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Magnetic structure of Ba(TiO)Cu4(PO4)4 probed using spherical neutron polarimetry
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The antiferromagnetic compound Ba(TiO)Cu4(PO4)4 contains square cupola of corner-sharing CuO4

plaquettes, which were proposed to form effective quadrupolar order. To identify the magnetic structure, we have
performed spherical neutron polarimetry measurements. Based on symmetry analysis and careful measurements,
we conclude that the orientation of the Cu2+ spins form a noncollinear in-out structure with spins approximately
perpendicular to the CuO4 motif. Strong Dzyaloshinskii-Moriya interaction naturally lends itself to explain this
phenomenon. The identification of the ground-state magnetic structure should serve well for future theoretical
and experimental studies into this and closely related compounds.
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The magnetoelectric effect, which describes the coupling
between magnetism and ferroelectricity, allows for the ability
to control the material’s magnetization using an electric field
or polarization using a magnetic field, making it a promising
avenue for the next generation of data storage materials. A
linear magnetoelectric effect in magnetically ordered systems
necessitates the breaking of both the time reversal and the
spatial inversion symmetry. The magnetic interaction energy
of a magnetization density with an inhomogeneous magnetic
field can be written as a multipole expansion containing
monopole, toroid, and quadrupole moments, illustrated in
Fig. 1 [1]. All three moments change sign under time reversal
or space inversion as necessary for the linear magnetoelectric
effect. Although toroidal multipole moments have been shown
to possess magnetoelectric activity, the recently discovered
Ba(TiO)Cu4(PO4)4 is believed to be the first experimental
observation of magnetoelectric activity originating from mag-
netic quadrupole moments [2,3].

The analysis of our previous powder neutron diffraction
measurements was able to identify two possible models for
the magnetic structure of Ba(TiO)Cu4(PO4)4 [4]; however, it
was limited by (i) weak magnetic Bragg reflections due to the
small magnetic moment on Cu ions and (ii) the assumption
of an isotropic magnetic form factor for Cu systems, which
due to the nature of the electronic orbitals and covalency is
typically not the case. To provide a solid footing for future
experimental and theoretical studies, it is crucial to verify these
results. The spherical neutron polarimetry (SNP) technique
largely overcomes these problems, allowing for studies of
magnetically ordered materials with magnetic moments of as
small as 0.2μB and providing polarization matrices that are
unaffected by the magnetic form factors. To this end we have
performed detailed SNP measurements, whose results are the
focus of this article. Our findings are consistent with a strong
Dzyaloshinskii-Moriya interaction as the driving mechanism
for the unusual spin structure in Ba(TiO)Cu4(PO4)4.

*peter.babkevich@gmail.com

I. SYMMETRY ANALYSIS

Ba(TiO)Cu4(PO4)4 crystallizes in a chiral tetragonal struc-
ture with a space group P 4212 with lattice parameters of
a = 9.56 Å and c = 7.07 Å [2]. The upward and downward
square cupola of Cu4O12 are arranged in an alternating fashion
in the tetragonal ab plane [2], shown in Fig. 2. In between
the Cu4O12 cupola lies a nonmagnetic layer composed of
tetrahedra of PO4 and pyramids of TiO5. The crystallographic
unit cell contains eight Cu ions which are all equivalent to the
general position (0.27,0.99,0.40). The magnetic structure of
Ba(TiO)Cu4(PO4)4 was previously studied in Ref. [4] using
neutron powder diffraction. Antiferromagnetic order develops
below TN = 9.5 K, giving rise to magnetic reflections which
can be indexed using a magnetic propagation wave vector
k = (0,0,0.5). Group representation theory can be used to
identify the possible magnetic structures emanating from the
paramagnetic group from which the magnetic order emerges.
A number of software packages are available to perform such
an analysis, such as BASIREPS [5]. Below we outline the steps
used to calculate the possible magnetic structures.

