ = |ψ |eiθ , it is easy to show that

Im

(
ψ∗ δF

δψ∗

)
= 1

2

δF
δθ

= h̄

4e

∂js

∂x
. (50)

The last equality here is the dimensional analog of Eq. (14).
The current conservation implies that ∂js/∂x = −∂jn/∂x,
which, taken with Eq. (46), leads to the following equation
for the scalar potential in the superconductor:

∂2ϕ

∂x2
= 8e2�

h̄2σn

|ψ |2ϕ.

Assuming that |ψ | = ψ0 is constant, as is the case in the FF
state, the solution is given by ϕ(x) ∝ e−x/lE , where

lE =
√

h̄2σn

8e2�ψ2
0

(51)

may be interpreted as the electric field penetration depth or,
equivalently, the length scale over which the normal current
into the FF superconductor is converted into supercurrent
[13,17]. Note that Eq. (51) has exactly the same form as in
the usual BCS case, which is not surprising since the identity
(50) does not depend on the structure of the GL gradient terms.

One can represent Eqs. (47) and (48) in a dimensionless
form by introducing, in addition to the quantities defined in
Eqs. (6) and (7), also the dimensionless time variable t̃ , the
scalar potential ϕ̃, and the total current I as follows:

t = h̄2

8e2

σn

|K|ψ2
0

t̃ , ϕ = 4e

h̄

|K|ψ2
0

σn

ϕ̃, j = 4e

h̄

|K|ψ2
0

ξ
I.

Dropping the tildes, we obtain

− u

(
∂ψ

∂t
− iϕψ

)
= ζ

∂4ψ

∂x4
+ ∂2ψ

∂x2
+ ψ(|ψ |2 − 1), (52)

I = −∂ϕ

∂x
+ Im

[
ψ∗ ∂ψ

∂x
− ζ

(
∂ψ∗

∂x

∂2ψ

∂x2
− ψ∗ ∂3ψ

∂x3

)]
. (53)

Here

u = 8e2�ψ2
0

h̄2σn

|K|
|α|

is a positive parameter, which can also be written as u = ξ 2/l2
E

using the expression (51) for the electric field penetration
depth.

It should be noted that Eqs. (47) and (48) have not been
derived from a microscopic theory. We expect that, similarly
to the usual case, see Ref. [13], the FFLO version of the
TDGL formalism can be rigorously justified only under some
restrictive assumptions, for certain values of the parameter
u. Notwithstanding these reservations, we will follow a
considerable precedent in the BCS case and use Eqs. (52) and
(53) as a basis of a phenomenological theory of nonequilibrium
FFLO superconductors.

A. Stability of the normal state

As an illustration of the TDGL formalism, in this subsection
we investigate the local stability of a current-carrying normal
state in an infinite wire below the critical temperature against
the formation of the FF superconducting state. An analogous
issue in the non-FFLO case was addressed in Refs. [22–24].

The time evolution of a small-magnitude nucleus of the
FF state in a normal wire with I �= 0 is determined by
the linearized version of Eqs. (52) and (53), which has the
following form:

u

(
∂ψ

∂t
+ iIxψ

)
= −ζ

∂4ψ

∂x4
− ∂2ψ

∂x2
+ ψ. (54)
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In terms of the Fourier transform ψ(x,t) =∫ ∞
−∞(dk/2π )eikx�(k,t), we have

∂�

∂t
− I

∂�

∂k
= Q(k)�, (55)

where

Q(k) = 1 + k2 − ζk4

u
.

Note that in the usual BCS case the order parameter satisfies
the same Eq. (55), but with Q(k) = (1 − k2)/u.

Solving the initial value problem for Eq. (55) by the method
of characteristics, we obtain

�(k,t) = �0(k + I t)e−S(k,t), (56)

where �0(k) = �(k,0) and

S(k,t) = −1

I

∫ k+I t

k

dk′Q(k′) = ζ

5uI
[(k + I t)5 − k5]

− 1

3uI
[(k + I t)3 − k3] − t

u
.

