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In quasi-two-dimensional (quasi-2D) quantum magnets, the ratio of Néel temperature TN to Curie-Weiss
temperature �CW is frequently used as an empirical criterion to judge the strength of frustration. In this work, we
investigate how these quantities are related in the canonical quasi-2D frustrated square or triangular J1-J2 model.
Using the self-consistent Tyablikov approach for calculating TN we show their dependence on the frustration
control parameter J2/J1 in the whole Néel and columnar antiferromagnetic phase region. We also discuss
approximate analytical results. In addition, the field dependence of TN(H ) and the associated possible reentrance
behavior of the ordered moment due to quantum fluctuations are investigated. These results are directly applicable
to a class of quasi-2D oxovanadate antiferromagnets. We give clear criteria to judge under which conditions the
empirical frustration ratio f = �CW/TN may be used as measure of frustration strength in the quasi-2D quantum
magnets.
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I. INTRODUCTION

Long-range magnetic order is prevented at finite temper-
ature in strictly two-dimensional (2D) spin systems with a
continuous symmetry [1]. Commonly, the susceptibility would
not have a singular cusp at a finite temperature but shows a
broad maximum at a temperature that corresponds roughly
to the average energy scale Jc of the intraplane exchange
interactions. This behavior is indeed found experimentally in
quasi-2D magnets and is also obtained theoretically using,
e. g., finite-temperature Lanczos method (FTLM) based on
exact diagonalization of finite clusters [2,3]. However, in
reality these magnets nevertheless mostly exhibit long-range
magnetic order at even lower temperature. This is due to their
quasi-2D character caused by the finite interplane interactions
J⊥ � Jc in real compounds such as the S = 1

2 layered
vanadium compounds [4–7] listed in Table II. A famous ex-
ample is La2CuO4, the antiferromagnetic parent compound of
high-Tc superconductors. Although the interplane coupling is
extremely small J⊥/Jc ≈ 1.3 × 10−6 a large Néel temperature
TN = 325 K is observed [8]. This is due to the fact that in
quasi-2D magnets the ordering temperature is still determined
by the large intraplane exchange (Jc ≈ 116 meV) and is only
logarithmically suppressed roughly by the factor ln(Jc/J⊥).
The physical reason is that a strictly 2D Heisenberg system is
at a quantum critical point with algebraic decay of long-range
correlations. Then, even tiny interlayer coupling may lead to
sizable 3D ordering temperature [9].

This matter is well understood in the nearest-neighbor
(NN) Heisenberg antiferromagnet and has been quantitatively
investigated with numerical Monte Carlo (MC) simulations
[10] and approximate theories based on Tyablikov random
phase approximation (RPA theory) [9,11–13] and also more
advanced analytical methods [14–17]. On the other hand, the
restriction to only NN interactions which are furthermore
isotropic in the lattice misses a large body of known frustrated
quasi-2D magnets that are described by the square lattice
J1-J2 model or the related anisotropic triangular J1-J2 models
(Fig. 1). In these systems, the general behavior of the
ordering temperature TN(φ,J⊥) as function of frustration
control parameter φ = tan−1(J2/J1) has not been investigated

systematically in the two possible Néel (NAF) and columnar
(CAF) antiferromagnetic regions (inset of Fig. 2) but in the
frustrated ferromagnetic (FM) case [18]. In the interior of
the AF phase regions it is well understood how the ordered
moment reduction at zero temperature depends on φ, e.g., from
linear spin wave theory (LSW) and comparison with exact
diagonalization (ED) results [19,20]. The ordered moment
is determined by the interplay of quantum fluctuations and
frustration and may be completely suppressed on approaching
small intervals of φ or J2/J1 around the classical phase
boundaries where a spin liquid state or more exotic order is
expected and LSW breaks down. The frustration dependence
of the ordered moment will lead to a concomitant dependence
of the overall energy scale of spin excitations. Consequently,
the quasi-2D finite Néel temperature should show similar
strong dependence on the degree of frustration. This is
often empirically characterized by a “frustration ratio” f =
�CW/TN where �CW is the Curie-Weiss temperature. This
ratio is expected to become large in the strongly frustrated
regime where magnetic order breaks down and TN vanishes.
This may, however, not be the only possible origin for a
large f value. On the other hand, it is also useful to define a
microscopic frustration ratio κ(φ) which characterizes how far
the ground-state energy of fundamental frustrated square and
triangular tiles is increased with respect to their unfrustrated
constituents.

It is the purpose of this work to clarify the connection
between the quantities characterizing the frustrated magnet
ground state and its finite-temperature behavior. In particular,
we discuss how the size of the interlayer coupling J⊥ can be
estimated from the experimentally determined values of TN

and J1, J2. This is of great practical importance for frustrated
magnets and we show how this may be achieved for the
well-investigated oxovanadate layered compounds. For this
purpose, we use the simple analytical Tjablikov theory which
is based on a self-consistently scaled spin-wave dispersion.
We extend this approach to calculate the field dependence
of TN which may be nonmonotonic due to the field-induced
suppression of quantum fluctuations. Accordingly, a reentrant
behavior for the ordered moment and a reentrant H -T phase
diagram may be derived and we discuss a realistic example.
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FIG. 1. J1-J2 exchange models on the square (a) or anisotropic
triangular (b) lattices. In (b) the spin configuration of the maximally
frustrated 120◦ structure (�) is indicated. In (a) J1 and J2 denote
isotropic NN and NNN interactions, in (b) they denote bond-
anisotropic NN interactions.

II. SQUARE AND ANISOTROPIC TRIANGULAR
FRUSTRATED EXCHANGE MODELS AND THEIR

CLASSICAL AND QUANTUM PHASES

These models provide a most instructive insight into
the essentials of frustrated magnetism [20]. Furthermore,
numerous realizations in magnetic compounds exist that allow
for a comparison of theoretical to experimental results. Here,
we employ the generic Heisenberg J1-J2 exchange model for
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FIG. 2. Frustration degree of J1-J2 model in percent [Eq. (11)].
The maximum appears for J1 = J2 and at CAF(SPI)/NAF phase
boundary. Here and in the following figures, the symbols on top
are defined in Table I. Inset: classical phase diagram of square and
anisotropic triangular J1-J2 models in polar presentation (−π � φ �
π , Jc = 1). The CAF phase is twofold degenerate (a,b). For the
triangular model it is replaced by the generally incommensurate spiral
(SPI) phase.

both lattices as illustrated in Fig. 1 [21]:

Hex = J1

∑
〈ij〉1

Si · Sj + J2

∑
〈ij〉2

Si · Sj . (1)

It has the attractive property of having just one control
parameter, the frustration ratio J2/J1, which allows to tune
through a rich phase diagram in both cases. It is convenient
to use a polar parametrization of the model which maps to a
control parameter φ ∈ [−π,π ] in a compact interval according
to

J1 = Jc cos φ, J2 = Jc sin φ,

Jc =
√

J 2
1 + J 2

2 , φ = tan−1

(
J2

J1

)
. (2)

We note that the anisotropic triangular model of Fig. 1(b)
can be obtained from (a) by tilting the lattice and cutting
one of the diagonal J2 exchange bonds. Therefore, while (a)
is an interaction frustrated model with NN and next-nearest-
neighbor (NNN) bonds, (b) is a geometrically frustrated model
with only (real-space anisotropic) NN bonds. The classical
phase diagram is obtained from the minimum of the classical
ground-state energy Ecl = NS2JQ where Q is the magnetic
ordering vector and the exchange function is given by

Jk =
{

� : J1(cos kx+ cos ky) + 2J2 cos kx cos ky + J⊥ cos kz,

� : 2J1 cos 1
2kx cos

√
3

2 ky + J2 cos kx + J⊥ cos kz

(3)

for square (�) and triangular (�) lattices, respectively. The
symbols for the special cases of the J1-J2 exchange model are
defined in Table I.

Here, we included already the small AF coupling J⊥ > 0
between the 2D layers which are placed on top of each
other to mimic the quasi-2D magnetism of real compounds.
The moments are then staggered perpendicular to the 2D
planes such that Qz = π for the 3D ordering vector Q =
(Qx,Qy,Qz). Three classical in-plane 2D phases (J⊥ = 0)
occur in the same regions of φ for square and triangular lattices:
ferromagnetic (FM) for φ ∈ [0.85π, − 0.5π ] with (Qx,Qy) =
(0,0), Néel antiferromagnet (NAF) for φ ∈ [−0.5π,0.15π ]
with (Qx,Qy) = (π,π ) and for φ ∈ [0.15π,0.85π ] either
a columnar antiferromagnet (CAF) for square lattice with
(Qx,Qy) = (π,0), (Qx,Qy) = (0,π ) or a spiral phase (SPI)
for triangular lattice with (Qx,Qy) varying continuously as
function of φ between NAF and FM cases [22].