A. Representation analysis of magnetic structures

The little group Gk is a subset of symmetry elements
within the paramagnetic space group G0 (P 4212), which
leaves the propagation wave vector invariant under the uni-
tary transformation matrix M . In our case the little group
contains all elements of G0, which are listed in Table I.
It is convenient to transform the representation of Gk into
irreducible representations (IRs) which are orthogonal to one
another.

The magnetic representation �mag is the result of the
symmetry operations on the position (polar) and spin (axial)
vectors. The two are independent and can be treated separately.
The former permutes the atomic positions r such that gnri =
rj . The magnetic spin S must obey the axial vector property
and remain invariant under an inversion, or S′ = |M|MS.
The magnetic representation is then a tensor product of the
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Monopole Toroidal Quadrupole

FIG. 1. Illustration of the arrangement of spins on the Cu4O12 plaquette to produce an effective monopolar, toroidal, or quadrupolar moment
in Ba(TiO)Cu4(PO4)4.

permutation and axial representations,

�mag = �perm × �axial, (1)

χmag = χpermχaxial. (2)

The character χ of permutation and axial vector repre-
sentations is simply given by the trace of the respective
representations. Any magnetic representation is reducible to
block-diagonal form by a summation over the IRs �ν . The
magnetic representation can then be described as

�mag =
∑

ν

nν�ν, (3)

nν = 1

n(Gk)

∑
g∈Gk

χmag(g)χ�ν
(g)∗. (4)

The value of nν tells us how many distinct basis vec-
tors we can expect for each irreducible representation. In
Ba(TiO)Cu4(PO4)4, the magnetic representation at the Cu site

with Wyckoff position 8g can be decomposed into a direct sum
of irreducible representations as �mag(8g) = 3�1 + 3�2 +
3�3 + 3�4 + 6�

(2)
5 . All IRs are one-dimensional, except �

(2)
5 ,

which is two-dimensional. The character table for Gk is given
in Table II.

The basis vectors ψ are calculated using the projection
operator technique by using a trial function along crystallo-
graphic axes ma = (1,0,0), mb = (0,1,0), and mc = (0,0,1).
The projection operator formula to find the basis vector ψ for
magnetic representation �ν is given as

ψαν =
∑
g∈Gk

χ∗
ν (g)

∑
n

δn,gn
|M(g)|M(g)mα, (5)

where χ (g) is the character of the little group Gk. The spin
distribution of the j th atom can be expressed as the Fourier
transform of the linear combination of basis vectors, such that
for a single propagation wave vector,

Sj =
∑

n

Cnψne
−ik·t + c.c., (6)

FIG. 2. Proposed magnetic structures described in the text of Ba(TiO)Cu4(PO4)4 obtained from spherical neutron polarimetry. (a) Moments
are lying almost in the CuO4 planes. (b) Moments are almost perpendicular to CuO4 planes.
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TABLE I. Symmetry operators of space group P 4212 showing
explicitly the rotational part M , IT notation as listed in the Interna-
tional Tables of Crystallography, and the Jones representation.

Element Rotation matrix IT notation Jones symbol
gn M

g1

(
1 0 0
0 1 0
0 0 1

)
1 (x,y,z)

g2

(
1̄ 0 0
0 1̄ 0
0 0 1

)
2 0,0,z (−x,−y,z)

g3

(
0 1̄ 0
1 0 0
0 0 1

)
4+ 0, 1

2 ,z (−y + 1/2,x + 1/2,z)

g4

(
1̄ 0 0
0 1 0
0 0 1̄

)
2
(
0, 1

2 ,0
)

1
4 ,y,0 (−x + 1/2,y + 1/2,−z)

g5

(
0 1 0
1̄ 0 0
0 0 1

)
4− 1

2 ,0,z (y + 1/2,−x + 1/2,z)

g6

(
1 0 0
0 1̄ 0
0 0 1̄

)
2
(

1
2 ,0,0

)
x, 1

4 ,0 (x + 1/2,−y + 1/2,−z)

g7

(
0 1̄ 0
1̄ 0 0
0 0 1̄

)
2 x,x̄,0 (−y,−x,−z)

g8

(
0 1 0
1 0 0
0 0 1̄

)
2 x,x,0 (y,x,−z)

where the coefficients Cn can, in general, be complex. The
magnetic moments obtained from the basis function calculated
for the �3 IR for the Cu sites resolved along crystallographic
axes are