Therefore, a small initial fluctuation of the order parameter
evolves into

ψ(x,t) =
∫ ∞

−∞
dx ′ K(x,x ′; t)ψ(x ′,0), (57)

where the time evolution kernel is given by

K(x,x ′; t) = exp(−iIx ′t)
∫ ∞

−∞

dk

2π
eik(x−x ′)e−S(k,t). (58)

Below we focus on the fate of the superconducting nucleus at
t → ∞.

The asymptotics of the momentum integral in Eq. (58) can
be evaluated using Laplace’s method. At t → ∞, the exponent
in the integral has a minimum at k = k0 = −I t/2, in the
vicinity of which

S(k,t) 
 ζ I 4t5

80u
+ ζ I 2t3

2u
(k − k0)2.

Therefore,

K(x,x ′; t → ∞) 

√

u

2πζI 2t3
exp

(
−ζ I 4t5

80u

)

× exp

[
−u(x − x ′)2

2ζ I 2t3
− i

I t

2
(x + x ′)

]
.

(59)

Due to the presence in this last expression of the rapidly
decreasing exponential factor, any small fluctuation of the
FF superconducting phase eventually dissipates, so that the
current-carrying normal state is locally stable at all values of
I , even below the critical temperature. Physically, a small-
magnitude superconducting nucleus cannot screen the electric
field, the latter causing acceleration and destruction of any
incipient Cooper pairs [22,23]. A superconducting state can
possibly develop through the formation of a superconducting
fluctuation of a finite magnitude (the critical nucleus) below
a certain threshold current, similarly to the non-FFLO case
[25–27].

IV. CONCLUSIONS

The FFLO superconductors, in which the Cooper pairs have
a finite wave vector, can be described phenomenologically by
a modified GL gradient energy. This modification profoundly
changes the way a superconducting wire responds to an
external current source and leads to a number of interesting
effects. In this paper we have focused on the properties of the
FF superconducting states, characterized by a single-plane-
wave modulation of the order parameter.

In contrast to the usual BCS case, there exist two distinct sta-
ble branches of the current-carrying FF superconducting states,
bounded by two values of the critical current. Thermodynamics
of a current-biased superconducting wire, in particular, the
relative stability of the different FF states, is analyzed using
the Gibbs free energy G, instead of the Helmholtz free energy
F . An external current can cause the wire to switch between
the two branches through a first-order phase transition, which
can be used experimentally as an evidence of the FF state.

The twofold degeneracy of the superconducting ground
state at zero external current leads to the possibility of novel
topological defects—the FF domain walls. At a nonzero
current, the domain wall motion may be detected by measuring
a voltage across the wire. We have also shown that a ring
made out of an FF superconductor can generate a spontaneous
supercurrent in the absence of any external Aharonov-Bohm
magnetic flux.

We have studied some nonequilibrium properties, using
the phenomenological TDGL formalism with the modified
gradient terms. We have shown that (i) a constant electric field
penetrates an FF superconductor in exactly the same way as in
the usual BCS case, and (ii) the current-carrying normal state is
locally stable against the formation of the FF superconducting
state at all currents.
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APPENDIX: FF STATE VS LO STATE

The general solution of Eq. (2) is given by a superposition
of two plane waves:

ψ(x) = �1e
iq0x + �2e

−iq0x, (A1)

where q0 is defined in Eq. (3). Substitution of the above
expression into the free energy density (1) yields

F
L

= a(T − Tc)(|�1|2 + |�2|2) + β

2
[(|�1|2 + |�2|2)2

+ 2|�1|2|�2|2],

where all integrals of the oscillating terms are assumed to
vanish. Parametrizing the plane-wave amplitudes as �1 =
� sin �, �2 = �ei� cos �, we obtain

F
L

= a(T − Tc)�2 + β

2

(
1 + 1

2
sin2 2�

)
�4.
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At β > 0, the minimum of the free energy is achieved when �

is an integer multiple of π/2. Therefore, the most energetically
favorable superconducting state corresponds to either �1 or �2

in Eq. (A1) vanishing, i.e., to the FF state.
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