TABLE I. Definition of symbols for general and special exchange
models for square (top three) and triangular lattice (bottom four).

Symbol Exchange φ/π Model

� J1,J2 Any General frustrated model
� J2 = 0 0 Pure Néel, latt. const. a

♦ J1 = 0 π/2 Pure Néel, latt. const.
√

2a

� J1,J2 Any Anisotropic triangular
� J1 = J2 π/4 Isotropic triangular
� J2 = 0 0 Pure Néel, latt. const. a

‖ J1 = 0 π/2 Decoupled 1D AF chains
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The classical ordered moment mQ = S is only realized in
the FM phase. In the AF or SPI phases, quantum fluctuations
strongly reduce the moment, depending on the size of the
spin S and frustration control parameter φ [22]. This may
be concluded from linear spin wave (LSW) [2,22] as well
as unbiased numerical exact diagonalization (ED) analysis on
finite tiles [19]. At the classical phase boundaries NAF/CAF
or NAF/SP (φ = 0.15π ) and CAF/FM or SPI/FM (φ =
0.85π ), the quantum reduction of the moment diverges and
long-range magnetic order is destroyed. The leads to the
possibility of much discussed “spin liquid” phases reviewed
in Refs. [20,23,24]. This designation is used generically
for many-body ground states that do not have long-range
magnetic order but rather exhibit finite range or algebraic spin
correlations or show a more exotic order like valence bond
solid or spin nematic state [20].

In this work, our main goal is the analysis of the overall
variation of ordering temperature TN(φ,J⊥) as function of
control parameters in the magnetically ordered phases which
dominate the phase diagram, using the linear spin-wave (LSW)
theory. The range of φ values where spin-wave theory predicts
the vanishing of ordered moments and becomes unreliable
corresponds approximately to the narrow regions around
φ/π ≈ 0.15,0.85 where possibly a dimer spin liquid and a spin
nematic phase appear, respectively. Numerous other analytical
and numerical methods have been used to investigate this
strongly frustrated region (Fig. 2), e.g., in Refs. [19,25–30].

The obtained J2/J1 or φ intervals of the spin liquid phase
depend strongly on the method used (see Table 4 in Ref. [20]),
therefore, the precise value of upper and lower boundaries of
the spin liquid interval is an open question. Its absolute width as
compared to the magnetic regions (�φ/π � 0.6) is, however,
quite small, e.g., from exact diagaonlization (ED) with scaling
analysis for the square lattice model one obtains �φ/π �
0.075 for the spin dimer phase interval and �φ/π � 0.020
for the spin nematic interval, indicated by the gray shading in
the inset of Fig. 2. It is not clear to which extent the above
methods for the spin liquid regimes are able to include the
effect of finite temperature and interlayer coupling. The latter
may indeed further shrink the spin liquid phase interval by
stabilizing magnetic order. One should note that various other
additional interactions which may destabilize the spin liquid
sectors [20] so that to achieve this, ground-state fine tuning of
exchange parameters is necessary.

Given this situation, we restrict here to the linear spin-wave
method because there it is known how a selfconsistent theory at
finite temperature may be obtained empirically to calculate the
ordering temperature. However, one should be aware that for φ

inside the (not well-known) spin liquid intervals the depression
of the three-dimensional (3D) ordering TN is only qualitatively
described by spin-wave theory and in reality may even be more
rapid when approaching the center of the interval. In any case,
our interest here is focused on the stable magnetic regions
in the phase diagram. And there are indeed plenty of known
ordered quasi-2D magnets described by the J1-J2 model; one
extended class will be discussed in Sec. VIII. On the other
hand, there is so far no compound example that realizes a spin
liquid phase of the (anisotropic) triangular or square lattice,
therefore, our focus on the magnetically ordered regime is
empirically justified.

The quantum suppression of the ordered moment mQ(φ)
shows considerable variation with φ inside the magnetic
phase region and a continuous suppression to zero from
both sides when approaching the quantum phase transition
to the narrow spin liquid sectors. This is found from both
LSW and ED [19], DMRG [30], dimer series expansion
[25], and many other techniques reviewed in Ref. [20]. This
naturally suggests that the actual ordering temperature TN(φ)
of quasi-2D systems also shows considerable variation with φ

inside the large NAF and CAF phase regions and vanishes
continuously when φ approaches the narrow spin liquid
regimes from both sides. However, there is no analysis of
TN(φ) in the whole NAF and CAF phase sectors available.
So far, mostly the J⊥/Jc dependence of the unfrustrated
(φ = 0) AF has been investigated [9,10,31]. But, TN(φ) is an
important practical issue because, first, many known frustrated
J1-J2 type compounds belong to these sectors and, second,
the experimental value of TN compared to the paramagnetic
Curie-Weiss temperature �CW is usually taken as an empirical
indicator of the strength of frustration in a magnet [32–34].

III. EMPIRICAL FRUSTRATION PARAMETER
AND MICROSCOPIC FRUSTRATION DEGREE

For magnetic materials, in many cases two parameters
are easily accessible experimentally: the paramagnetic Curie-
Weiss temperature and the Néel (or Curie) temperature of the
ordered phase. At high temperatures where moments become
decoupled, the uniform susceptibility is described by the
empirical expression

χ = C

T + �CW
, (4)

where C is a constant and �CW is the Curie-Weiss temperature
which is positive or negative for AF or FM materials,
respectively. It is defined through the first term of the high-
temperature series expansion (HTSE) of χ (T ) [3] according
to

χ = S(S + 1)

3
βJc(1 − βkB�CW), (5)

�CW := S(S + 1)

3kB

∑
n

Jii+n = 2S(S + 1)

3kB
Jk=0, (6)

where the susceptibility per site i is given in units of χ0 =
μ0(gμB)2/Jc. Explicitly, for the 3D model we have

kB�CW =
{
� : J1 + J2 + 1

2J⊥,

� : J1 + 1
2J2 + 1

2J⊥.
(7)

On the basis of a mean field (MF) approximation, �CW is
frequently associated with the AF ordering or Néel temperature
TN (the second experimental parameter) [35]. For the 3D
(simple tetragonal or hexagonal) model, the MF values are
given by

TN = 2S(S + 1)

3kB
|JQ|. (8)

This also means that the mean field Néel temperature (S = 1
2 )

is equal to the classical ground-state energy per bond according
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to kBTN = |Ecl|/(N/2). Explicitly, one obtains

kBTN =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� NAF : J1 − J2 + 1
2J⊥,

� CAF : J2 + 1
2J⊥,

� NAF : J1 − 1
2J2 + 1

2J⊥,

� SPI : 1
2J2[1 + 1

2 (J1/J2)2] + 1
2J⊥.

(9)

For the unfrustrated (J2 = 0) NAF phases (�,�) evidently
�CW = TN, for any J⊥ in mean field approximation. Naturally,
the mean field expressions in Eq. (9) cease to be reasonable for
J⊥/Jc � 1 where TN has to approach zero for the 2D lattice.

For frustrated magnets (geometrically or interaction frus-
trated) intuitively the temperature for long-range order should
be suppressed because of the competition between exchange
bonds whose exchange energy cannot be minimized simulta-
neously for all bonds, i. e., one would expect TN � �CW in
strongly frustrated systems. Therefore, it has become custom-
ary in experimental investigations to characterize frustrated
magnets by the ratio

f := �CW

TN
. (10)

With TN strongly suppressed, one would then obtain |f |  1
with the sign given by that of �CW. Thus, f might be regarded
as a direct measure of the degree of frustration in a particular
magnet [32–34].

It is not a priori obvious whether this widely used empirical
criterion is sensible from a more microscopic point of view. An
immediate problem with the definition of f is that the Curie-
Weiss temperature, in particular, in frustrated magnets might
be arbitrarily small as well. It can be even zero or negative, also
for materials with AF order, due to competing interactions with
opposite sign. In the simple mean field approach applicable
only for reasonably large J⊥/Jc the corresponding f is shown
in Fig. 3. Moderately enhanced values |f | > 1 are only found
around the NAF/CAF (�) or NAF/SPI (�) boundaries (φ/π =
0.15). On approaching the FM region from both sides |f | does
not show an enhancement due to the smallness of |�CW|. In

�0.4 �0.2 0.0 0.2 0.4 0.6 0.8
�1

0

1

2

3

square
triangular

�

C
W
�T
N

NAF
CAF
SPI

FIG. 3. Frustration ratio f = �CW/TN using mean field TN for
triangular (dashed line) and square (solid line) lattice model with
J⊥/Jc = 0.2.

fact, for φ < 0 (J2 < 0) this should not be expected because
in this case the model is unfrustrated (Fig. 2).