1. (u,v,w); 2. (ū,v̄,w); 3. (v,ū,w̄); 4. (u,v̄,w);

5. (v̄,u,w̄); 6. (ū,v,w); 7. (v̄,ū,w̄); 8. (v,u,w̄).

The parameters u, v, and w are free parameters which are to
be determined experimentally. Equivalent calculations can be
made for the other IRs in �mag.1 Rietveld refinement of the
neutron powder diffraction data showed that �3 gives the best
agreement [4].

Within the �3 IR, there exist two possible solutions
which give a similar quality of fit to the observed magnetic
diffraction powder pattern [4]. We label these models as �3(1a)
and �3(2a) with magnetic moment components in units of
μB , (u,v,w) = [0.50(1),0.36(2),0.58(2)] and [0.49(1),0.0(1),
−0.62(2)], respectively. The magnetic structures of the two
models closely resembles that illustrated in Fig. 2. We note
that both �3(1a) and �3(2a) contain the component of the
magnetic quadrupole moment which is illustrated in Fig. 1. In
the case of �3(1a) the moments are confined approximately
in the plane of the CuO4. Conversely, in the �3(2a) model,
the moments are approximately perpendicular to the CuO4

planes and form a two-in–two-out–type arrangement within a
Cu4O12 plaquette. The goodness of fit to the powder neutron

1The case of �
(2)
5 can produce a magnetic structure with an

amplitude-modulated moment, which seems unlikely.

diffraction data was found to be slightly better for the �3(2a)
model. However, the refinement suffers from two problems.
First, the magnetic form factor (see Sec. II) was assumed to
be isotropic, which is typically not the case for Cu2+ ions.
Furthermore, due to covalency, the magnetic form factor can
be strongly modified [6]. Second, at larger |Q|, the magnetic
signal is rather weak due to the small magnetic moment
of around 0.8 μB , and magnetic and structural Bragg peak
overlap makes fitting difficult. Therefore, we turn to polarized
neutron scattering to try to confirm and refine the complex,
noncollinear magnetic structure found from powder neutron
diffraction in Ba(TiO)Cu4(PO4)4.

B. Domains

In order to accurately model the polarization matrices
that are measured in spherical neutron polarimetry, we must
consider the possible domains that could exist when the
symmetry of the ordered magnetic structure is lower than that
of the paramagnetic phase [7]. In the present case, we find that
Gk contains all the symmetry elements of the paramagnetic
space group. This means that translation symmetry is preserved
on applying the symmetry operators and no configuration
domains (or k domains) are produced.

An interesting property of Ba(TiO)Cu4(PO4)4 is the chiral
crystal structure in which there is no roto-inversion axis. In
this case, a pair of enantimorphs can be formed that are related
by a spatial inversion. A polarized light beam will be rotated
when traversing through such a sample with the rotation being
sensitive to the structural chirality. Indeed, such measurements
have demonstrated the presence of structural chiral domains
in Ba(TiO)Cu4(PO4)4 [2].

II. MAGNETIC CROSS SECTION

In order to derive the polarization matrices, we present a
brief account of the neutron scattering theory behind it [8–10].
The partial differential scattering cross section in an elastic
neutron scattering measurement can be described by

dσ

d�
=

∑
i,f

P (λi)|〈λf ,σf |
∑

j

eiQ·rj Uj |λi,σi〉|2δ(E). (7)

This gives the probability that a neutron is scattered into a
solid angle � without transferring any energy to the system.
The initial (final) states of the neutron and sample are given by
σi and λi (σf and λf ), respectively. The statistical weight factor
for an initial state |λi〉 is given by P (λi). The last term ensures
energy conservation during the scattering process, which in
the present case will be restricted to purely elastic scattering.
The atomic scattering amplitude for the j th atom at position
rj is given as

Uj = bcoh
j + binc

j√
I (I + 1)

Ij · σ − pj S⊥j · σ . (8)

The scattering length operator for the interaction between
neutrons and nuclei consists of both coherent and incoherent
scattering lengths b which can contribute to the total scattering
cross section. The Pauli spin operator σ is the normalized
neutron spin operator and the nucleus spin operator is I.

214436-3



P. BABKEVICH et al. PHYSICAL REVIEW B 96, 214436 (2017)

TABLE II. Matrix representation of the IRs with respect to the symmetry operations g1, . . . ,g8 in Table I. The final column gives the
magnetic space group of each IR in the Belov-Neronova-Smirnova notation.

ν g1 g2 g3 g4 g5 g6 g7 g8 MSG

1 1 1 1 1 1 1 1 1 P 4212
2 1 1 1 1 1̄ 1̄ 1̄ 1̄ P 42121′

3 1 1 1̄ 1̄ 1 1 1̄ 1̄ P 42121′

4 1 1 1̄ 1̄ 1̄ 1̄ 1 1 P 4′2′
12

5
(

1 0
0 1

) (
1̄ 0
0 1̄

) (
1 0
0 1̄

) (
1̄ 0
0 1

) (
0 1
1 0

) (
0 1̄
1̄ 0

) (
0 1̄
1 0

) (
0 1
1̄ 0

)
–

The last term in Eq. (8) describes the magnetic scattering of
the neutrons by the sample. The factor p = (γ r0)f (Q)/2 for
a spin-only moment, where the gyromagnetic ratio γ = 1.913
and the classical electron radius r0 = 2.82 fm. The magnetic
form factor f (Q) corresponds to the Fourier transform of the
unpaired spin density on an atom. The magnetic interaction
vector, S⊥ = Q̂ × S × Q̂, expresses the fact that only magne-
tization perpendicular to Q can scatter neutrons. In the case of
coherent magnetic scattering of unpolarized neutrons from a
magnetically ordered crystal, the elastic differential scattering
cross section is derived from Eqs. (7) and (8) as

dσ

d�
∝ |F(Q)|2δ(Q + G ± k) (9)

for a given propagation wave vector k and reciprocal lattice
wave vector G. The structure factor is found as

F(Q) =
∑

j

pj 〈S⊥j 〉eiQ·rj e−Wj , (10)

which includes the Debye-Waller factor e−Wj , and 〈S⊥〉
contains the thermally averaged expectation value of the spin
perpendicular to Q.

A. Polarized neutron scattering

Polarized neutron scattering makes use of the incident and
outgoing neutron spin state to provide additional information
about the magnetic system. The polarization of a neutron beam
is a statistical quantity defined as the expectation value of an
ensemble of neutron spins. The scattering of a neutron from
a sample can in general reorient the neutron moment from
one orientation to any other in three dimensions. This process
can be neatly described by a polarization matrix Pαβ , which

TABLE III. The Cu spin direction has been obtained by fitting
the spherical neutron polarimetry data. The moment direction (u,v,w)
are normalized to the moment size m0 obtained from fitting WISH
powder data. The refined levo chiral domain population is also shown.
The values in parentheses indicate 1-standard-deviation uncertainties
in the fit parameters.