On the other hand, microscopically frustration is under-
stood as the impossibility to minimize the ground-state energy
simultaneously for all exchange bonds. Therefore, it appears
natural to compare the ground-state energy of the minimal
building blocks of the frustrated lattice to the total ground-state
energy of the unfrustrated components. For example, this
can be achieved by defining the degree of frustration in the
triangular lattice according to [3]

κ� := 1 − E�
Et + Ed

(11)

for the frustrated triangle where E� is its ground-state energy
and Et,d are those of its constituents, i. e., decoupled trimer
and dimer. Explicitly [3],

E�(φ) = min
(− 3

4J2, − J1 + 1
4J2,

1
2J1 + 1

4J2
)

(12)

from which we also obtain Et := E�(J2 = 0) and Ed :=
E�(J1 = 0). A similar definition can be made for κ� of
the J1-J2 square lattice where the constituents are the
unfrustrated square and the two diagonal dimer bonds. It
turns out that κ�(φ) ≡ κ�(φ) =: κ(φ). This function indeed
vanishes in the unfrustrated regime J2 < 0 or −π � φ � 0.
For J2 > 0, the triangular lattice becomes frustrated, and
κ strictly monotonously increases until its maximum value
κ(π/4) = 4/7 ≈ 0.57 which is the 2D isotropic point in the
triangular phase diagram. Then, κ decreases to κ(π/2) = 0
which is the point where the triangular lattice decouples into
independent, unfrustrated AF chains. In the square lattice this
case corresponds to two decoupled unfrustrated pure Néel
sublattices. For ferromagnetic J1 < 0 or φ > π/2, κ increases
again to reach a maximum at the border between the spiral
and FM phases. Therefore, κ peaks at or close to the strongly
frustrated regions of the classical phase boundaries (Fig. 2)
where magnetic order disappears. The large frustration is not
only reflected in this ground-state measure but also leads to
signatures in the excited state spectrum. Full diagonalization
of small clusters [20] shows that for φ values where κ(φ)
approaches maximum the excited states are closely spaced
and have large degeneracies. In the thermodynamic limit, this
signifies the strong suppression and breakdown of the ordered
moment.

The qualitative behavior of κ(φ) therefore faithfully maps
the degree of frustration as function of frustration control
parameter φ. It is now a legitimate question to ask whether
the quasi-2D Néel temperature TN(φ) and empirical frustration
ratio |f (φ)| show a depression or enhancement, respectively,
in the same region where κ(φ) is large. For the simple mean
field model, the results are shown in Fig. 3. In fact, at
the φ/π � 0.15 phase boundary the peak in the frustration
degree κ(φ) (Fig. 2) coincides with the enhancement of f .
On the φ/π � 0.85 classical boundary to the FM where
�CW has to change sign, however, no such coincidence is
possible. It is important to investigate this further for the really
interesting quasi-2D magnets. This requires a more advanced
self-consistent RPA spin-wave approach to calculate TN(φ).
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IV. LSW AND RPA CALCULATION OF THE QUASI-2D
NÉEL TEMPERATURE

A calculation of TN implies a theory of spin excitations
at finite temperatures. This is a difficult problem from a
fundamental point of view. In the linear spin-wave (LSW)
approximation and its various generalizations, the spin exci-
tations are described by bosons whose density increases with
temperature, necessitating the inclusion of interaction effects
[36] beyond LSW. An effective empirical way to circumvent
this difficult-to-treat many-body problem is provided by the
Tyablikov method [11,14] which assumes that the spin-wave
energy scale is reduced in accordance with the decreasing
ordered moment, instead of staying fixed as in LSW. It cor-
responds to an effective RPA approximation of the spin-wave
propagator [9,11,13]. As noted in Ref. [14], the Tyablikov
approach is “satisfactory from the practical but not from the
theoretical point of view.” Since we take the former view and
want to apply it to a general and practical understanding of
frustration dependence of TN, we use the Tyablikov approach,
generalized to finite fields in this work. This is supported
by a comparison to unbiased numerical MC simulations for
the NN 2D Heisenberg model [10] without field which prove
that the numerical results show excellent agreement with RPA
approximation throughout the whole range of J⊥/J1 ratios.

For the sake of a self-contained presentation we first
recapitulate the LSW results of the J1-J2 model in an external
field in a form that is applicable to square as well as triangular
lattice models. It is obtained from Eq. (1) by adding the Zeeman
term leading to the full Hamiltonian H = Hex − h ·∑i Si

with the definition h = gμBμ0H. In the LSW, a Holstein-
Primakoff (HP) transformation from local spin variables Sα

i

(α = x,y,z) to bosonic variables ai,a
†
i at site i is carried out

using S+
i → √

S/2ai , S−
i → √

S/2a
†
i , and Sz

i → S − a
†
i ai .

Then, performing the Fourier transform

ai = 1√
N

∑
k

a
†
ke−ik·Ri , (13)

the total Hamiltonian H may be written as a bilinear
(harmonic) form in â

†
k = (a†

k,a−k) which may be diagonalized
[Eq. (15)] by the Bogoliubov transformation αk = ukak +
vka

†
−k to the magnon creation and annihilation operators αk,α

†
k

of spin-wave modes given in Eq. (16). The transformation
coefficients are obtained as

{
u2

k

v2
k

}
= 1

2

[
Ak − Bk cos2 �cl

Ek
± 1

]
(14)

with the sign convention uk = sign Bk|uk|, vk = |vk|, and
SEk denoting the symmetric part of magnon energies given
below. In the spirit of a (1/S) expansion, the classical
value �cl of the moment canting angle (�cl = π/2 for zero
field) is used in Eq. (14) as given by cos �cl = h/hs. Here
hs = 2SA0 = 2S(J0 − JQ) is the saturation field where the
moments are aligned with the field (�cl = 0). This means
hs/2S = 4J1 for NAF and hs/2S = 2(J1 + 2J2) for CAF. The
final result of the HP transformation is then the free magnon

Hamiltonian

H = Ecl + Ezp + S
∑

k

Esw
k α

†
kαk,

Ecl = NS2(JQ − A0 cos2 �cl), (15)

Ezp = NSJQ + S

2

∑
k

Ek.

Here, Ecl is the (negative) classical ground-state energy,
the second term Ezp is the (negative) energy of zero-point
fluctuations of magnon modes, and the last term describes the
free Hamiltonian of excited magnons. The total ground-state
energy is Egs = Ecl + Ezp. The zero-point contribution is of
relative order 1/S as compared to the classical part. The bare
spin-wave or magnon energy ωk = SEsw

k is obtained from the
Bogoliubov transformation as

Esw
k = Ek + Ea

k,

Ek =
√

[Ak − Bk][Ak + Bk(1 − 2 cos2 �cl)], (16)

Ea
k = Ck cos �cl,

where intrasublattice and intersublattice interactions Ak and
Bk as well as the interaction term Ck = −C−k which are
symmetric and antisymmetric in k, respectively, are given by

Ak = Jk + 1
2 (Jk+Q + Jk−Q) − 2JQ,

Bk = Jk − 1
2 (Jk+Q + Jk−Q), (17)

Ck = Jk+Q − Jk−Q.

Note that in general Esw
k is not symmetric under k → −k

because Esw
−k = Ek − Ea

k and therefore Esw
k − Esw

−k = 2Ea
k �=

0. The asymmetric term is only relevant when 2Q is not a
reciprocal lattice vector, i.e., in the present context only in the
spiral phase of the triangular lattice for H �= 0. In zero field
where Ea

k = 0, �cl = π/2, Eq. (16) reduces to

Esw
k = Ek =

√
A2

k − B2
k. (18)

Equations (16) and (18) are the basic quantities needed to
calculate the Néel temperature and H -T phase diagram of
the frustrated models within the Tyablikov RPA approach.
This amounts to a stark simplification of the real interacting
magnon problem. In fact, due to the intrinsic interaction of
magnons originating from higher-order terms of the HP trans-
formation already at zero temperature the magnon spectral
function is renormalized [38]. In the strongly frustrated spin
(dimer) liquid regime the spectrum may change qualitatively,
consisting of a singlet bound state with finite gap, split off
from the two-magnon (triplon) continuum [39]. The gap
closes at the quantum transition (as function of φ) to the
neighboring antiferromagnetic phases. These approaches are,
however, difficult to generalize to finite temperature and
finite interlayer coupling. As pointed out previously [14],
the empirical Tyablikov RPA method radically simplifies the
problem by neglecting the change of spectral shape in the spin
excitations due to multimagnon interactions. It circumvents the
complicated many-body processes by assuming that one still
has a free magnon spectrum at higher temperature but with an
overall dispersive width proportional to the T -dependent order
parameter. This enforces a self-consistency condition from
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which TN(φ,J⊥) may be derived. While this seems acceptable
in the magnetically ordered regimes, it can only provide a
qualitative interpolation across the narrow spin liquid regimes
of φ. In reality, TN(φ,J⊥) has to be expected to be suppressed
even more rapidly than predicted by the spin-wave theory in
these narrow φ intervals.

Rather than deriving the dynamical Green’s function as in
Ref. [9] for the present purpose it is sufficient to calculate
the self-consistent static moment directly. The condition that
it vanishes will then determine the Néel temperature. The
total moment at a site i is given by the thermal expectation
value (with respect to H ) 〈Sz′

i 〉 in the local coordinate system
the components of which we denote with a prime. In this
coordinate system, the z′ axis at a given site site i is aligned
with the moment direction at that site. The latter is canted
out of the plane given by the ordering vector Q due to the
effect of the magnetic field which is directed along the global
z axis. The relation between moments in the local and global
coordinate systems is given in Appendix A.

In a finite magnetic field, we have to distinguish three types
of moments: the total moment 〈S〉, homogeneous moment m0,
and ordered moment mQ. While we consider all phases for
zero field, in finite field we will restrict to the commensurate
CAF and NAF structures. For these coplanar cases the canted
moments may be considered to lie in the xz plane. Then, we
have the definitions

〈S〉 = 1

N

∑
i

〈
Sz′

i

〉
,

m0 = 1

N

∑
i

〈
Sz

i

〉
, (19)

mQ = 1

N

∑
i

eiQ·Ri
〈
Sx

i

〉
.

(All moments are expressed in units of the Bohr magneton
μB.) Using the transformation in Appendix A, one can verify
that m0 = 〈S〉 cos �cl, mQ = 〈S〉 sin �cl, and then 〈S〉2 =
m2

0 + m2
Q.

For S = 1
2 we can write Sz′

i = 1
2 − S−′

i S+′
i . According to the

linearized HP approximation for S = 1
2 we then have 〈S〉 =

( 1
2 ) − 2S〈a†

i ai〉. In the moment reduction part of the right-
hand side we now replace S → 〈S〉. Physically, this means
that the reduction of the moment from 1

2 due to the number

of thermally excited Holstein-Primakoff bosons ψ := 〈a†
i ai〉

per site is rescaled by the already reduced moment 〈S〉. This
substitution leads then to a self-consistency condition for the
moment according to

〈S〉 = 1/2

1 + 2ψ
, ψ = 〈a†

i ai〉 =
∫

BZ

d3k

VBZ
〈a†

kak〉, (20)

where 〈. . . 〉 denotes the thermal average with respect to the
magnon Hamiltonian of Eq. (15). Unless otherwise noted, here
and in the following we use continuum notation in reciprocal
space, and integrations are done over the chemical Brillouin
zone with volume VBZ.

If ψ is small (at low temperature) then 〈S〉 � 1/2 − ψ

which recovers the LSW expression for the moment. The result
of this simple physical consideration in Eq. (20) is equivalent

to the RPA result [9] which also determines the temperature
dependence of correlation functions in addition to the total
moment. Here, we only want to find the Néel temperature
from the condition mQ = 0. To this end, one has to calculate
ψ = ψ(T ,H ) using the Bogoliubov transformation to magnon
operators αk,α

†
k leading to

ψ(T ,H ) =
∫

BZ

d3k

VBZ

[
v2

k + (1 + v2
k

)〈α†
kαk〉 + v2

k〈α†
−kα−k〉

]
.

(21)

Using Eq. (14) this may be evaluated to give the denominator
in Eq. (20) and we finally obtain the self-consistency equation
for the temperature- and field-dependent total moment as

〈S〉 = 1

2

(∫
BZ

d3k

VBZ

Ak − Bk cos2 �cl

Ek
coth

β〈S〉Esw
k

2

)−1

,

(22)

where β = 1/(kBT ). It is important to note that here �k =
〈S〉Esw

k is the modified magnon energy scaled by the
temperature-dependent prefactor 〈S〉 instead of the constant
S = 1

2 as in LSW approximation.
The Néel temperature TN = 1/(kBβN) itself is defined as

the temperature where the ordered moment vanishes. For small
magnetic fields with h/hs � βN(h = 0)Jc/4, we can identify
the ordered moment mQ with the total moment 〈S〉. Expanding
Eq. (22) for 〈S〉 � 1 to leading order, we obtain a closed
expression

βN(h) = 4
∫

BZ

d3k

VBZ

Ak − Bk cos2 �cl

E2
k − Ea2

k

. (23)

Below TN the T dependence of the ordered moment 〈S〉 is
obtained by an iterative solution of Eq. (22). To improve
numerical convergence, it is preferable to separate out the
singular term in the integrand by defining g(x) = coth(x) −
1/x leading to a numerically more suitable form of the
self-consistency equation:

〈S〉 = 1

2

(
1 − βN

β

)

×
[∫

BZ

d3k

VBZ

Ak − Bk cos2 �cl

Ek
g

(
β〈S〉Ek

2

)]−1

, (24)

where the integral in brackets is now a well-behaved function
near T = TN. Its expansion for small 〈S〉 leads to an approxi-
mate expression close to TN:

〈S〉 ≈
√

1 − βN/β

βNI0

[
1 + 1

2

(
1 − βN

β

)
βNI1

I 2
0

− 1

2

(
1 − βN

β

)2
β2

N

I 4
0

(
I0I2 − 7

4
I 2

1

)]
, (25)

where the expansion integrals I0−2 are given in Appendix B. A
comparison of numerical solution and analytical approxima-
tion for a CAF and NAF case is shown in Fig. 4. The global
behavior of the zero-field total moment 〈S〉(T ,φ) as function
of temperature and frustration control parameter is depicted in
the 3D plot of Fig. 5 for both lattices.

214443-6



NÉEL TEMPERATURE AND REENTRANT H -T PHASE . . . PHYSICAL REVIEW B 96, 214443 (2017)

FIG. 4. Ordered moment temperature dependence of square
lattice for two frustration parameters φ ≈ 0 (pure NAF, lower set
of curves) and φ ≈ 0.6π (CAF with FM J1). The numerical solutions
of Eq. (24) (dotted line) are compared with analytical solution of
Eq. (25) comprising first-order (full line) and second-order (dashed
line) terms. The vertical dotted lines indicate the respective TN.

The self-consistency equation (22) may also be used to
calculate the field dependence of the Néel temperature. It is
defined by the condition that the order parameter vanishes, i.e.,
mQ = 0. Then, the total moment is equal to the magnetization
per site 〈S〉 = m0. For simplicity, we use the classical
value m0 = ( 1

2 ) cos �cl. Furthermore, m0 may be taken as T

independent as long as kBTN � Jc.
Replacing 〈S〉 → m0 in Eq. (22) gives an implicit equation

for TN = TN(h). It may be presented in a form more convenient
for numerical solution as

TN = T̃N

[
1 − 2m0

∫
BZ

d3k

VBZ

Ak − Bk cos2 �cl

Ek
g

(
m0Ek

2kBTN

)]
,

(26)

where T̃N = 1/(kBβN) now denotes the small-field expression
from Eq. (23). For h � hs when m0 → 0 we indeed recover
Eq. (23).

For h = 0 and for general h in the nonspiral (NAF, CAF)
phases the asymmetric term ∼Ea2

k in the spin-wave dispersion
vanishes and Esw

k = Ek. The zero-field limit T 0
N := TN(h → 0)

is then given by [9]

T 0
N =

(
4kB

∫
BZ

d3k

VBZ

Ak

E2
k

)−1

. (27)

This is an explicit expression for T 0
N which does not contain T 0

N
on the right-hand side any more. It properly reproduces the 2D
limit T 0

N → 0 when the kz dispersion of magnons vanishes and
the integral in Eq. (27) diverges logarithmically (see Sec. VI).
The above equations contain all information on the frustration
effect encoded in the spin-wave expressions Ak, Bk, and Ek
of Eqs. (16) and (17).