SNP �3(1b) �3(2b)

u (μB ) 0.56(2) 0.56(2)
v (μB ) −0.01(1) 0.03(1)
w (μB ) 0.59(2) −0.57(2)
m0 (μB ) 0.81(1) 0.80(1)
Levo domain 64(7)% 36(7)%
χ 2

ν 18.9 18.9

consists of measuring 18 different scattering intensities in the
spin-flip and non-spin-flip channels, σ (α,β) and σ (α,−β),
respectively. The initial spin direction is defined by α and the
final direction by β, such that,

P (α,β) = σ (α,β) − σ (α,−β)

σ (α,β) + σ (α,−β)
. (11)

In neutron polarimetry, it is useful to define x as parallel to Q,
z perpendicular to the scattering plane, and y completes the
right-handed coordinate system. The α and β are defined in
this coordinate system,

|x〉 = 1√
2

(
1
1

)
, |y〉 = 1√

2

(
1
i

)
, |z〉 =

(
1
0

)
,

|x̄〉 = 1√
2

(
1
1̄

)
, |ȳ〉 = 1√

2

(
1
ī

)
, |z̄〉 =

(
0
1

)
.

From Eqs. (7) and (8) we will in general obtain nuclear,
magnetic or a mix of nuclear-magnetic interference terms upon
squaring. However, for present case of Ba(TiO)Cu4(PO4)4, the
magnetic propagation wave vector is (0,0,0.5) and therefore
the magnetic and nuclear reflections will occur at different
positions in reciprocal space.

The neutron and electron (which is responsible for
the magnetization) coordinates are independent, which al-
lows us to separate the matrix element in Eq. (7) to
〈σf|σ |σi〉〈λf|

∑
j eiQ·rj pj S⊥|λi〉, where the second term is

equivalent to F(Q) in Eq. (10). We define F(Q) = (0,Fy,Fz),
resolved along our chosen coordinate system {x,y,z}. Due
to the cross product in S⊥, the contribution of magnetization
along x is zero. Therefore, we can define the scattering cross
sections in Eq. (11) as

σ (α,β) ∝ |〈β|
(

Fz −iFy

iFy −Fz

)
|α〉|2. (12)

Since the matrix is measured at a particular Q point and
consists of normalized intensity in Eq. (11), the polarization
analysis is not sensitive to the magnetic form factor contained
in pj , nor to the size of the magnetic moment. In practice,
measuring magnetic Bragg peaks at larger |Q| becomes
increasingly challenging as the magnetic form factor decreases
the scattering intensity. For the special case of longitudinal
neutron polarimetry at Q = G + k,

σ (x,x) = 0, σ (x,x̄) = |F|2 + i(F × F∗),

σ (y,y) = |Fy |2, σ (y,ȳ) = |Fz|2,
σ (z,z) = |Fz|2, σ (z,z̄) = |Fy |2.
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We note that the σ (x,x̄) is sensitive to a chiral magnetic struc-
ture through the term i(F × F∗). In the case of perfect beam
polarization and a single-domain structure, the polarization
matrix can be found as

P =
⎛
⎝−1 0 0

C −A B

C B A

⎞
⎠, (13)

AD = |Fz|2 − |Fy |2,
BD = FyF

∗
z + F ∗

y Fz,

CD = i(FyF
∗
z − F ∗

y Fz),

D = |Fy |2 + |Fz|2. (14)

The P (x,x) element readily identifies the nature of the reflec-
tion: P (x,x) = +1 for a nuclear Bragg peak and P (x,x) = −1
for a magnetic one. The coherent scattering from the nuclear
structure does not contain any spin dependence in Eq. (8),
which means that the initial spin state of the neutron will be
preserved after scattering from the nuclear structure. This is
an important consequence for polarized neutron scattering,
which allows us to cleanly separate the signal originating
from coherent nuclear or magnetic scattering processes. It
should be noted that the nuclear spin incoherent scattering can
flip the spin and thereby contribute to a featureless spin-flip
background.

The chiral term in Eq. (14) can be equivalently expressed as
CD = i(F × F∗) and is a signature of noncollinear magnetic
order. For a single domain, the summation A2 + B2 + C2 = 1
will hold for ideal beam polarization. Magnetic domains
can depolarize the neutron beam such that A2 + B2 + C2 �
1. Symmetry consideration are necessary to account for
this.

In the 1960s, Blume and Maleyev established equations
that were useful in gaining insight into how the different
scattering processes affect the different elements of the
polarization matrix [11,12]. However, this formulation was
restricted to the single-domain case only, which does not hold
true for most magnetic systems. Herein we shall outline the
methodology for treating multidomain structures. In the case of
a multidomain sample, the scattering cross section in Eq. (11)
becomes

σ (α,β) →
∑

n

fnσn(α,β), (15)

where the fraction of the nth domain is given by fn.

B. Imperfect beam polarization correction

In practice, 100% neutron spin polarization is not possible.
The incident and scattered beam will have a polarization
efficiency of 0 < ηi,ηf < 1. This will cause some neu-
trons to scatter into the wrong channel, which needs to
be corrected when comparing measured matrices with the
calculated ones. For a measured scattering cross section
σm(α,β), we must consider an ensemble average of ηi |α〉
neutrons with the correct polarization and (1 − ηi)| − α〉 with
the wrong polarization. Considering similarly the out-going
neutron beam polarization gives the corrected scattering cross

section as

σc(α,β) = ηiηf σ (α,β) + ηi(1 − ηf )σ (α,−β)

+ (1 − ηi)ηf σ (−α,β)

+ (1 − ηi)(1 − ηf )σ (−α,−β). (16)

Similarly, by setting α → −α and/or β → −β one can obtain
the scattering cross section for other channels. A good estimate
of the polarization efficiencies can be obtained by measuring
a Bragg reflection which is either purely nuclear or magnetic
in origin. It is useful to define the spin-flip ratio R, which for
a nuclear reflection and ηi = ηf = η is

R =
(

σNSF

σSF

)
m

= 1

2η(1 − η)
− 1, (17)

by measuring the ratio of the intensities in the spin-flip (SF)
and non-spin-flip (NSF) channels. A flipping ratio of 12 will
correspond to a neutron beam polarization efficiency of 96%.
However, some caution needs to be taken, particularly when
working on systems with short-range magnetic order with a
focusing monochromator and/or analyzers, as R for nuclear
resolution-limited reflections can be somewhat higher than
diffuse magnetic scattering owing to spatial distribution of the
neutron beam polarization.

III. EXPERIMENTAL RESULTS

A. Experimental setup

Spherical neutron polarimetry measurements were per-
formed using the MuPAD configuration of the TASP spectrom-
eter configuration at SINQ [13–15]. Incident neutrons of wave-

length 1.97 Å
−1

were used for the measurements. A single-
crystal Ba(TiO)Cu4(PO4)4 sample of 0.6 g grown by the flux
method [2] was mounted on an Al holder. Measurements of the
flipping ratio were performed on the (200), (220), and (002) nu-
clear reflections, giving R = 13.2 corresponding to ηi = ηf =
96.4%. The modeled polarization matrices take this nonideal
beam polarization into account as defined in Eq. (16). Two
sample orientation geometries were used to access the (h0l)
and (hhl) scattering planes. Complete normal P (α,β) and neg-
ative P (−α,β) polarization matrices were recorded at 1.5 and
20 K to eliminate the contributions from the systematic errors
and background. In total, 26 polarization matrices were used
in the analysis, with around 1 hour counting time per matrix.

B. Polarization matrix simulations

Figure 3 illustrates some of the polarization matrices
recorded. We note that in our data P (y,x) �= P (z,x) and
for some reflections P (x,z) �= 0. These are probably caused
by small gaps in the mu-metal shielding, which results in
systematic errors. To mitigate these errors, we have collected
equivalent reflections and measured negative polarization
matrices. An alternate scenario could be that there is a small
amount of nuclear-magnetic interference, perhaps originating
from some sort of a superstructure; however, our data is
insufficient to provide further insight.