V. NUMERICAL RESULTS FOR THE ZERO-FIELD
NÉEL TEMPERATURE

In this section we discuss the systematic variation of
TN(φ) with frustration control parameter φ = tan−1(J2/J1) as
obtained from the numerical calculations based on Eq. (27) for
square as well as triangular models.

FIG. 5. Zero-field ordered moment 〈S〉 (ordinate) in φ-T plane
for the square lattice (a) and triangular lattice (b), using J⊥/Jc = 0.01.
The 〈S〉 = 0 cut (basal plane) gives the TN(φ) curves in Figs. 7(a) and
8(a) for square and triangular cases. The T = 0 cut (backside plane)
likewise gives the ground-state ordered moment mQ(φ) [19,22,37].
Both curves are topologically equivalent and reach zero for φ values
with strong frustration (φ/π � 0.15,0.85). In (b) the additional zero
at φ/π = 0.5 is not due to frustration but corresponds to unfrustrated
quasi-1D AF chain case.

A. Square-lattice model

Figure 6(a) displays the dependence of TN obtained from
Eq. (27) on the interplane coupling J⊥ for selected values
of φ. The approximately logarithmic variation with J⊥/Jc

known from the pure Néel case is observed to hold also in
the frustrated case (see Sec. VI). In this case (J2 = 0, Jc = J1)
there are MC simulation results [10] for TN which can be
compared to the results of the present theory [Fig. 6(b)]. They
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�

�

�

(a)

(b)

FIG. 6. (a) TN dependence on J⊥/Jc for various frustration
control parameters φ in the square-lattice model in the NAF and
CAF phases. (b) TN for the unfrustrated (φ = 0 or J2 = 0, Jc = J1)
pure Néel case. Full line same as in (a). The open circles are from
MC simulations in Ref. [10]. Note the additional ordinate scale factor
S(S + 1) = 3

4 employed in this reference.

show a good agreement within only a few percent deviation in
the whole range of J⊥/Jc plotted [40].

In the complementary Fig. 7(a) we show the Néel tem-
perature TN(φ) at different strengths of the interplane coupling
J⊥/Jc = 10−3 . . . 1. TN vanishes at the borders of the columnar
phase (see Appendix C). In the isotropic 3D cases with
J1 = J⊥ = Jc, J2 = 0, and J1 = 0, J2 = J⊥ = Jc, the result
kBTN/Jc ≈ 0.989 is obtained. Note that the corresponding
MF result [Eq. (9)] would be kBTN/Jc = 3

2 . The symmetric
φ dependence in the CAF phase is due to a mirror symmetry
of the Hamiltonian at J1 = 0 (φ = ±π/2): the square lattice
is bipartite and the Hamiltonian remains invariant upon a sign
change of all spins on one sublattice while simultaneously re-
placing J1 → −J1. This transforms the Néel antiferromagnet
to a ferromagnet (not shown) and the CAF phase with (π,0)
ordering into (0,π ) ordering.

For the S = 1
2 frustrated square lattice, the Curie-

Weiss temperature is given by �CW = (J1 + J2 + J⊥/2)/kB

[Eq. (7)]. Figure 7(b) displays the corresponding parameter
f = �CW/TN as a function of φ for different interlayer
coupling strengths J⊥/Jc = 10−3 . . . 1. The overall φ depen-
dence is in good agreement with the approximate analytical
evaluation of Eq. (27) in Sec. VI.

It is instructive to compare f (φ) with the behavior of the
microscopic frustration degree κ(φ) shown in Fig. 2 [Eq. (11)].
In the Néel phase, we indeed obtain a correspondence between
κ and f : where κ ≡ 0, in the whole unfrustrated NAF phase
as well as at φ = π/2, we correspondingly obtain |f | = O(1).

� �

NA AF

�

� �

�

NA

CF

CF AF

�

(a)

(b)

FIG. 7. Quasi-2D Néel temperature TN (a) and empirical frustra-
tion ratio f = �CW/TN (b) for the square lattice J1-J2 as function
of frustration control parameter φ for different interlayer coupling
strengths J⊥/Jc = 10−3 . . . 1.

This is true even for the quasi-2D case and |f | appears to
increase only logarithmically with decreasing J⊥/Jc. (In the
regions φ < −π/4, f turns negative because �CW < 0 due to
a ferromagnetic J2 < −J1 < 0.)

A finite positive J2 turns on frustration with κ > 0. In the
Néel phase, this is reflected by a corresponding increase in
f which eventually diverges at the NAF/CAF border. Here,
J2 = J1/2 and κ = 4/11 ≈ 0.36.

The analogy between κ and f partially fails in the CAF
phase: κ does not show any special feature at the NAF/CAF
border but instead increases strictly monotonously to its
maximum value κ = 4/7 ≈ 0.57 at J2 = J1 (φ = π/4). It then
decreases and vanishes again at the special point φ = π/2
where J1 = 0 with decoupled sublattices that correspond to the
pure Néel case of φ = 0. For φ > π/2, J1 turns ferromagnetic,
leading to an increase in κ until the FM border of the CAF
phase where J2 = −J1/2 and κ = 4

7 again. Different to the
behavior of κ , |f | is diverging at both the border to the NAF
and the border to the FM phase. With increasing φ, f decreases
strictly monotonously, crossing f = 0 at φ > 3π/4 due to the
sign change of �CW.

B. Anisotropic triangular-lattice model

In Fig. 8(a) we show the parameter dependence of the
Néel temperature for the S = 1

2 anisotropic triangular lattice.
Different curves correspond to different interplane couplings
J⊥/Jc = 10−3 . . . 1. In the Néel phase for −π/2 � φ �
tan−1( 1

2 ) ≈ 0.15π , the qualitative behavior is similar to the
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� �

NAF spiral
�

� �

�

�

(a)

(b)

FIG. 8. Quasi-2D Néel temperature TN (a) and empirical frustra-
tion ratio f = �CW/TN (b) for the triangular lattice J1-J2 as function
of frustration control parameter φ for different interlayer coupling
strengths J⊥/Jc = 10−3 . . . 1.

square-lattice case: TN increases from zero at φ = −π/2
(J1 = 0, J2 = −Jc < 0) to a maximum in the middle of the
NAF phase and decreases to a cusplike minimum at J2/J1 = 1

2
(φ ≈ 0.15π ), the border with the spiral phase in the LSW
approximation. The Néel temperature decreases again towards
TN = 0 at φ = π/2 (J1 = 0, J2 = Jc > 0). At this particular
point in the phase diagram the triangular lattice turns into
an unfrustrated set of independent one-dimensional AF J2

chains coupled by J⊥, i.e., a strictly 2D magnet. The ordering
temperature thus vanishes not due to frustration but can be
understood as a consequence of the Mermin-Wagner theorem.
The mirror symmetry in the spiral phase around φ = π/2 is due
to the same mirror symmetry present in the Hamiltonian for
the square lattice, regarding the anisotropic triangular lattice
as a depleted J1-J2 square lattice where one set of diagonal J2

bonds is missing.
It is again useful to compare f (φ) with the microscopic

degree of frustration κ(φ) (Fig. 2). Now, the Curie-Weiss tem-
perature is given by �CW = (J1 + J2/2 + J⊥/2)/kB [Eq. (7)].
In the Néel phase with ferromagnetic J2 < 0 (κ = 0, unfrus-
trated for −π/2 � φ � 0), we generally obtain |f | = O(1) for
J⊥ = Jc and its maximum value increases only logarithmically
with decreasing interlayer coupling 0 < J⊥/Jc < 1. This is
similar to the square-lattice case. However, except for an
isotropic interlayer coupling J⊥ = Jc where �CW = 0, |f |
diverges at the NAF/FM border (J1 = 0 or φ/π = −0.5).
Like for antiferromagnetic J2 as discussed in the preceding
paragraph, this divergence is caused by a vanishing TN at
the border which is also due to the formation of a strictly

two-dimensional system consisting of ferromagnetic J2 chains
coupled with J⊥.

A peak appears at the NAF/SPI border (φ/π = 0.15) which
is, as in the square-lattice case, not reflected by any special
feature in κ(φ). At J1 = 0 or φ/π = 0.5 again a divergence
due to vanishing TN appears, this time at the antiferromagnetic
J2 > 0 side of the phase diagram. We have κ(π/2) = 0 here
because, at this point, the model is unfrustrated and the
divergence of f is exclusively due to the previously discussed
lowering of dimensionality. Another peak in |f | for small J⊥ is
present at the SPI/FM boundary (J2 = −J1/2, φ/π ≈ 0.85).