No magnetic intensity was found for reflections (0,0,0.5) +
(0,0,l) for l = 0,1,2. One might naively expect this to reflect
that spins are all parallel to the c axis. However, this can
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FIG. 3. A selection of the polarization matrices recorded for different (hkl) positions indicated below the polarization matrices. Blue,
white, and red colors represent P (α,β) = −1, 0, and +1, respectively. Uncertainty in the matrix element is given in parenthesis. A background
collected at 20 K has been removed from the data measured at 1.5 K. Matrices without parenthesis indicate simulation matrices. The simulated
polarization matrices were calculated for the �3(2b) magnetic structure given in Table III. A correction for beam polarization efficiency of
96.4% has been applied to the calculated polarization matrices.

be easily shown not to hold true. If we examine the P (y,y)
and P (z,z) elements at (1,1,0.5), for example, we find
measured values of −0.89(1) and +0.85(1), respectively (see
Fig. 3). Assuming a beam polarization efficiency of 96.4%
and spins along the c axis results in P (y,y) = +0.86 and
P (z,z) = −0.86, i.e., exactly opposite to what we observe
experimentally. Indeed, a very poor goodness of fit to
the complete data set of χ2

ν = 2000 is found for such a
model.

A key advantage of symmetry analysis is that it greatly
reduces the number of free parameters. In the case of
Ba(TiO)Cu4(PO4)4 we are left, for each possible IR, with a
refinement of three parameters: the polar and zenith angles
of the Cu spin and the levo-dextro domain population. We

treat levo as the domain in which Cu ion is situated at
(0.27,0.99,0.40) and dextro as the structural chiral domain
related by a spatial inversion. Fitting the complete set of the
polarization matrices that have been collected, we find two
possible solutions, shown in Table IV, with identical quality
of fit of χ2

ν = 18.9.2 The measured and simulated polarization
matrices for the �3(2b) structure are shown in Fig. 3. The two
magnetic structure solutions are shown in Fig. 2. We note that
our SNP measurements differ from those obtained previously
from neutron powder diffraction [4]. In the case of �3(1b),

2We note that the χ 2
ν only includes the random errors and not the

systematic ones, resulting in values somewhat larger than 1.
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TABLE IV. Results of magnetic structure refinement based on
neutron powder diffraction (ND) measurements obtained from the
WISH and D20 diffractometers and single-crystal spherical neutron
polarimetry (SNP) for the two proposed magnetic structures. In the
case of SNP+ND, the magnetic structure from SNP was used but
the moment size was refined using ND data. The SNP+ND(WISH)
corresponds to the goodness of fit for the diffraction patterns obtained
from the two detector banks covering the smallest |Q| range.

�3(1b) �3(2b)

ND(D20) 16.4% 11.4%
SNP+ND(D20) 32.6% 18.8%
ND(WISH) 18.5% 11.5%
SNP+ND(WISH) (35.5%, 42.9%) (18.0%, 14.3%)

SNP finds the moment along the b axis is nearly zero compared
to 0.36(2) μB . The magnetic structure from SNP, �3(2b), is
nearly the same as �3(1b), with the exception that SNP is
able to reduce the uncertainty in the b component. �3(1b)
is characterized by spins lying in the CuO4 plane (within
about 5◦), while in �3(2b) they are nearly perpendicular to the
plane, being approximately 5◦ from the normal of the CuO4

plane. It is interesting to note that �3(1b) can be mapped into
�3(2b) spin structures, and vice versa, by displacing the atomic
structure by (0.5,0.5,0.2). If the c-axis component were zero,
the magnetic structure factors of the two models would be the
same; however, this small shift along the c axis between the
Cu4O12 plaquettes gives a discernible, albeit small difference
between the two models.

To elucidate the magnetic structure of Ba(TiO)Cu4(PO4)4,
we return to neutron powder diffraction measurements. Two
experiments have been carried out so far on the same
Ba(TiO)Cu4(PO4)4 powder sample using D20 at ILL and
WISH at ISIS diffractometers, whose results are reported
elsewhere [4,16]. In Table IV we present the goodness-of-fit
values obtained by either fitting the data, allowing the moment
size and direction to vary, or fixing the moment direction as
obtained from spherical neutron polarimetry. We find that
in each case there is a better fit obtained for the �3(2b)
spin structure. The calculations were performed assuming an
isotropic magnetic form factor. We stress that it is not known
in which orbital the electron is in, nor the extent of covalent
bonding that is often found for Cu-based compounds. Both of
these effects have potentially significant effects on the mag-
netic form factor and hence the magnetic structure factor. As
previously described, spherical neutron polarimetry eliminates
this problem, and as a result we have more confidence in the
spin structure obtained in Ba(TiO)Cu4(PO4)4.

Let us consider just the nearest-neighbor Cu spins, as
depicted in Fig. 4. We note that the dominant exchange path
between Cu ions is likely to be through the shared O atom. The
large displacement of the O from the line connecting Cu-Cu
sites [see Fig. 4(c)] implies first that the superexchange interac-
tion J is likely to be small, and second that the Dzyaloshinskii-
Moriya (DM) interaction could be strong [17,18]. The antifer-
romagnetic exchange interaction encourages the spins to be an-
tiparallel, while the DM interaction would favor a noncollinear
spin arrangement. For two spins, the DM interaction has the

(a) (b)

FIG. 4. Illustration of the DM interaction at play in
Ba(TiO)Cu4(PO4)4. Panels (a) and (b) show the nearest-neighbor
Cu spins, each connected to 4 O atoms in the case of �3(1b) and
�3(2b) spin structures. The yellow plane represents the normal to the
Cu-O-Cu bond, with the direction of the DM vector shown in yellow.
(c) Simplified diagram to illustrate the DM interaction.

form

HDM = −D12 · (S1 × S2), (18)

where the DM vector D12 ∝ λr1 × r2 and λ is the spin-orbit
coupling. The vector connecting Cu and O is given by r. In the
case of Ba(TiO)Cu4(PO4)4, we would expect the DM vector
to be mostly in the ab plane, as shown in Figs. 4(a) and
4(b). The most energetically favorable spin configuration in
the presence of strong DM interaction would be where the
spins lie in the plane normal to D12. This scenario is realized
for the case of the �3(2b) model where the spins are found
to be almost normal to D12, see Fig. 4(b). For �3(1b), the
S1 × S2 vector is approximately 130◦ from D12, while for
�3(2b) this is just 20◦. Therefore, we would naively expect the
DM interaction to stabilize the �3(2b) rather than the �3(1b)
spin structure. A large DM interaction contribution has been
proposed theoretically for Ba(TiO)Cu4(PO4)4 to reproduce
the bulk magnetization measurements [3]. Moreover, inelastic
neutron scattering measurements on Ba(TiO)Cu4(PO4)4 show
a large spin gap relative to the total bandwidth of the magnetic
excitations [4]; these results would be consistent with the
present scenario where a strong DM interaction is responsible
for the anisotropy and large spin gap and demonstrates that
our results are consistent.

IV. CONCLUSIONS

Spherical neutron polarimetry is a powerful technique for
probing systems where structural and magnetic signals are
intertwined and/or magnetic structure is noncollinear. While
standard methods of single-crystal and powder diffraction
are able to shed light on magnetic ordering of systems,
neutron polarimetry can in certain cases be significantly more
efficient and robust. We have employed spherical neutron
polarimetry to show that in Ba(TiO)Cu4(PO4)4 there are
two possible magnetic spin structures. In combination with
previously recorded neutron powder diffraction, we find that in
Ba(TiO)Cu4(PO4)4, the Cu spins are arranged in two-in–two-
out manner with spins pointing approximately perpendicular
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to the CuO4 motif. This spin structure is consistent with a
strong DM interaction, which naturally explains the large spin
gap observed in the magnetic spectrum of Ba(TiO)Cu4(PO4)4

[4]. Given the rich physics in the A(BO)Cu4(PO4)4 family
[16], our measurements should pave the way for future
experimental and theoretical investigations of these intriguing
materials.
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