Altogether only the two peaks in |f (φ)| at the NAF/SPI
and SPI/FM boundaries can be associated with the regions of
high frustration [large κ(φ) in Fig. 2]. The divergences in |f |
at φ = ±π/2 in contrast are unrelated to frustration effects but
are due to dimensional reduction only. This does not appear in
the square lattice (Fig. 7) because of the additional J2 bond.

VI. ANALYTICAL APPROXIMATIONS
FOR THE NÉEL TEMPERATURE

It is useful to complement the numerical determination of
zero field TN(φ,J⊥) with approximate analytical results to gain
a better understanding of the frustration influence. They are
derived by expanding the integrand in Eq. (27) for small k
vectors where Ek tends to zero; this region dominates the value
of the integral. For NAF there are two equivalent dispersion
minima k ≈ (0,0),(π,π ) for NAF phase and four equivalent
minima positions k ≈ (0,0),(0,π ),(π,0),(π,π ) for CAF phase.
The expansion has to be done separately for each magnetic
structure and the cutoff wave vectors in both cases have to be
chosen such that the symmetry TN(J1 = 0) = TN(J2 = 0) is
preserved. We will restrict ourselves in this section to the NAF
and CAF phases of the square lattice only.

A. NAF structure (2 J2 < J1)

Here, the expansion of Ek and Ak to lowest order leads to

kBTN =
[

4

π3

∫ π

0

∫ kc
‖

0

d2k‖
J̃ k2

‖ + J⊥k2
z

]−1

, (28)

where we defined the effective exchange J̃ := J1 − 2J2 > 0
for the frustrated NAF and ε2 := J⊥/J̃ as the parameter that
measures the relative strength of interlayer coupling. The
integral diverges, i.e., TN → 0 in the purely 2D case (J⊥ = 0)
and also when approaching the classical NAF/CAF phase
boundary at J̃ = 0 (2J2 = J1) where the ordered moment
vanishes due to strong frustration effect. The value of TN

depends weakly on the cutoff which we choose as kc
‖ = π

corresponding to a Debye approximation for the spin-wave
spectrum. The evaluation of Eq. (28) leads to

kBTN = (J1 − 2J2)
π

Bε + ln
(
1 + 1

ε2

) . (29)

Here, Bε = (1/ε)[π − 2 tan−1(1/ε)]. This expressions hold
for the whole frustrated NAF region −π/2 < φ < 0.15π . It is
useful to derive the approximate expression (except very close
to J1 = 2J2) for the extreme quasi-2D case with ε2 � 1. We
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obtain

kBTN ≈ (J1 − 2J2)
π

2 + ln
(

J1−2J2
J⊥

) . (30)

For ε2 < 0.1, this is indistinguishable from Eq. (29).
We note that the natural exchange scale that determines

TN is really J̃ rather than Jc. The sign of J̃ changes at the
NAF/CAF boundary and in the CAF phase it simply has to
be replaced with |J̃ |. Using the (3D) ordering vectors QNAF =
(π,π,π ) and QCAF = (π,0,π ) and Eq. (3) we may also express
it as

J̃ = J1 − 2J2 = 1
2 (JQCAF − JQNAF ). (31)

For the unfrustrated (J2 = 0) NAF, Eq. (29) reduces to the
known result [9]

kBTN = πJ1

2 + ln
(

J1
J⊥

) . (32)

This means the asymptotic ε2 � 1 expression for the frustrated
NAF in Eq. (29) can be obtained from the expression for the
pure NAF by substituting J1 → J̃ , i.e., the NN exchange with
the effective exchange of the frustrated NAF.

B. CAF structure (2 J2 > J1)

This phase breaks the fourfold in-plane symmetry, there-
fore, the expanded dispersion Ek is not rotationally symmetric
in k‖ = (kx,ky). This leads to some complication because E2

k
in Eq. (27) will now depend also on ϕ, the azimuthal angle in
k‖ = (k‖ cos ϕ,k‖ sin ϕ) instead of only on k‖ as in the NAF
phase [Eq. (28)]. Therefore, a final integration over ϕ will
remain. Furthermore, the cutoff kc

‖ has to be chosen such that
in the CAF case J1 = 0 which is equivalent to two decoupled
interpenetrating NAF sublattices with lattice constant

√
2a the

same TN as in the previous NAF case with J2 = 0 is obtained.
Therefore, kc

‖ = π/
√

2 must now be chosen. The expansion
and integration in Eq. (27) then leads to

kBTN = (2J2 − J1)
π

2
π

∫ π

0 dϕ 1
b2

ϕ

[
Bεϕ + ln

(
1 + b2

ϕ

2ε2

)] , (33)

where we defined

b2
ϕ = (2J2 − J1 cos 2ϕ)/(2J2 − J1),

Bεϕ = bϕ√
2ε

(
π − 2 tan−1 bϕ√

2ε

)
, (34)

now with ε2 = J⊥/|J̃ | = J⊥/(2J2 − J1). There is no simple
general limiting expression for ε2 � 1. For the special case
J1 = 0 the model consists of two decoupled NAF substruc-
tures. Then, 2ε2 = J⊥/J2, b2

ϕ = 1 and in the extreme quasi-2D
case ε2 � 1 we recover Eq. (32) now with the replacement
J1 → J2.

As stressed before, these expressions contain implicitly an
arbitrary momentum cutoff (chosen as zone boundary wave
number) on which the absolute value of TN will depend. In the
previous numerical results, on the other hand, the energy cutoff
is given naturally by the spin-wave bandwidth. Therefore, it is
reasonable to compare TN and f normalized to the unfrustrated
NAF case φ = 0 for the two methods. For small J⊥/Jc gives

� �

NA AF

� �

�

NA

CF

CF AF

(a)

(b)

FIG. 9. Comparison of square lattice TN and f = �CW/TN using
numerical findings from Eq. (27) (dashed lines) and analytical results
[Eqs. (29) and (33)] (full lines) results for J⊥/Jc = 0.001.

a quite satisfactory agreement for all frustration angles φ as
shown in Fig. 9.

VII. QUASI-2D H-T PHASE DIAGRAM
AND REENTRANCE BEHAVIOR

The ordered moment in the whole frustrated region is
reduced from its classical value mQ = S by a considerable
amount (e.g., 0.606S in the pure Néel case of the square lattice)
[19,20]. It was shown before, using LSW and ED approaches
[41], that the application of a magnetic field strongly reduces
the quantum fluctuations. Therefore, initially, for a small
applied field B = μ0H the ordered moment increases, and on
approaching the saturation field Hs decreases again due to the
classical geometric canting effect, leading to a nonmonotonic
behavior of mQ(H ) which was observed [42] and explained
[41] for the quasi-2D S = 1

2 quantum magnet Cu(pz)2(ClO4)2

[43].
The nonmonotonic behavior of mQ(H ) is most pronounced

for strong frustration, i.e., when the initial value mQ(0) is
strongly suppressed. A complementary effect is seen in the
field dependence of the ordering temperature TN(H ) [42]. For
small fields H � Hs it was shown to increase [41], again due to
the reduction of quantum fluctuations by the applied field. For
larger fields approaching the saturation value Hs, TN(H ) even-
tually has to vanish. Thus, due to the initial increase of TN(H ), a
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Tr

�

FIG. 10. Field dependence of TN for pure quasi-2D NAF
(J2 = 0) for various interlayer coupling strengths J⊥/Jc as obtained
from Eq. (26). For J⊥/Jc = 1, the absolute reentrance difference �Tr

(see text) is indicated by the small horizontal double arrow at Hmax.

reentrance behavior of the magnetic order as function of the ap-
plied field at constant temperature T > T 0

N has to be expected.
The full phase diagram for all fields and frustration ratios of

a quasi-2D magnet is investigated in the present section. It is
obtained from the iterative solution of Eq. (26) which provides
us with the phase boundary TN(H ) for the quasi-2D magnet
for all parameter sets (φ,J⊥/Jc). First, we consider the pure
Néel case (φ = 0) shown in Fig. 10. The reentrance behavior
caused by the field dependence of quantum fluctuations is
clearly seen. The absolute reentrance difference of maximum
and zero-field ordering temperature �Tr = T max

N (Hmax) − T 0
N

is rather independent of the 2D character. However, the relative
difference δTr = �Tr/T 0

N = T max
N /T 0

N − 1 which is a measure
for the prominence of reentrance in the transition line increases
with decreasing J⊥/Jc.

In the complementary Fig. 11 we show the frustration
(φ) dependence of the transition line for an intermediate 2D
character with J⊥/Jc = 0.01. Close to the NAF/FM boundary
φ/π = −0.49 where quantum fluctuations are strongly re-
duced, the reentrance behavior characterized by δTr vanishes.
It increases rapidly in the whole unfrustrated φ < 0 regime
which proves that the reentrance is primarily associated with
the field-dependent suppression of quantum fluctuations and
not so much with the effect of frustration. It does, however,
achieve a maximum on approaching the strongly frustrated

�
�

FIG. 11. Field dependence of TN for interlayer coupling strength
J⊥/Jc = 0.01 and various φ values corresponding to NAF/FM bound-
ary (full line) and various compound values listed in Table II. The
former shows no reentrance due to absence of quantum fluctuations
for φ/π � −0.5.

� �

�

NA CF AF

FIG. 12. Reentrance measure given by the difference between the
field-dependent maximal Néel temperature and its zero-field value
normalized to the latter δTr = T max

N /T 0
N − 1 versus frustration angle

φ for interlayer coupling strengths J⊥/Jc = 0.001 (solid line) and
J⊥/Jc = 1 (dashed line).

regime φ/π = 0.15. This is most clearly seen when we plot
the reentrance measure δTr as function of φ (Fig. 12) for
extreme 2D case (full line) and isotropic 3D case (dashed
line). In the NAF case indeed δTr increases monotonically
from NAF/FM (φ/π = −0.5) to NAF/CAF (φ/π = 0.15)
boundaries. In the main part of the CAF phase it stays almost at
constant value equal to that of the unfrustrated case. Generally,
δTr is much larger in the extreme quasi-2D magnet (full
line) for both phases. Interestingly, in this case the reentrance
measure decreases when approaching the strongly frustrated
phase boundaries from the CAF side.

VIII. APPLICATION TO QUASI-2D
OXOVANADATE COMPOUNDS

The discovery of two classes of layered vanadium ox-
ides Li2VOXO4 (X = Si,Ge) [4,5,50,51] and AA′VO(PO4)2

(A,A′ = Pb,Zn,Sr,Ba) [6,7,49,52] provided a variable plat-
form of 2D frustrated quantum magnets with different chem-
ical composition. Nevertheless, their magnetism is described
universally by the J1-J2 model with J2/J1 or φ depending
on the specific compound. Each of them features V4+ ions
with S = 1

2 surrounded by oxygen polyhedra, forming layers
of J1-J2 square lattices with weak interlayer coupling [7,51].

These compounds were experimentally investigated, e.g.,
in Refs. [6,45,46] using susceptibility and specific-heat mea-
surements as well as neutron diffraction as tools. The typical
observed signatures in these experiments point to quasi-2D
magnetism. However, the actual size of J⊥/Jc, i.e., the inter-
layer/intralayer exchange ratio has not been estimated because
an applicable theory for TN(φ,J⊥) for all φ was lacking. Using
the theoretical results of the previous sections, we can now
give an assessment of the size of J⊥ within the series. As
input, we use the J1 and J2 values obtained previously from
2D finite-temperature Lanczos method (FTLM) applied to the
experimental susceptibilities or neutron diffraction results [20]
and the experimental values of TN listed among other items in
Table II.

Such a thermodynamic analysis can give only some
estimated range of J⊥/Jc because, on the one hand, the
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TABLE II. Exchange interaction constants for various vanadium oxide compounds, ordered with increasing φ, i.e., approaching the
CAF/FM boundary. Results are obtained mostly from susceptibility χ (T ) and magnetization m0(h) analysis, except for the fourth and fifth
rows which are deduced from neutron diffraction. Here, �CW = (J1 + J2)/kB is the 2D Curie-Weiss temperature, TN the Néel temperature, and
f the empirical frustration ratio. The symbols in the last column are used in Fig. 13 to label the kBTN/Jc data points shown there. The example
of Pb2VO(PO4)2 shows that a certain variation in exchange parameters as determined by different methods and in different references occurs.

Compound φ/π Jc/(kBK) J1/(kBK) J2/(kBK) |J̃ |/(kBK) �CW/K TN/K kBTN/Jc kBTN/|J̃ | f Ref. Symbol

Zn2VO(PO4)2 0.008 7.9 7.91 0.2 7.5 8.11 3.7 0.46 0.49 2.19 [7] •
Li2VOGeO4 0.44 4.2 0.82 4.1 7.38 4.92 2.1 0.50 0.28 2.34 [6,44] �
Li2VOSiO4 0.47 6.3 0.56 6.3 12.04 6.86 2.7 0.43 0.22 2.54 [6,44] �
Pb2VO(PO4)2 0.60 6.8 −2 6.5 16.25 4.5 3.5 0.51 0.21 1.28 [45] �
Pb2VO(PO4)2 0.63 8.4 −3.2 7.7 18.8 4.5 3.7 0.44 0.20 1.22 [46] �
PbZnVO(PO4)2 0.65 11.27 −5.2 10.0 25.2 4.8 3.9 0.35 0.15 1.23 [47] �
Na1.5VO(PO4)2F0.5 0.65 7.1 −3.2 6.3 15.8 3.1 2.6 0.36 0.16 1.19 [48] �
BaZnVO(PO4)2 0.66 10.5 −4.99 9.26 23.5 4.27 3.8 0.36 0.16 1.12 [44] �
Pb2VO(PO4)2 0.66 10.7 −5.1 9.4 23.9 4.3 3.7 0.35 0.15 1.16 [48] �
Pb2VO(PO4)2 0.67 11.5 −6 9.8 25.6 3. 8 3.7 0.32 0.14 1.02 [6] �
SrZnVO(PO4)2 0.73 12.2 −8.3 8.9 26.1 0.6 2.7 0.22 0.10 0.22 [48] �
BaCdVO(PO4)2 0.77 4.8 −3.6 3.2 10.0 −0.4 1.0 0.21 0.10 −0.4 [48,49] �

experimental value of kBTN/Jc may be rather uncertain. For
example for Pb2VO(PO4)2, it varies between 0.32 and 0.51
(� in Table II). On the other hand, the Néel temperature
depends only logarithmically on J⊥ [Eqs. (29) and (33)] and
therefore a wide range of values for J⊥/Jc is possible. We plot
the experimental values of kBTN/Jc from Table II together
with two theoretical curves in Fig. 13. The experimental
values all lie in a corridor limited by the theoretical results
for J⊥/Jc = 0.1 (full line) and J⊥/Jc = 0.001 (dashed line).
We conclude that the oxovanadate series are indeed quasi-2D
magnets but with non-negligible interlayer coupling.

The field dependence of the Néel temperature caused
by the suppression of fluctuations is discussed in Sec. VII.
In the example of Cu(pz)2(ClO4)2 [41,42] it was observed
and calculated. However, due to the rather high exchange
energy scale Jc/kB = 18.6 K the field for the maximum Néel
temperature T max

N (H ) is not reached such that the phase
diagram with reentrance character, although certainly present,
has not been fully determined.

� �

NA CF AF

� �

NA CF AF

FIG. 13. Néel temperature TN versus frustration angle φ. Dots:
experimental values according to Table II. Lines from evaluation of
Eq. (27) for J⊥/Jc = 0.001 (full line) and 0.1 (dashed line).

A more favorable case is Pb2VO(PO4)2 [44]. The smaller
exchange energy scale (Table II) makes it possible to reach
T max

N (H ) ≈ 3.9 K at μ0H ≈ 8 T in susceptibility and specific-
heat measurements [6]. At the largest accessible field μ0H =
14 T the TN(H ) curve has started to turn back. The experi-
mental values together with the optimal theoretical curve for
J⊥/Jc = 0.02 and φ/π = 0.63 appropriate for Pb2VO(PO4)2

are plotted in Fig. 14.
The fitting of the whole TN(H ) curve leads to a more

reliable value for J⊥ than just comparing T 0
N as in Fig. 13. The

observed experimental reentrance behavior is somewhat less
pronounced than expected for these parameters. One reason
certainly is that Pb2VO(PO4)2 has a small Ising anisotropy
that suppresses part of the fluctuations and therefore T 0

N is less
reduced by quantum fluctuations than in the pure isotropic
Heisenberg case. The presence of this Ising term may be
concluded from a spin-flop transition below μ0Hsf ≈ 0.9 T
not shown in the data of Fig. 14.

FIG. 14. Reentrance behavior of TN(H ) in Pb2VO(PO4)2 [44]
(black dots). Good agreement is obtained for J⊥/Jc = 0.02 (dashed
line) using φ/π = 0.63 and Jc = 8.4 K/kB from Table II and a
saturation field μ0H = 20.9 T [20]. Full and dotted curves correspond
to values J⊥/Jc = 0.01,0.03, respectively.
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In any case, one may expect that reentrant behavior is
a ubiquitous phenomenon for quasi-2D quantum magnets
due to the universal mechanism of suppressing quantum
fluctuations by application of the field. This mechanism is
also obvious from the temperature dependence of the specific
heat, for example, in Pb2VO(PO4)2 which shows an increasing
sharpening of the transition peak for increasing field [44] due
to the suppression of spin fluctuations, a very typical behavior
for reentrant phase transitions. The present theory may also be
applied to study this effect.

IX. DISCUSSION AND SUMMARY

We have investigated the frustration, interlayer coupling,
and field dependence of the Néel temperature in quasi-2D
quantum magnets. Based on the simple Tyablikov self-
consistency modification of LSW theory we have derived
equations that should qualitatively describe the systematic
variation of TN with frustration parameter φ = tan−1(J2/J1),
interlayer coupling J⊥, and the applied field H up to the
saturation value Hs. Furthermore, we investigated to what
extent the experimentally used empirical frustration ratio
f = �CW/TN (which may be positive or negative) is a relevant
measure of frustration. In the mean field approximation, |f | is
of order one or less.

We find that indeed the Néel temperature TN(φ) is strongly
suppressed for regions with large frustration and accordingly
|f | may be greatly enhanced in narrow intervals around
these special points with |2J2/J1| = 1 or φ/π ≈ 0.15,0.85
where the ground-state magnetic moment breaks down and
spin liquid or spin nematic states [20] are established. In
these regions, |f |  1 can function as a useful measure of
frustration, in particular in the square lattice (Fig. 7). The
logarithmic dependence of TN on interlayer coupling J⊥ for
the unfrustrated case J2 = 0 is confirmed to hold in both NAF
and CAF sectors for all frustration degrees. This is also proven
by explicit analytical approximations for TN(φ).

However, our analysis shows that the criterion |f |  1
as an indicator for large frustration may also be misleading.
Especially in the anisotropic triangular lattice (Fig. 8) the cri-
terion is also fulfilled for the unfrustrated quasi-1D cases with
φ/π = ±0.5, being far away from the special regions of strong
frustration with φ/π ≈ 0.15 and 0.85 (see Fig. 2). Instead,
critical 1D fluctuations lead to the enhancement of f here.
Particular examples are the well-known anisotropic triangular
magnets CsCuCl4 (f = 5.6) and CsCuBr4 (f = 9.2). They
have strongly enhanced f values, but anisotropy parameters
φ/π = 0.41 and 0.38, respectively [3,53,54]. Although they
are still quasi-2D magnets with finite TN of 0.62 and 1.42 K,
respectively, they are already placed close to the quasi-1D
region of the phase diagram with interchain couplings J1/J2 ≈
0.29 and 0.40 and rather reduced frustration degree (Fig. 2).
That quasi-1D fluctuations are the reason for large-f values
in these compounds is also directly evident from the typical
quasi-1D spinon excitation continuum observed in inelastic
neutron scattering experiments [53].

Furthermore, the large family of square-lattice oxovanadate
quasi-2D magnets with one exception have frustration angles
in the interval 0.44 < φ/π < 0.77. This begins close to the
unfrustrated CAF and ends before the strongly frustrated CAF

region slightly below φ/π ≈ 0.85. Therefore, the values of |f |
in this family of compounds are rather close to one (Table II)
without dramatic variation.

In essence then, be it the square or anisotropic triangular
lattice, in order to use the size of f = �CW/TN as a frustration
criterion for a compound investigated, one should have
additional information beforehand about its location in the
phase diagram. This can, for example, be the determination of
φ by a FTLM fit to the temperature dependence of the magnetic
susceptibility.

We have analyzed the field dependence of the Néel
temperature and found it is determined by the universal effect
of reduction of moment fluctuations by the applied field.
It is known that this mechanism leads to a nonmonotonic
field dependence of the ordered moment [41,42]. The present
analysis has shown that it also leads to a nonmonotonic
TN(H ) behavior, i.e., a reentrance character of the H -T
phase diagram in quantum magnets. The quantity δTr =
�Tr/T 0

N = T max
N /T 0

N − 1 characterizing the reentrance shows
a pronounced dependence on frustration angle in the strongly
frustrated regimes around the classical phase boundaries
NAF/CAF and CAF/FM. Outside these regions, it increases
strongly with decreasing J⊥ on approaching the extreme
quasi-2D limit.

Such reentrance phase diagrams as in Figs. 11 and 14 should
therefore be ubiquitous among quasi-2D magnets but may not
always easily be observable in the experimentally available
range of magnetic fields. The oxovanadate Pb2VO(PO4)2 is an
exception where reentrance has been found due to a modest
estimated saturation field μ0Hs ≈ 20.9 T, a consequence
of the relatively small exchange constants J1 and J2 of
the material (see Table II). TN(H ) follows qualitatively the
expected behavior, however, the details may be subject to
exchange anisotropies not taken into account here and further
interactions which influence zero-field spin fluctuations and
thus modify the zero-field value T 0

N. The inclusion of such
effects in the present framework via modified spin-wave
excitations seems rather straightforward.
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APPENDIX A: GLOBAL AND LOCAL SPIN
COORDINATES IN A MAGNETIC FIELD

The spin-wave approximation is performed in a coordinate
system where the local z direction at a given site i coincides
with the moment direction at that site. The connection to the
global spin coordinates used in Eq. (1) is given by⎛

⎜⎝
Sx

i

S
y

i

Sz
i

⎞
⎟⎠ =

⎛
⎝cos(QRi) − sin(QRi) 0

sin(QRi) cos(QRi) 0
0 0 1

⎞
⎠

×
⎛
⎝ cos � 0 sin �

0 1 0
− sin � 0 cos �

⎞
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⎞
⎟⎠. (A1)
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For clarity, we denote the local spin coordinates with primes
in this expression. While the first matrix represents the in-
plane xy rotation due to spontaneous order characterized by
Q, the second one describes the xz-plane canting of spins with
angle � caused by the magnetic field with a classical value
cos �cl = H/Hs.

APPENDIX B: EXPANSION INTEGRALS
FOR THE ORDERED MOMENT

In zero field for T � TN the approximate solution for the
total moment 〈S〉 in Eq. (25) is determined by expansion
coefficients that are expressed in terms of frustration- (φ-)
dependent integrals I0 . . . I2. They are given by

I0 := 1

3

∫
BZ

d3k

VBZ
(Ak − Bk cos �cl), (B1)

I1 := 1

180

∫
BZ

d3k

VBZ
(Ak − Bk cos �cl)E

2
k, (B2)

I2 := 1

7560

∫
BZ

d3k

VBZ
(Ak − Bk cos �cl)E

4
k. (B3)

Using these integrals in Eq. (25) leads to the approximate
〈S〉(T ) curves in Fig. 4.

APPENDIX C: NÉEL TEMPERATURE
AT THE CAF BORDERS

From Eq. (27), we obtain

βN = 4
∫

BZ

d3k

VBZ

Ak

A2
k − B2

k

= 2
∫

BZ

d3k

VBZ

(
1

Ak − Bk
+ 1

Ak + Bk

)

= 4
∫

BZ

d3k

VBZ

1

Ak + Bk
, (C1)

where the last equality holds for commensurate ordering
vectors Q with components (Qx,Qy,Qz) = π (nx,ny,nz) and
nx,ny,nz ∈ Z. At the CAF borders, we have either J2 = J1/2
(border to NAF) or J2 = −J1/2 > 0 (border to FM) such that
we obtain from Eq. (17)

Ak + Bk = 2[J1(1 + cos kx)(1 + cos ky) + J⊥(1 + cos kz)]

(C2)

at the NAF/CAF border and a similar expression at the
FM/CAF border. The denominator in Eq. (C1) therefore
has lines of zeros at (kx,ky,kz) = (π,ky,π ) or (kx,ky,kz) =
(kx,π,π ), implying that the integral (C1) diverges and TN → 0
eventually.
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